
Code is Ethics — Formal Techniques for a Better World

Rolf Drechsler∗† Christoph Lüth∗†

∗Cyber-Physical Systems, Deutsches Forschungszentrum für Künstliche Intelligenz
†Dept. Mathematics and Computer Science, University of Bremen

Email: drechsler@uni-bremen.de, christoph.lueth@dfki.de

Abstract—Computers are involved in our every-day life,
making increasingly consequential decisions. This raises the
question of the ethics of these decisions, for example when
autonomous cars are concerned. We argue that the ethics of
the decisions taken by a computer are in fact those of the
developers, encoded in the program (“code is ethics”). This
encoding is mostly implicit — programmers and users are
often even not aware of the implicit decisions that are being
made before the program is even run. We suggest that formal
methods are an excellent way to make the criteria under which
these decisions are taken explicit, because formal specifications
are more concise, abstract and clearer than code, This way, it
becomes clear why systems act the way they do, and where the
responsibility for their behaviour lies.

Keywords-ethics, formal methods

I. INTRODUCTION

With computers pervading more and more aspects of our
daily life, there is a growing concern about the influence
computers have on our lifes. In the past, computers used
to have a very simple and transparent functionality, but as
systems and software grow more complex, they can produce
results that are sometimes neither foreseen nor intended.

For example, when a bank is using software to adminis-
trate the accounts, there are no visible effects: one can only
withdraw money that one has paid in to the account, or one
may have an overdraft with usually substantial interest. For
a large credit to finance a car or a house, a person such as
the branch manager will decide whether that credit is given
or not. If this bank is starting to use a credit scoring system
to decide whether to give a credit or not, this decision now
suddenly rests with “the computer”: an algorithm seems to
decide whether we can buy a new home or not, according
to reasons which are unfathomable to us.

Another example are cars. Modern cars contain in an ex-
cess of hundred-fifty microprocessors controlling all aspects
of the vehicle, but until recently such a modern car behaved
to all intents and purposes like an older car without any
embedded controllers: steering and velocity was controlled
by the human driver. More recently, cars offer assistant
control in clearly delineated situations such as manoeuvring
in and out of parking spaces, detection of symptoms of

Research supported by BMBF grant SELFIE, grant no. 01IW16001.

sleepiness, or obstacle detection. In the not too distant future,
more levels of autonomy may lead to fully autonomous cars.

In complex systems like these, the result of a computation
(an algorithm) can have serious effects to consider:

• For example, the credit scoring might discriminate due
to gender, postal code, or even ethnic background.

• And how would the autonomous car behave in situa-
tions like the “trolley problem” where it has to decide
which action to take when all choices are harmful? 1

If a human is confronted by these decisions, their de-
cisions would be governed by their morality and ethics,
including the regard for their fellow human beings, but what
principles underlie the decisions made by an algorithm? The
answer is that programs never make any ethical decisions by
themselves. Programs encode ethical decisions, made by the
developers during the design of the program. Unfortunately,
these ethical decisions are usually implicit.

We suggest that formal methods are an adequate way to
address this problem. Talking and reasoning about specifi-
cations and what they might mean makes the underlying
assumptions explicit, as specifications can be far more
concise than programs.

II. A MOTIVATING EXAMPLE

As a motivating example, consider a credit scoring al-
gorithm which determines a credit rating. In its simplest
form, the credit scoring operation might just take an account
number, and return the maximal credit allowance. But from
the account number, the bank in question may determine
a lot of other input parameters: name, address, birthday,
birth place, the history of transactions with the bank etc.
Obviously, the bank has a legitimate interest to minimize
the risks of defaults on the credits it pays out. On the other
hand, the bank must not discriminate e.g. on the basis of
gender or ethnicity when deciding whether to give a credit.

1In the original trolley problem [1], a trolley with malfunctioning brakes
is hurtling down a track on which five people are located which would be
overrun and probably killed. The trolley can not be stopped, but we can
operate a switch by which we can diverge the trolley onto a different track,
where only one person would be affected. Would it be ethical to operate the
switch? Many variations of the trolley problem exist, for example putting
the lives of a group of elderly people against a single child; they are all
concerned with the question of the ethics of the decision.



Formal specification
(SysML/OCL)

Specification
(natural language)

System model
(SystemC)

Running System

NLP

Code
generation

Synthesis

Figure 1. The SPECifIC design flow

To give a very basic formal specification of the credit
scoring algorithm, let credit(n, c) be an operation which
takes two parameters — the name n and the postal code c —
and returns the maximal credit allowance. Then to specify
that the value of the second parameter (the postal code) is
irrelevant, we write

∀p, q. credit(n, p) = credit(n, q)

This specification, crucially, does not divulge the actual algo-
rithm which is usually a trade secret of the bank in question,
but is sufficient to guard against hidden discrimination based
on where the applicant lives.

III. FROM NATURAL LANGUAGE TO IMPLEMENTATION

Contemporary formal methods can track requirements
(and hence design decisions) from initial formulations in
natural language down to the running system. In previous
work [2][3], we have designed such a comprehensive tool
flow for embedded systems.

Figure 1 shows the SPECifIC design flow. From a spec-
ification given in natural language, we create an initial
formal specification (in SysML or UML), using standard
natural-language processing (NLP) tools. The formal model
contains classes modelling the system structure, with OCL
specifications constraining the behaviour further. On this
level, we can verify certain system properties, such as
liveness (freedom from deadlocks) or consistency.

From the formal specification, an implementation on the
system level can be derived, given in SystemC [4] (a system-
level modelling language allowing hardware-software co-
design). On this level, we can simulate the system’s be-
haviour, allowing to test the system systematically.

In the last step, we can synthesize hardware and compile
software to executable code to get the running system.

Car

pos : Point
o : Double
w : Double
v : Double

move(deltaT : Integer)

Sensor

objects() : Set(Point)

1

1..*sensors

Point

x : Double
y : Double

Figure 2. Modelling the obstacle detection of an autonomous car.

In each step of the process, we can track the entities
from the levels above to the levels below. This way, we can
precisely say which parts of the system pertain to a given
initial natural-language specification.

IV. AUTONOMOUS CARS AND ARTIFICIAL
INTELLIGENCE

To apply our formal methodology to the autonomous
car example from above, we first need to give a formal
specification of the car and its components, concentrating
on the important aspects. Figure 2 models relevant parts
of the obstacle detection of an autonomous car (using
UML). The car itself has as attributes its current position
(pos), orientation (o), steering angle (w) and velocity (v).
From that, we can always calculate the current area, which
consists of a set of points currently covered by the car.
The car has one operation, move, which moves the car for
a specified time interval (measured in milliseconds), using
current steering angle and velocity. (We do not model how
to change steering and velocity here.)

The car is equipped with a number of sensors, which
are modelled by the class Sensor. A sensor returns a set of
points, objects, which are points where it detects an obstacle.
This is a useful and realistic abstraction from the way most
sensors, in particular safety-directed ones, such as radar,
lidar, or ultrasonic work.

We can formulate the safety predicate that the car never
runs into obstacles: when moving, we never want the car to
occupy points where obstacles had been detected. We can
express this constraints in the object constraint language,
OCL [5], as follows:

context Car:: move(deltaT: Integer) :
post safe: area→intersection(

sensors@pre.object()→ flatten())→ isEmpty()

This means that the area covered by the car after having
moved is disjoint from the union of the set of obstacles
from all sensors prior to moving, i.e. the car does not move
into a space where obstacles have been detected.



From this, we can already learn a few things: firstly, if this
postcondition is always fulfilled, the car will never run into
obstacles, making the trolley problem vacuous. Secondly,
this modelling is discrete, meaning the car jumps from one
position to the next. While this is a useful approximation
for small enough time units, for a precise characterization
we should include the area covered while moving. (This
is not entirely trivial, hence we omit it here, but see [6].)
Thirdly, this only works if the obstacles do not change place
between measuring and moving – in other words, if the
obstacles are static. This is not really a realistic assumption,
but if obstacles are allowed to move arbitrarily, the car can
never be safe. So when refining this specification towards an
implementation, we need to state precise restrictions on the
movements of obstacles (e.g. an upper limit on the velocity)
to maintain a safety invariant.

This leads to a discussion which obstacles we need to
avoid. Specifically, some assumptions on human obstacles
can be made (e.g. they will not move too fast, and will have
a lower limit on the size); in fact, quite a number of such
assumptions can be found in the safety literature, e.g. the
required minimum diameter of a worker’s leg (8 cm).

The modelling is very precise in the way obstacles are
detected: as a set of points (a point cloud). This means
we cannot really answer the trolley problem — the sensors
would not even be able to distinguish five people from one.
We can define a function which takes a set of points and
returns a set of sets of points, clustering together sets of
points which are physically close, in order to identify phys-
ical obstacles. Then we could implement an algorithm which
tries to minimize the number of obstacles hit if collision is
unavoidable. But to do so would be an ethical decision, and
it would clearly be manifested in the specification. Crucially,
this decision is taken by the designer of the system, not by
the system itself.

Another aspect which can be seen here is that sensors
as modelled do not have any semantic concept of what an
obstacle is. Hence, a system which implements this model
cannot distinguish between different kinds of obstacles,
e.g. young children vs. older people. Again, to implement
this requires a manifest design decision, and corresponding
implementation effort.

V. WHAT NOW? NEXT STEPS

An interesting next step would to connect the work on the
SPECifIC design flow with ethics. There are a lot of ethical
guidelines (such as the recent one from a high-level expert
group commissioned by the European Commission [7])
which aim to assist programmers with the ethical decisions
they need to make in their programs. As we have seen, these
ethical decisions can be clarified and exhibited as formal
specifications, but one might also use the NLP techniques
to extract a formal representation of the ethical guidelines
from the natural language text. If this is successful, we could

use well-established formal method tools (model checking
and theorem proving) to show that the decisions taken in the
design of the program adhere to the ethical guidelines.

A program may be considered to be an act of communi-
cation; Knuth famously suggested we write programs in a
way as to explain to other people what the program does
[8]. An important aspect of this is that systems need to be
able to explain, to the user, the designer’s decision they are
enacting. As we have argued above, formal specifications
are a good abstraction of this explanation, and can serve as
a good starting point for such self-explaining systems; first
results on this topic can be found in [9], [10].

In closing, this paper has proposed that formal specifica-
tions are a good abstraction of the decisions the programmer
has to take when designing the system, and in particular the
ethical aspects of these decisions. When discussing these
ethical aspects, formal methods serve to shift the focus from
the system’s behaviour (what is the computer doing) back to
the designer’s intent (what should the computer be doing).

REFERENCES

[1] P. Foot, “The problem of abortion and the doctrine of the
double effect,” Oxford Review, vol. 5, 1967.

[2] R. Drechsler, M. Soeken, and R. Wille, “Formal specification
level,” in Forum on Specification & Design Languages (FDL),
2012, pp. 37– 52.

[3] M. Ring, J. U. Stoppe, C. Lüth, and R. Drechsler, “Change
impact analysis for hardware designs,” in Forum on Specifi-
cation & Design Languages (FDL), 2016.

[4] D. Große and R. Drechsler, Quality-Driven SystemC Design.
Springer, 2010.

[5] M. Gogolla and M. Richters, “Expressing UML Class Dia-
grams Properties with OCL,” in LNCS 2263. Springer, 2002,
pp. 85–114.

[6] H. Täubig, U. Frese, C. Hertzberg, C. Lüth, S. Mohr,
E. Vorobev, and D. Walter, “Guaranteeing functional safety:
Design for provability and computer-aided verification,” Au-
tonomous Robots, vol. 32, pp. 303–331, 2012.

[7] High-Level Expert Group on Artificial Intelligence, “Ethics
guidelines for trustworthy AI,” European Commission, 8.
April 2019.

[8] D. E. Knuth, “Literate Programming,” The Computer Journal,
vol. 27, no. 2, pp. 97–111, 01 1984.

[9] R. Drechsler, C. Lüth, G. Fey, and T. Güneysu, “Towards
self-explaining digital systems: A design methodology for
the next generation,” in 3rd International Verification and
Security Workshop (IVSW), Costa Brava, Spain, 2018.

[10] G. Fey and R. Drechsler, “Self-explaining digital sys-
tems — some technical steps,” in Methoden und Beschrei-
bungssprachen zur Modellierung und Verifikation von Schal-
tungen und Systemen (MBMV), Kaiserslautern, Germany,
2019.


