
Generation of Verified Programs for In-Memory
Computing

Saman Froehlich Rolf Drechsler
Group of Computer Architecture, University of Bremen, Germany and Cyber-Physical Systems, DFKI GmbH, Germany

froehlich@uni-bremen.de drechsler@uni-bremen.de

Abstract—In order to overcome the von Neumann bottleneck,
recently the paradigm of in-memory computing has emerged.
Here, instead of transferring data from the memory to the
CPU for computation, the computation is directly performed
within the memory. ReRAM, a resistance-based storage device,
is a promising technology for this paradigm. Based on ReRAM,
the PLiM computer architecture and LiM-HDL, an HDL for
specifying PLiM programs have emerged.

In this paper, we first present a novel levelization algorithm
for LiM-HDL. Based on this novel algorithm, large circuits can
be compiled to PLiM programs. Then, we present a verification
scheme for these programs. This scheme is separated into two
steps: (1) A proof of purity and (2) a proof of equivalence.
Finally, in the experiments, we first apply our levelization
algorithms to a well-known benchmark set, where we show
that we can generate PLiM programs for large benchmarks, for
which existing levelization algorithms fails. Then, we apply our
proposed verification scheme to these PLiM programs.

I. INTRODUCTION

The von Neumann architecture as introduced by John von
Neumann in 1945 [1] is used in most computer systems, today.
In the von Neumann architecture, the memory is used for
storage of instructions and data at the same time. It has been
extended with sophisticated memory hierarchies, today. These
memory hierarchies allows for fast access to a small amount
of data, while requiring longer access times to the majority
of data which is stored in higher levels of the hierarchy. This
is also known as the von Neumann bottleneck. Consequently,
the von Neumann architecture is efficient, as long as the time
required for computation is significantly larger compared to
the time used for data processing.

However, recently, new applications have emerged, such
as deep learning and the Internet of Things (IoT). These
applications come with their own requirements and challenges.
Deep learning requires processing of large amounts of data.
With the von Neumann bottleneck, the von Neumann archi-
tecture becomes very inefficient for deep learning and thus,
specialized hardware devices have been designed to mitigate
this inefficiency (e.g., [2], [3]). Characteristic for IoT are small
devices, which are very constrained in terms of area and power
consumption. In IoT, the majority of computation is shifted
from data centers to edge devices [4].

Currently, a resistance based storage device called Resis-
tive Random Access Memory (ReRAM), is emerging. It is

This work was supported by the German Research Foundation (DFG)
within the Project PLiM (DR 287/35-1). Additionally, we would like to thank
Christan F. Coors for his contribution and support for this work.

especially appealing due to its inherent in-memory compu-
tation capabilities and allows for the computation of different
universal functions. Consequently, ReRAM can compute any
Boolean function as long as an implementation in terms of a
set of universal functions is given. Additionally, ReRAM’s low
power consumption, fast switching capabilities and scalability
make it an excellent candidate for a technological foundation
for IoT and edge devices [5], [6], [7]. However, due to the
lack of EDA and verification tools, this technology is not
widely used, yet [8]. And while techniques for EDA have
been the focus of several recent publications (e.g. [9], [10],
[11]), the research in the field of verification is still very
sparse. However, specially the field of verification is crucial for
todays computing systems and has been the focus of several
publications for several other applications in the last years.

In order to overcome the von Neumann bottleneck, the
Programmable Logic-in-Memory (PLiM) computer architec-
ture has been proposed in [7]. Besides the control logic, the
ReRAM arrays are the core of the PLiM computer archi-
tecture. These banks are used as storage and computational
unit at the same time and consequently, the PLiM computer
architecture does not suffer from the von Neumann bottleneck.
Additionally, the PLiM computer architecture is of particular
interest for IoT and edge devices, as the resulting architecture
operates at low power [7]. To allow for an easy and efficient
implementation of programs for the PLiM computer architec-
ture, in [11] an HDL-based synthesis scheme for in-memory
computing was proposed. This synthesis scheme consists of a
preprocessing step, a levelization step and the final compilation
step. However, the synthesis scheme proposed in [11] is not
suitable for large designs as the levelization step is very
complex and requires many computations.

In this paper, we close the gap in the field of verification for
in-memory computing and the PLiM computer architecture by
proposing a verification strategy for LiM-HDL programs. First,
we generate an SMT representation of the formal definition
at behavioral/RTL-level. Then, after compilation to the final
PLiM program, we present a method for transforming this
PLiM program into another SMT representation. Using a miter
structure, we can then compare these two SMT representations
and check their equivalence using SMT solvers. Further, we
propose a new levelization method for the synthesis scheme
proposed in [11]. This levelization method which allows the
compilation of more complex designs compared to the state-
of-the-art. Using our proposed verification strategy, we can



ensure that the final PLiM programs implement the formal
definition given as HDL-based designs. In the experiments, we
show the efficiency and scalability of our proposed levelization
method and verification strategy by presenting a way to gen-
erate LiM-HDL benchmarks from an Majority Inverter Graph
(MIG)-based representation [12]. We then generate a large
benchmark set from the state-of-the-art EPFL benchmarks.

Thus, to conclude the main contributions of this paper are
as follows:

1) We are the first to introduce formal verification to
synthesis of in-memory programs.

2) We present a method for levelization, which allows the
current state-of-the-art synthesis method for the PLiM
computer architecture to scale for larger designs.

3) We present a method to transform MIGs-based definition
of circuits to LiM-HDL to allow for an easy definition
of benchmarks.

II. PRELIMINARIES

In this section, preliminary knowledge is introduced. First,
in Section II-A, the RM3 operation which is native to ReRAM
is introduced. Then, in Section II-B the PLiM computer
architecture, wordline parallelism and LiM-HDL are described
briefly. Finally, in Section II-C SAT and SMT are introduced.

A. Resistive Majority Operation RM3

A ReRAM device can be viewed as a two-terminal device
with the terminals P (called the wordline operand), Q (called
the bitline operand) and its internal resistance state Z (called
the host operand). If P is set to 1 (i.e., V/2) and Q is set
to 0 (i.e., −V/2), the resistance state Z is set to 1 (i.e.,
a low resistance state). Correspondingly, if P is set to 0
and Q is set to 1, the resistance state Z is set to 0. In all
other combinations ((P = 0, Q = 0),(P = 1, Q = 1)),
Z remains unchanged. This behavior can be mapped to the
majority operation MAJ(P, Q̄, Z) = PQ̄+PZ + Q̄Z, which
is commonly defined as the RM3 operation RM3(P,Q,Z) =
MAJ(P, Q̄, Z).

B. PLiM

The PLiM computer architecture has been proposed in [13].
At its core, this computer architecture consists of several
ReRAM banks. Together with a sophisticated control circuitry,
these ReRAM banks can be used for in-memory computation.

1) Wordline Parallelism: In [14], the PLiM computer ar-
chitecture has been extended to allow for wordline parallel
computation. Here, multiple operations can be performed in
parallel, if these operations share a wordline operand. First all
cells are initialized with their host operand Z. This can be
done in parallel, by first initializing all cells to constant 1, by
applying logical 1 as wordline operand and logical 0 as bitline
operand to them. Then, the respective operands Z̄ are applied
to their bitlines, while logical 0 is applied to the wordline.
Note that, if only Z instead of the inverse Z̄ is present, this
inverse needs to be computed first. However, inversions can
also be computed in parallel. After initializing the cells, the
shared wordline operand is applied to the wordline of the cells

and the respective bitline operands are applied to the bitlines.
This way, multiple operations which share a wordline operand
are computed in parallel.

2) LiM-HDL: Recently, in [11], LiM-HDL has been pro-
posed. LiM-HDL is an HDL which allows for the easy
definition of PLiM programs. The LiM-HDL definition is
transformed into an RTL graph, which consists of several
nodes and can then be synthesized. The synthesis strategy for
this RTL graph consists of three steps: (1) a preprocessing
step, (2) a levelization step and (3) the final compilation step.
Specially, the levelization step is of importance. Due to its
complexity, in [11], two different methods have been proposed:
The first method is an exact levelization procedure based on
Branch&Bound, while the second method is a heuristic based
on Monte Carlo Tree Search (MCTS).

C. SAT and SMT

The Boolean Satisfiability Problem (SAT) is one of the
classic problems in computer science. For a given Boolean
formula, the problem consists of determining whether an input
combination exists such that the formula evaluates to true.
This problem is NP-complete, meaning that there is no known
algorithm for solving it in polynomial time complexity [15].
A concrete Boolean formula for which SAT can be checked
is called an instance.

1) SMT: Since converting real-world problems into CNF
can be difficult, an extension of SAT was invented, called
Satisfiability Modulo Theories (SMT). SMT solvers are widely
used to test, analyze and verify computer programs [16].
The problem is still focused on satisfiability of a given
logical formula, but support for various theories based on
practical computer science, such as integers, lists, strings and
bitvectors are added. The input format for these solvers is
much more sophisticated and generally based on the SMT
LIB Standard [17], [18].

III. RELATED WORK

To the best of our knowledge, we are the first to focus
on verification of PLiM programs. The authors of [8] state,
that there is a need for verification methods in in-memory
computing, which further emphasizes the importance and the
lack of research in this topic. However, work on verification
and testing has been performed for specific applications and
we briefly review some recent publications in this section.

In [19], the authors present a method for verifying circuit
components of a phase change memory chip for artificial
neural networks applications. The authors propose a design for
test approach which partitions a module-based design and uses
redundant memory circuits. Further, a scan chain is developed
which allows monitoring of signals inside the circuit.

The authors of [20] propose a testing algorithm for 1T1R
ReRAM crossbars. This algorithm allows for testing of specific
cells inside the crossbar so that all cells can be tested for
functionality, and consists of four stages which determine
different parameters of the devices. During the test, the resis-
tive switching parameters such as forming voltages, switching
voltages, etc. of the cells are determined.



RS1 RS2

PIS1 S2

≠

SAT/
UNSAT

(a) Purity Miter

Refernce 
Instance

PLiM 
Instance

PI

≠

SAT/UNSAT

(b) Equivalence Miter

Fig. 1. Miters

A compiler for automatic ReRAM generation and verifica-
tion has been published in [21], including netlist generation
and layout. Here, physical verification tools are used and a
complete hardware system is generated. Note that, in contrast
to our work, the focus is not on verifying programs for a
general in-memory computer architecture, but on generating
verified circuitries.

IV. VERIFICATION STRATEGY

Verification of circuits is crucial for todays computing
systems. However, to the best of our knowledge, verification
has not been applied to programs for the PLiM computer
architecture, yet. In this section, we propose a verification
scheme for these PLiM programs. As the initial state of the
ReRAM devices might change the output of a program in case
cells are not initialized during the execution, in addition to the
Primary Inputs (PIs) of the circuit, we also have to take the
initial states into account. Here, we need to make sure, that
the result of the PLiM program is equivalent to that of the
design regardless of the initial state. To reduce the complexity
of the verification procedure, we divide it into two steps:

1) In the first step, we verify the purity of a program. A
program can be called pure, if its behavior is indepen-
dent of the initial state of the ReRAM crossbar. This
is important, as the initial state of the crossbar is not
controlled by the program.

2) In the second step, we prove the equivalence of the
program to its HDL-based design.

Both steps are detailed in the following sections.

A. Proof of Purity

In order to proove the purity of a program, we model
the initial state of the used ReRAM devices as additional,
secondary inputs. Then, we build a miter-structure to check if
two programs with the same primary inputs can have different
results, if these additional, secondary inputs can be chosen
freely.

Algorithm 1 Greedy Levelization
1: function LEVELIZEGREEDY(C)
2: \\ C is the set of nodes, which is to be levelized
3: CSorted = SortByWLOp(C)
4: while !CSorted.empty() do
5: computableLevels = DetermineComputatbleLevels(CSorted)
6: l = computableLevels.largest()
7: currentLevelization.add(l)
8: CSorted.remove(l)
9: end while

10: return levelization
11: end function

The miter-structure is shown in Figure 1(a). The models
RS1 and RS2 each represent the given PLiM program -
both PLiM programs have the same primary inputs. Then,
the additional secondary inputs model the initial state of the
cells. Consequently, for each cell, which is used during the
computation an additional input has to be added. This miter
can then be modeled as a SAT or SMT instance and checked
for satisfiability.

B. Proof of Equivalence

After verifying the purity of the program, we now can
proove its equivalence to the design before compilation to
a PLiM program. We extract an SMT representation of the
design. Then, after compiling the design to a PLiM program,
it can be transformed to SMT as well. Since the PLiM
program only consists of RM3 operations, the transformation
is straightforward. Finally, we again build a miter. Since we
have shown that the program is pure, we do not need to proove
equivalence for all initial states of the ReRAM array, but can
restrict ourselves to fixed initial values and chose the PIs to
be variable.

The corresponding miter is depicted in Figure 1(b). Here,
the reference instance is the SMT representation of the design,
while the PLiM instance is the SMT instance of the PLiM
program. Both instances have the same PIs as inputs in this
miter. The solver now checks, if a combination exists, for
which the outputs of the instances differ.

V. GREEDY LEVELIZATION

Efficient levelization is crucial for PLiM programs. Here,
after compilation to an RTL graph, all nodes on the same levels
need to share a wordline operand, and are then computable in
parallel [11]. Consequently, a large number of levels leads to
a large number of computational cycles.

In order to enable efficient parallelization and mapping
to the crossbar, different levelization methods have been
proposed in [11]: One exact Branch&Bound-based method
and one heuristic based on MCTS. The Branch&Bound-based
method finds a levelization with the smallest number of levels,
while the MCTS-based method is a heuristic that can be
applied to more complex designs. However, both methods do
not scale well to larger designs.

In this section, we propose a heuristic, greedy algorithm
for levelization of RM3-based graphs. During each step, the
largest set of nodes that share a wordline operand are added
to the levelization greedily.



Our proposed heuristic algorithm can be seen in Algo-
rithm 1. Here, in Line 3 we first sort the nodes by their
wordline operand. Then, in Line 5 all computable levels
are determined. Here, all nodes, which are computable are
identified. A node is computable if all its three inputs are either
already computed, are primary inputs or are constants. Then,
these nodes are grouped by their wordline operand forming a
set of computable levels. From these computable levels, the
largest level is identified and then added to the levelization in
Line 7. Further, the nodes are removed from the set of sorted
nodes. This process is repeated until all nodes are added to
the levelization.

VI. EXPERIMENTAL RESULTS

In this section, we describe our experimental results. First,
we describe our benchmark set in Section VI-A. Then, in
Section VI-B, we show the benefits of our proposed lev-
elization scheme compared to the state-of-the-art. Finally, in
Section VI-C, we show the results for our proposed verification
strategy.

All experiments have been performed on an Intel R© Xeon R©

CPU E5-2630 v3 @ 2.40GHz with 64GB memory running
Linux (Fedora release 30) for a crossbar with the wordsize 16.

A. Benchmarks

In our experiments, we include benchmarks from the well-
known EPFL Combinational Benchmark Suite. The EPFL
Combinational Benchmark Suite is a set of multiple natively
combinational circuits designed to challenge modern logic
optimization tools [22]. It consists of several arithmetic, ran-
dom/control and 3 very large benchmarks. Each benchmark
is well-documented and available in multiple file formats
(Verilog, VHDL, BLIF and AIGER). A general overview over
the benchmarks used and their And-Inverter Graph (AIG)
implementation can be seen in Table I.

The EPFL Combinational Benchmark Suite was designed
to fit a wide spectrum of optimization algorithms due to its
variety of circuit types and complexity. We choose it because
of its wide adoption and because the native combinational
nature of the benchmarks corresponds to the purity property
of PLiM programs.

1) Conversion to LiM-HDL: While all synthesizable Ver-
ilog modules can naively be made compatible with LiM-
HDL by adding LiMHDLbegin and LiMHDLend, to take
full advantage of the PLiM architecture, modules containing
statements that are easily mapped to RM3 operations and pro-
duce a shallow search tree for the levelization are beneficial to
the performance and results of the synthesis process. Recently,
MIGs have emerged as a promising alternative to AIGs [22].
MIGs are directed, acyclic graphs consisting of three-input
majority nodes and regular/complemented edges.

Since MAJ3(a, b, c) = RM3(a, b, c), an MIG can easily
be converted into LiM-HDL containing RM3 operations. The
order of the operands also has an influence on the result, since
they determine the wordline and bitline values. The inversion
of the second operand can be ignored, since the PLiM compiler
tracks inverted edges internally.

TABLE I
AN OVERVIEW OVER THE BENCHMARKS USED

Name Inputs Outputs AND nodes Levels

Adder 256 129 1020 255
Barrel shifter 135 128 3336 12
Divisor 128 128 44762 4470
Hypotenuse 256 128 214335 24801
Log2 32 32 32060 444
Max 512 130 2865 287
Multiplier 128 128 27062 274
Sine 24 25 5416 225
Square-root 128 64 24618 5058
Round-robin arbiter 256 129 11839 87
Coding-cavlc 10 11 693 16
Decoder 8 256 304 3
Int2Float converter 11 7 260 16
Priority encoder 128 8 978 250
Lookahead XY router 60 30 257 54
Voter 1001 1 13758 70

TABLE II
RESULTS AFTER CONVERTING THE EPFL BENCHMARKS TO LIM-HDL

MAJ nodes Depth
Name before after before after

Adder 1020 888 255 253
Barrel shifter 3336 2888 12 14
Divisor 57247 44991 4372 4437
Hypotenuse 214335 190331 24801 9498
Log2 32060 30285 444 456
Max 2865 2839 287 287
Multiplier 27062 25429 274 274
Sine 5416 5135 225 224
Square-root 24618 20402 5058 7035
Round-robin Arbiter 11839 11711 87 87
Coding-cavlc 693 586 16 18
Decoder 304 304 3 3
Int2Float converter 260 217 16 16
Priority encoder 978 654 250 187
Lookahead XY router 257 246 54 54
Voter 13758 9539 70 83∑

396048 346445 36224 22926

An algorithm for generating MIGs from AIGs has first
been presented in [12]. An advanced implementation of the
algorithm is available as part of the mockturtle1 software
library, which is part of the EPFL logic synthesis libraries.
The algorithm works by resubstituting suitable nodes in AIGs
and then performing optimizations by eliminating nodes and
reshaping the MIG to find more elimination opportunities.

We modify a fork of the library to include support for
exporting LiM-HDL code containing native RM3 operations.
Here, we replace original implementation which expands the
MAJ-operation into its Boolean expression and compiled
this modified fork into a library. Then, we have developed
a conversion tool using this library, which reads an AIGER
file, resubstitutes the nodes and produces a LiM-HDL file. The
resubstitution process can be adjusted by various resubstitution
parameters2, but we use the default values.

1https://github.com/lsils/mockturtle
2https://mockturtle.readthedocs.io/en/latest/algorithms/resubstitution.html

https://github.com/lsils/mockturtle
https://mockturtle.readthedocs.io/en/latest/algorithms/resubstitution.html


TABLE III
COMPARISON OF DIFFERENT LEVELIZATION ALGORITHMS

Branch&Bound [11] MCTS [11] Greedy (proposed)
Benchmark Area Delay CT [s] Area Delay CT [s] Area Delay CT [s]

Adder 2176 2748 0.038 2176 2814 13.595 2176 2748 0.014
Barrel Shifter 2912 3218 0.192 3008 3395 7.756 2928 3328 0.154
Divisor TO TO TO TO TO TO 54992 158608 241.059
Hypnotenuse TO TO TO TO TO TO 221888 542861 2354.24
Log2 TO TO TO 28464 57142 5230.53 31536 67611 44.977
Max TO TO TO 3472 5018 20.290 3552 5245 0.175
Multiplier TO TO TO 25152 43772 3251.06 28576 56209 26.448
Sine TO TO TO 5232 10865 65.757 5552 12097 0.880
Square-root TO TO TO TO TO TO 37600 80716 29.140
Round-robin Arbiter 2416 13531 2.872 2544 13576 32.082 2416 13531 4.621
Coding-cavlc TO TO TO 608 1319 4.6124 624 1311 0.006
Decoder 352 151 0.004 352 151 0.300 352 165 0.001
Int2Float converter 288 522 0.346 288 516 2.257 288 528 0.001
Priority encoder TO TO TO 1184 2050 9.91392 1328 2231 0.008
Lookahead XY router TO TO TO 400 710 3.360 384 786 0.002
Voter TO TO TO 11696 35006 3142.23 15920 48335 7.552

2) Results: By applying our modified fork to the bench-
marks from the EPFL Combinational Benchmark Suite, we
produce the results shown in Table II. The optimized MIGs
contain 12.52 % less MAJ nodes than the unoptimized ones
and have their depth reduced by 36.70 % on average. While the
amount of MAJ nodes is equal or reduced in all benchmarks,
the amount of levels actually increased for 7 benchmarks
compared to their naively converted counterparts.

B. Levelization

In this section, we evaluate our proposed levelization strat-
egy. We compare our results to those of [11]. Here, we set the
time limit to four hours.

The computation time, the resulting number of needed
devices and delay for the computed levelization can be found
in Table III. In the first column, the name of the bench-
mark is given. Then, the next columns show the results for
the Branch&Bound and the MCTS-based methods proposed
in [11]. The last three columns show the results for our pro-
posed greedy method. For all levelization methods, the needed
number of devices, the total delay (number of computations
combined with the number of reads) of the final PLiM program
and the Computation Time (CT) of the levelization itself in
seconds is shown. As proposed in [11], we have used a time
limit of 50ms for the exploration phase of the MCTS-based
strategy.

We can see that the Branch&Bound-based method has a
TimeOut (TO) for most benchmarks and consequently fails to
compute a levelization and even the MCTS-based levelization
strategy fails to compute a levelization for three benchmarks.
Our proposed method is able to levelize all benchmarks in
significantly less time compared to the state-of-the-art for
all benchmarks, except for the Round-robin Arbiter. Here,
the Branch&Bound-based method is faster. This is due to
the fact, that the Branch&Bound-based method is heavily
parallelized and an optimal branch is discovered very early,
leading to an early termination. In terms of area and delay,

TABLE IV
VERIFICATION TIMES

Purity Equivalence
Benchmark Gen Proof Gen Proof

Adder 0.07 1.30 0.19 1.02
Barrel Shifter 0.13 5.90 0.39 3.02
Divisor 2.01 OM 5.67 52.51
Hypnotenuse 7.89 TO 23.08 225.04
Log2 1.27 OM 3.73 34.97
Max 0.16 5.82 0.41 3.15
Multiplier 0.99 TO 3.07 28.32
Sine 0.29 OM 0.62 5.53
Square-root 0.95 OM 2.49 21.05
Round-robin Arbiter 0.51 18.34 1.38 13.17
Coding-cavlc 0.06 0.66 0.10 0.56
Decoder 0.03 0.31 0.08 0.25
Int2Float converter 0.04 0.23 0.05 0.20
Priority encoder 0.06 0.89 0.12 0.74
Lookahead XY router 0.03 0.30 0.07 0.26
Voter 0.49 OM 1.32 11.00

our proposed heuristic can compete with the state-of-the-art.
For three benchmarks, our results even outperform those of
the MCTS-based method for both area and delay, while for
all other benchmarks comparable results are achieved.

To conclude we can say, that our greedy algorithm com-
putes comparable results in a significantly smaller time frame
compared to the state-of-the-art.

C. Verification

In this section, we evaluate our proposed levelization strat-
egy. For this, we have tried to verify the PLiM programs
generated with our proposed greedy levelization method.

The results of our proposed verification strategy can be seen
in Table IV. Here, for all benchmarks, the times for the two
parts of our levelization strategy are given. First, the time
needed for the generation (Gen) of the miter is shown. Then,
the time needed for proving of the purity and equivalence
is given (Proof). All times are shown in seconds. As SMT
solver, we have utilized CVC4 [23] and we have again set the
time limit to four hours. Note, that we have also tried Z3 and



MathSAT, however, CVC4 yielded the best results. It can be
seen that in general proving the purity of a program is a lot
harder than proving equivalence. Here, we either had a TO or
ran Out of Memory (OM) for eight of the 20 benchmarks. For
the remaining 12 benchmarks, where we succeeded to proove
purity, the computation time is significantly larger compared
to the proof of equivalence. The proof of equivalence has been
successfully performed for all benachmarks.

This can yield interesting consequences. For example, one
could skip the proof of purity, if all used cells are initialized
at the beginning of a program, putting them in a defined state.
This makes the verification of PLiM programs significantly
easier.

VII. CONCLUSION

In-memory computing is a promising paradigm for future
computation with ReRAM being a candidate as technological
foundation. Based on this, the PLiM computer architecture has
been proposed.

In this paper, first, we have shown how to verify a PLiM
program for the PLiM computer architecture. Our verification
strategy consists of two steps: First, we verify the purity
of a program and then the equality to its HDL description.
In addition, we have proposed a greedy levelization method
for efficient generation of these programs. Finally, we have
generated a valuable benchmark set, which can be used for
future research in this field. In the experiments we have shown
that our proposed levelization scheme is significantly faster
compared to the state-of-the-art while yielding comparable
results. We have shown that we can levelize large bench-
marks, where the state-of-the-art fails. Additionally, using our
proposed verification strategy, we observed that the proof
of purity is significantly harder compared to the proof of
equivalence. Consequently, in order to improve the verifiability
of PLiM programs, we propose to initialize all used cells at the
beginning of a program, making the proof of purity obsolete.

REFERENCES

[1] J. von Neumann, “First draft of a report on the edvac,” IEEE Annals of
the History of Computing, vol. 15, no. 4, pp. 27–75, 1993.

[2] Y. Wang, H. Du, M. Xia, L. Ren, M. Xu, T. Xie, G. Gong, N. Xu,
H. Yang, and Y. He, “Correction: A hybrid cpu-gpu accelerated frame-
work for fast mapping of high-resolution human brain connectome,”
PloS one, vol. 8, p. e62789, 05 2013.

[3] C.-H. Chu, X. Lu, A. A. Awan, H. Subramoni, B. Elton, and D. K.
Panda, “Exploiting hardware multicast and gpudirect rdma for efficient
broadcast,” IEEE Transactions on Parallel and Distributed Systems,
vol. 30, no. 3, pp. 575–588, 2019.

[4] E. A. Lee, B. Hartmann, J. Kubiatowicz, T. Simunic Rosing,
J. Wawrzynek, D. Wessel, J. Rabaey, K. Pister, A. Sangiovanni-
Vincentelli, S. A. Seshia, D. Blaauw, P. Dutta, K. Fu, C. Guestrin,
B. Taskar, R. Jafari, D. Jones, V. Kumar, R. Mangharam, G. J. Pappas,
R. M. Murray, and A. Rowe, “The swarm at the edge of the cloud,”
IEEE Design Test, vol. 31, no. 3, pp. 8–20, 2014.

[5] C.-X. Xue, J.-M. Hung, H.-Y. Kao, Y.-H. Huang, S.-P. Huang, F.-C.
Chang, P. Chen, T.-W. Liu, C.-J. Jhang, C.-I. Su, W.-S. Khwa, C.-C.
Lo, R.-S. Liu, C.-C. Hsieh, K.-T. Tang, Y.-D. Chih, T.-Y. J. Chang,
and M.-F. Chang, “16.1 a 22nm 4mb 8b-precision reram computing-
in-memory macro with 11.91 to 195.7tops/w for tiny ai edge devices,”

in 2021 IEEE International Solid- State Circuits Conference (ISSCC),
vol. 64, 2021, pp. 245–247.

[6] T. Mikawa, R. Yasuhara, K. Katayama, K. Kouno, T. Ono, R. Mochida,
Y. Hayata, M. Nakayama, H. Suwa, Y. Gohou, and T. Kakiage, “Neu-
romorphic computing based on analog reram as low power solution for
edge application,” in 2019 IEEE 11th International Memory Workshop
(IMW), 2019, pp. 1–4.

[7] P.-E. Gaillardon, L. Amarú, A. Siemon, E. Linn, R. Waser, A. Chat-
topadhyay, and G. De Micheli, “The programmable logic-in-memory
(PLiM) computer,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2016, pp. 427–432.

[8] S. Rai, M. Liu, A. Gebregiorgis, D. Bhattacharjee, K. Chakrabarty,
S. Hamdioui, A. Chattopadhyay, J. Trommer, and A. Kumar, “Perspec-
tives on emerging computation-in-memory paradigms,” in 2021 Design,
Automation Test in Europe Conference Exhibition (DATE), 2021, pp.
1925–1934.

[9] D. Bhattacharjee, Y. Tavva, A. Easwaran, and A. Chattopadhyay,
“Crossbar-constrained technology mapping for reram based in-memory
computing,” IEEE Transactions on Computers, vol. 69, no. 5, pp. 734–
748, 2020.

[10] R. B. Hur, N. Wald, N. Talati, and S. Kvatinsky, “Simple magic:
Synthesis and in-memory mapping of logic execution for memristor-
aided logic,” in IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2017, pp. 225–232.

[11] S. Froehlich and R. Drechsler, “Lim-hdl: Hdl-based synthesis for in-
memory computing,” in Design, Automation and Test in Europe, 2022.

[12] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter graph:
A novel data-structure and algorithms for efficient logic optimization,”
in 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC),
2014, pp. 1–6.

[13] P. Gaillardon, L. Amarú, A. Siemon, E. Linn, R. Waser, A. Chattopad-
hyay, and G. De Micheli, “The programmable logic-in-memory (plim)
computer,” in Design, Automation and Test in Europe, 2016, pp. 427–
432.

[14] S. Frerix, S. Shirinzadeh, S. Froehlich, and R. Drechsler, “Comprime: A
compiler for parallel and scalable reram-based in-memory computing,”
in 2019 IEEE/ACM International Symposium on Nanoscale Architec-
tures (NANOARCH), 2019, pp. 1–6.

[15] S. A. Cook, “The complexity of theorem-proving procedures,” in
Proceedings of the Third Annual ACM Symposium on Theory of
Computing, ser. STOC ’71. New York, NY, USA: Association
for Computing Machinery, 1971, pp. 151–158. [Online]. Available:
https://doi.org/10.1145/800157.805047

[16] N. Bjorner, “Smt solvers for testing, program analysis and verification
at microsoft,” in 2009 11th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, 2009, pp. 15–15.

[17] C. Barrett, P. Fontaine, and C. Tinelli, “The satisfiability modulo theories
library (smt-lib),” 2016. [Online]. Available: https://smtlib.cs.uiowa.edu/

[18] ——, “The smt-lib standard: Version 2.6,” Department of Computer
Science, The University of Iowa, Tech. Rep., 2017. [Online]. Available:
https://smtlib.cs.uiowa.edu/

[19] M. Golmohamadi, R. Jurasek, W. Hokenmaier, D. Labrecque, R. Zhi,
B. Dale, N. Islam, D. Kinney, and A. Johnson, “Verification and testing
considerations of an in-memory ai chip,” in 2020 IEEE 29th North
Atlantic Test Workshop (NATW), 2020, pp. 1–6.

[20] E. Kondratyuk, Y. Matveyev, A. Chouprik, E. Gornev, M. Zhuk, R. Kir-
taev, A. Shadrin, and D. Negrov, “Automated testing algorithm for the
improvement of 1t1r reram endurance,” IEEE Transactions on Electron
Devices, vol. 68, no. 10, pp. 4891–4896, 2021.

[21] D. D. Antoniadis, P. Feng, A. Mifsud, and T. G. Constandinou, “Open-
source memory compiler for automatic rram generation and verification,”
in 2021 IEEE International Midwest Symposium on Circuits and Systems
(MWSCAS), 2021, pp. 97–100.

[22] L. Amarú, P. E. Gaillardon, and G. D. Micheli, “The epfl combinational
benchmark suite,” in International Workshop on Logic & Synthesis,
2015.

[23] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović,
T. King, A. Reynolds, and C. Tinelli, “Cvc4,” in Proceedings of the 23rd
International Conference on Computer Aided Verification, ser. CAV’11.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 171–177.

https://doi.org/10.1145/800157.805047
https://smtlib.cs.uiowa.edu/
https://smtlib.cs.uiowa.edu/

	Introduction
	Preliminaries
	Resistive Majority Operation RM3
	PLiM
	Wordline Parallelism
	LiM-HDL

	SAT and SMT
	SMT


	Related Work
	Verification Strategy
	Proof of Purity
	Proof of Equivalence

	Greedy Levelization
	Experimental Results
	Benchmarks
	Conversion to LiM-HDL
	Results

	Levelization
	Verification

	Conclusion
	References

