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Abstract—Heterogeneous platforms, that integrate CPU and
FPGA-based processing units, are emerging as a promising solu-
tion for accelerating various applications in the embedded system
domain. However, in this context, comprehensive studies that
combine the theoretical aspects of real-time scheduling of tasks
along with practical runtime architectural characteristics have
mostly been neglected so far.

To fill this gap, in this paper we propose a real-time scheduling
algorithm with the objective of minimizing the overall execution
time under hardware resource constraints for heterogeneous
CPU+FPGA architectures. In particular, we propose an Integer
Linear Programming (ILP) based technique for task allocation and
scheduling. We then show how to implement a given scheduling
on a practical CPU+FPGA system regarding current technology
restrictions and validate our methodology using a practical RISC-
V case-study. Our experiments demonstrate that performance
gains of 40% and area usage reductions of 67% are possible
compared to a full software and hardware execution, respectively.

I. INTRODUCTION

The increasing demand for computing capabilities, especially in
artificial intelligence, multimedia technology and high-performance
computing, has led to a paradigm shift towards heterogeneous com-
puting architectures. Such architectures include Central Processing
Units (CPUs), Graphics Processing Units (GPUs), Application-
Specific Integrated Circuits (ASICs) and even reconfigurable de-
vices such as Field Programmable Gate Arrays (FPGAs). Among
these, FPGAs allow the adaptation of high-performance application-
specific hardware at a lower cost. Meanwhile, CPU+FPGA hetero-
geneous platforms are also emerging as a promising solution for
accelerating various applications in many of today’s safety-critical
real-time embedded systems, such as automotive systems [1].

For example, in a given complex safety-critical system, CPUs
offer satisfying performance over wide-ranging classes of tasks.
FPGAs can provide high performance for computation-intensive
tasks with hard deadlines by exploiting inherent parallelism. There-
fore, efficient execution of hard real-time tasks on CPU+FPGA het-
erogeneous platforms requires well-defined resource allocation and
admission control mechanisms. Such mechanisms should guarantee
the satisfaction of all timing constraints, along with a high resource
utilization by maintaining the task’s execution order.

In a scheduling problem, a real-time application is represented
by a set of tasks with a Directed Acyclic Graph (DAG), where each
node represents a task and each edge represents a data dependency.
Each task has an execution time required to be completed within
a stipulated deadline. The scheduling objective is to map tasks
onto different Processing Elements (PEs) to satisfy the deadline
constraint and the data dependencies while striving to achieve a
minimum overall completion time, called the makespan. Such a
problem has been proven to NP-hard [2].

A plethora of existing work discussed the scheduling problem for
general multi-core computing environments, which involve various
software computing modules such as a CPU and a GPU [3], [4].
Such scheduling algorithms consider the different computing speeds
of heterogeneous PEs and the inter-core parallelism. In [5], the
authors exploit the advantages of heuristic-based algorithms and
also proposed a genetic algorithm-based task allocation strategy to
minimize the schedule length. Similarly, a machine learning based
online task scheduler for hybrid CPU+GPU systems has been pro-
posed in [6]. However, such computation-intensive methods often
raise concerns regarding resource limitations on real platforms.
Thus, some studies propose scheduling methods for systems with
limited computing resources. In [7] the authors present a schedul-
ing algorithm for a fixed number of heterogeneous processesing
units (CPUs, GPUs) to obtain both a high performance and lower
makespan time, while maintaining the system’s reliability against
any faults.

With the increasing complexity level of high-performance com-
puting and real-time embedded systems, current heterogeneous
computing systems are employing FPGAs along with CPUs and
GPUs to overcome existing limitations [1], [8]. FPGA-based multi-
core systems are composed of multiple software executing PEs (i.e.,
CPUs and GPUs) and fixed hardware resources (FPGA). Software
PEs are suitable for running serial programs. On the other hand,
FPGAs are widely used as hardware accelerators by exploiting
parallel execution and domain specific hardware implementations.
Each task on an FPGA consumes a specific amount of FPGA
resources. Therefore, FPGA-based multi-core scheduling should
also take hardware resource constraints into account in addition to
different computing speeds and inter-core parallelism.



In recent years, the problem of real-time task execution on FPGA-
based heterogeneous systems has gathered considerable attention
from the research community. The generic problem of real-time
scheduling tasks has branched out in different directions primarily
based on: i) using optimizing frameworks [9], ii) using heuris-
tic algorithms [10], and iii) using priority-driven algorithms [11].
In [9], the authors proposed a static partitioning-based scheduling
strategy for CPU+FPGA systems to minimize energy consumption.
In [12], the authors measured the speed-up in task execution on
an FPGA and by utilizing their speed-up utilization model they
determine the appropriate PE (i.e. CPU or FPGA) to assign the
tasks to. However, all these works are designed for non-real-time
applications and did not consider hardware constraints. Recently,
Zhu et al. [13] proposed a real-time task scheduling framework on
CPU+FPGA systems, but their work only considered independent
tasks. Dependent real-time task scheduling in an FPGA-based multi-
core setting to minimize the makespan under hardware resource
constraints has been investigated in [2]. However, this technique is
only evaluated via software simulations using hypothetical FPGA
parameters without considering any practical constraints. Until
now, comprehensive studies that combine the theoretical aspects of
energy-efficient real-time scheduling of approximated tasks along
with runtime architectural characteristics have not been conducted.

To fill the gap, in this paper we propose a real-time scheduling
algorithm with the objective of minimizing the makespan under
hardware resource constraints for heterogeneous CPU+FPGA ar-
chitectures. Scheduler decisions rely on task execution times and re-
source consumption metrics to map the tasks across CPU and FPGA
regions. Specifically, we answer the following question: Given a
real-time task graph and heterogeneous PEs, how do we ensure that
all tasks of the task graph will be executed on the appropriate PEs
while satisfying the deadline and resource constraints?

The main technical contributions of this paper are:
• We propose an Integer Linear Programming (ILP) based

technique for task allocation and scheduling, designed for
heterogeneous CPU+FPGA systems. In particular defining the
domain and problem specific set of constraints for the ILP
solver.

• We show how to implement a given scheduling on a practical
CPU+FPGA system regarding current technology restrictions
and discuss the different trade-offs with respect to the system
capabilities.

• We provide a case-study to validate the applicability of our
proposed scheduling technique in delivering practical results
and demonstrate that performance gains of 40% and area usage
reductions of 67% are possible compared to a full software and
hardware execution, respectively.

Fig. 1 shows a high-level overview on our proposed approach
for task mapping and scheduling in a heterogeneous CPU+FPGA
system. The green boxes represent the users specification and inputs
and initial artifcats for the system (see top of Fig. 1). The real-
time (RT) constraints define the deadline for the schedule, how
much memory and area are available on the CPU+FPGA system
and potential other constraints of the real-time system. The task
graph represent the tasks with their dependencies and order in which
they are executed. The tasks themselves should each be available as
Software (SW) implementation for the CPU and as Hardware (HW)
implementation for the FPGA (i.e. as synthesizable RTL models
written in a hardware-description language). Based on the task im-
plementations, relevant execution metrics are obtained by executing
the tasks in isolation (right, middle of Fig. 1). Important metrics
are the execution time and area usage on the respective FPGA.
These metrics are passed together with the RT constraints and task
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Fig. 1: Overview on our proposed approach.

graph to the ILP-based scheduling algorithm (left, middle of Fig. 1)
which derives a task mapping and scheduling. The scheduling is
then implemented on the heterogeneous CPU+FPGA system and
executed.

Additional metrics can be integrated in order to consider practical
implementation constraints such as the communication overhead in
moving results between the CPU and FPGA accessible memories.
However, such metrics are highly system specific and can vary
depending on the capabilities of the system. In this work we focus
on bare-metal systems and consider the RISC-V Instruction Set
Architecture (ISA). Our evaluation case-study demonstrates the
applicability of our proposed scheduling algorithm in providing
practical results for a heterogeneous RISC-V CPU+FPGA system.

Following this introduction, which already discussed related
work, the remainder of the paper is organized as follows: We present
our proposed scheduling strategy in Section II, which covers our
ILP-based formulation. Then, we discuss practical constraints and
trade-offs in implementing resulting scheduling on a heterogeneous
CPU+FPGA system (Section III). Next, we present our RISC-V
case-study with an example application task graph on which we
apply our methodology and show the obtained results (Section IV).
In Section V we further discuss our methodology and provide ideas
for future work. Finally, we conclude the paper in Section VI.

II. PROPOSED SCHEDULING STRATEGY

In this section we provide the necessary defnitions (Section II-A
and Section II-B) and present the proposed constraint-based formal-
ism to obtain schedulings in this context (Section II-C).



A. Application and Architecture Model
We model a real-time application (A) as a precedence constrained

task graph G = (T,E), where T is a set of tasks (T = {Ti | 1 ≤
i ≤ |T |}) and E is a set of directed edges (E = {〈Ti, Tj〉 | 1 ≤
i, j ≤ |T |; i 6= j}) representing the precedence relations between
distinct pairs of tasks. An edge 〈Ti, Tj〉 refers to the fact that task
Tj can begin execution only after the completion of Ti. A source
task is a task with no predecessors and similarly, we define a sink
task to be the one without any successors. However, being a real-
time application, the entire application (A) must meet its deadline,
denoted as DDag , by executing all the associated task nodes within
the interval.

B. Problem Description and Challenges
Given a real-time dependent task graph to be executed on a

heterogeneous CPU+FPGA system, devise a scheduling strategy to
minimize the overall execution time of the task graph. To achieve
that, the scheduler must be able to handle all the following requests:
• What task to schedule at which time (temporal reconfigura-

tion)?
• Where to place the respective task, in CPU or FPGA (spatial

reconfiguration)?
• When to start the execution of a task according with its

precedence constraints (temporal scheduling)?
This setup can be best compared to a multi-processor problem

statement, as the platform provides multiple units for the execu-
tion of a task. However, due to the particular constraints and the
challenges associated with heterogeneous architecture, state-of-the-
art multi-processor scheduling strategies cannot be applied for such
a platform. The following constraints differ from a pure multi-
processor scheduling problem.
• Hardware task execution is non-preemptive.
• Software task execution is preemptive.
• The reconfiguration process for switching between hardware

tasks is many times longer than a context switching overhead
in software.

• The communication not only has to take place between pro-
cessors but also between the software and hardware domain to
utilize the hardware accelerators.

• Execution times of a task are heavily dependent on the selected
execution unit. In general, the execution in hardware is faster
as compared to software, however some tasks do not benefit
from hardware acceleration (see Table I).

Deciding to place a task computation in software or hardware
considering the given constraints is an optimization problem. In the
following, we present how to obtain an effective solution to this
problem.

C. ILP-based Scheduling
In this part, we present an Integer Linear Programming (ILP)

solution to the optimal mapping of a DAG application in the
heterogeneous CPU+FPGA platform. For this purpose, we define
binary decision variables:
• Zi,j,η is 1 if task Ti starts execution in ηth Reconfigurable

Logic (RL) at timestep j, 0 otherwise. Here the variables varies
in the following ranges, i = 1, 2, ..., |T |; t = 0, ..., DDag; η =
1...mRL

• Yi,j,η is 1 if task Ti starts execution in ηth processor (CPU) at
timestep j, 0 otherwise. Here, η ∈ 1...mEP with mEP being
the number of Embedded Processor (EP).

• Ri,j is 1 if reconfiguration for task Ti starts in RL at timestep
j, 0 otherwise.

Furthermore, we provide the following symbols that denote spe-
cific execution relevant metrics:
• ei,EP denotes the SW execution time of task Ti.
• ei,RL denotes the HW execution time of task Ti.
• LCi denotes the logic count for task Ti and TLC denotes the

total available logic count.
We now present the required constraints on the decision variables

to model this task mapping problem before presenting its overall
objective function.

1) Unique Execution Start Time Constraint: Each task must
start executing on a particular PE (either on EP or RL) at
an unique time step. That is:

∀i : 1 ≤ i ≤ |T | |
DDag∑
j=0

mRPL∑
η=1

Zi,j,η = 1 (1)

∀i : 1 ≤ i ≤ |T | |
DDag∑
j=0

mEP∑
η=1

Yi,j,η = 1 (2)

2) Uniqueness Constraint: Each task can be executed only once
using either its software version or hardware version. That is:

∀i : 1 ≤ i ≤ |T | |
DDag∑
j=0

mPE∑
η=1

(Zi,j,η + Yi,j,η) = 1 (3)

The above constraint enforces the following for each task:
• exactly one version (either software or hardware) will be

selected for execution.
• start its execution on the processor at an unique time step.
• can be mapped only to one PE.

3) Resource constraint: In order to define this constraint, the
following situation needs to be described first.
Lemma 1: If a task Ti has still not finished execution at the
jth time step, it must have started at most within (j−ei,EP +
1) previous time steps. Hence, for this duration our previous
derived variable should exhibit 1. i.e.,

j∑
t=ψ

Yi,t = 1

where, ψ = max(0, j − ei,EP + 1). Hence, for all tasks and
for all EPs the SW resource constraint can be defined as:

∀j : 0 ≤ j ≤ DDag & ∀η : 1 ≤ η ≤ mEP |
|T |∑
i=1

j∑
t=ψ

Yi,j,η ≤ 1 (4)

Equation 4 ensures that at any time step j, a EP can be busy
due to the ongoing execution of at most one task.
Similarly for a RL (given as an FPGA), using Lemma 1, the
constraint can be enforced as follows:

∀j : 0 ≤ j ≤ DDag & ∀η : 1 ≤ η ≤ mRL|
|T |∑
i=1

j∑
t=β

Zi,j,η ≤ 1 (5)

where β = max(0, j − ei,RL + 1).



4) Version Conflict Elimination Constraint: Corresponding to
each task, a task cannot be selected for software execution
and hardware execution simultaneously. Hence, at a time-
step j, Ti can either be executed on an EP or will start its
reconfiguration for its execution on RL. This constraint can
be enforced as follows:

∀i : 1 ≤ i ≤ |T | |
∑
j

mEP∑
η=1

Yi,j,η +
∑
j

Ri,j ≤ 1 (6)

5) FPGA Logic area Constraint: The tasks placed at FPGA
should satisfy the logic area constraint i.e. the logic require-
ment of the task should be less than the available logic area
budget. This constraint can be represented as:

∀i : 1 ≤ i ≤ |T | |
DDag∑
j=0

mRPL∑
η=1

LCi × Zi,j,η ≤ TLC (7)

6) Execution Dependency Constraint: Corresponding to each
directed edge (Ti, T ′i ∈ E) in the DAG, the execution of
task T ′i must commence only after the completion of its
predecessor, Ti. This dependency constraint between task Ti
and T ′i is symbolically represented as follows:

∀(Ti, T ′i ) ∈ E |
mEP∑
η=1

∑
j

j × Yi′,j,η +
mRL∑
η=1

∑
j

j × Zi′,j,η

≥
mEP∑
η=1

∑
j

j × Yi,j,η +
mEP∑
η=1

∑
j

j × ei,EP+

mRL∑
η=1

∑
j

j × Zi,j,η +
mRL∑
η=1

∑
j

j × ei,RL (8)

7) Deadline Constraint:
In order to ensure that the application A meets its end-to-end
absolute deadline DDag , the sink node T|T | must complete
execution by DDag . That is:

mEP∑
η=1

∑
j

j × Y|T |,j,η +
mEP∑
η=1

∑
j

j × e|T |,EP+

mRL∑
η=1

∑
j

j × Z|T |,j,η +
mRL∑
η=1

∑
j

j × e|T |,RL ≤ Ddag (9)

8) Objective: The objective of the formulation is to choose a
feasible solution which minimizes finish time of the sink task.
This is formulated as:

Minimize (

mEP∑
η=1

∑
j

j×Y|T |,j,η+
mEP∑
η=1

∑
j

j×e|T |,EP+

mRL∑
η=1

∑
j

j × Z|T |,j,η +
mRL∑
η=1

∑
j

j × e|T |,RL) (10)

III. APPLICATION CASE-STUDY PRELIMINARIES

To evaluate the scheduling strategy an application case-study
featuring a realistic heterogeneous real-time system is specified
and designed. Especially on the hardware side there exist several
choices in building the overall system, which in turn has impact
on the task implementation and execution. An important part is

the FPGA which has to be chosen. It has to provide sufficient
area to fit a processing system like a System-on-a-Chip (SoC) and
additional hardware tasks. Commercially available FPGAs offer a
variety of additional features to the conventional programmable
logic blocks and block RAM. For example some FPGAs like the
Xilinx Zynq 7000 [14] feature an integrated ARM Cortex-M9 dual
core-processor with a multi-channel Direct Memory Access (DMA)
controller and various SoC peripherals while the programmable
FPGA logic contains additional blocks for Digital Signal Processing
(DSP), high-speed transceivers and more. Other commercial FPGA
manufacturers like Intel, Lattice Semiconductor and Microsemi
offer similarly broad solutions with different features and integrated
processor or an extensive library of Intellectual Property (IP) cores.
Depending on the choice various aspects of the task mapping and
scheduling can change. Our proposed ILP-based scheduling offers
to consider technological constraints and considerations as long as
they can be formulated in a ILP constraint (e.g. memory access
times through various available technologies that have an impact on
memory and area usage at the same time).

As we can not cover all possible configurations of various het-
erogeneous real-time systems, we summarize the relevant practical
considerations for various real-time systems for which our proposed
scheduling strategy applies. According to these practical consid-
erations we select and evaluate a specific configuration for our
application case-study in the evaluation Section IV.

A. General Practical Considerations
Heterogeneous real-time systems encounter various practical

considerations that can not easily be formulated formally in terms
of constraints. The following list provides a set of relevant practical
constraints which depend on the actual system and focus on tech-
nical aspects with regard to communication between software and
hardware tasks:

1) What are the capabilities and requirements of the embedded
system?

a) Is there a (special) shared memory?
b) Is DMA available?
c) If 1a and 1b are not available, where and how should the

task related data be stored?
2) How is data transported or shared between the SW and HW

tasks?
3) What interfaces will the HW tasks use? Considering the data

transport, what interfaces are required for certain transporta-
tion methods?

4) How will tasks be notified to start, respectively how do tasks
notify they are done?

This list is not meant to be a complete list of considerations,
as the amount and kind of considerations significantly depends
on the system and its execution environment. Depending on each
of these points the calculated schedule will deviate from the real
execution on the system. E.g. there will be a transportation and
synchronisation overhead in the communication between the CPU
and the task in the FPGA fabric that adds to the total execution in
the schedule. This deviation can be very small or (depending on
the system) being relevant to the scheduling outcome. The technical
implementation has also impact on the software memory footprint
(e.g. additional code and memory areas to manage DMA or other
interfaces to share data and memory).

B. Technical System Considerations
The goal for our application case-study is to evaluate the viability

of our approach on an actual heterogeneous real-time system. Our



target system combines an FPGA together with a soft-core CPU
based SoC. This SoC provides a basic set of peripherals needed
in embedded systems while leaving enough memory space and
FPGA fabric area for custom hardware based tasks. Tasks that are
implemented as software are stored in the SoCs memory, while tasks
that are implemented as hardware are connected to the SoC memory
mapped bus system. We consider a bare-metal system that does
not provide a DMA controller or dedicated shared memory regions
between the soft-core and FPGA, i.e. the soft-core needs to copy
the application data explicitly between the FPGA internal memory
and CPU accessible memory. Moreover, we consider a bare-metal
software setting without employing operating systems that might
provide preemptive task scheduling capabilities.

IV. EVALUATION: A RISC-V CASE-STUDY

This section presents results on the evaluation of our proposed
ILP-based scheduling algorithm and shows our proposed task ex-
ecution and implementation strategy on a concrete heterogeneous
CPU+FPGA system using an application case-study. We start with
a description on the specific choices with regard to the techni-
cal considerations, which consititute the setup of our evaluation
(Section IV-A). Then, the example application is introduced and a
corresponding implementation sketch is provided (Section IV-B).
Next, we present relevant metrics and the obtained scheduling based
for the example application based on our proposed methodology
(Section IV-C). Finally, we present and discuss the overall results
in obtaining the executed scheduling and elaborate how the system
choice impacted the realization of the schedule (Section IV-D).

A. Setup
For this case-study we choose the Lattice Semiconductor HX8K

FPGA [15] that is capable of containing a SoC whilst offering
additional FPGA fabric area for hardware tasks. Compared to other
commercially available FPGAs the HX8K does not offer a built-
in SoC or slices for DSP tasks like multiply-accumulate. Within
the technology of the HX8K, area is mainly determined through
Logic Cells (LC). These LC contain a four-input look-up table, a
D-flip-flop with optional enable and reset controls and carry logic
to interconnect with other LCs. Additionally the HX8K FPGA is
compatible with the open source toolchain IceStorm [16], which
includes the open source synthesis tool Yosys [17].

As a SoC we choose the Murax SoC. The Murax SoC uses a
SpinalHDL [18] based RISC-V [19], [20] implementation called
VexRiscv [21]. It is known for the high degree of configurability
while minimizing the overhead of the generated code, thus resulting
in very small FPGA-compatible RISC-V CPUs while suiting the
requirements for real-time embedded system tasks. Murax SoC uses
a small, pipelined 32 bit RISC-V single core with a lightweight main
bus system and an adapter for the APB bus [22] for peripherals.
All tasks are implemented in C for the RISC-V processor and
in SpinalHDL for the hardware tasks. SpinalHDL is an emerging
language for hardware description and generation that can be used
to describe hardware generators as well as traditional RTL descrip-
tions. Various first-class language elements and language libraries
improve the development cycle, thus improving the quality of the
hardware descriptions. The SpinalHDL-based descriptions can be
used to generate either Verilog or VHDL code. As the hardware
tasks are described with SpinalHDL an easy integration into the
Murax SoC is ensured. The complete development toolchain is
based on open source tools and allows for static and simulation
based analysis. The main simulation backend in SpinalHDL is
Verilator [23]. Verilator is used to obtain a cycle- and synthesis-
accurate RTL simulation to extract the metrics like the execution
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Fig. 2: Task graph for the case-study example application.

times of the tasks. With the extracted metrics, the task graph and
the constraints, the scheduling strategy can return a static schedule
fulfilling the constraints. This obtained schedule is then realized
through a main RISC-V software in which software and hardware
task execution is orchestrated and interleaved. The execution of
this schedule is measured on the FPGA and through the cycle- and
synthesis-accurate RTL simulation to compare the calculated result
with the experimental result. With these results we discuss some
of the boundaries of the scheduling strategy with regards to the
practical considerations in Section III-A.

Shared memory architectures and DMA for easy data transfer
between the CPU and a HW task are not part of Murax SoC. This
is due to the goal of Murax SoC being able to fit in small FPGAs
such as the HX8K FPGA (and even smaller variants of the same
FPGA-family [15] of Lattice Semiconductor). Thus, we have a low-
level bare-metal embedded system for our application case-study
representing an FPGA-based heterogeneous real-time system. We
think this choice is appropriate for a case-study in the embedded
system domain. Moreover, our method is also compatible with
embedded systems that provide more features (like DMA, more
cores, etc.) on the FPGA or the SoC, and can lead to improved
results and better usability of the proposed technique.

For this application case-study each hardware task is designed
with its own small memory section, if required. The memory section
is multiplexed between the memory mapped bus and the task itself.
After storing the initial data in the task memory, the CPU will
trigger the tasks execution. The tasks memory interface provides
signals that represent the address, write data, read data and a write
enable. The task is controlled through a valid and a ready signal.
If valid is being asserted, the tasks starts its processing with the
current memory content. Once the task is finished, the ready flag
will be asserted by the task and the tasks memory is multiplexed
back to the memory mapped bus. The ready flag can either be used
to trigger an interrupt or it will be read before accessing it. After the
tasks execution the CPU can read all resulting data from the tasks
memory. Additional configuration inputs are mapped to memory
mapped registers.

B. Application and Implementation

Fig. 2 shows a task graph with six different tasks that represent the
example application of this case-study. The tasks represent data flow
operations known from functional programming. The task graph
combines vector and scalar operations. The first task generates a
vector V1 with pseudorandom values based on an initial seed. The
next two tasks process V1 into the vectors V2 and V3 by mapping
and sorting the values in V2. Then, V2 and V3 are transformed
into scalar values S1 and S2 by computing the maximum value and
applying a value reduction, respectively. Finally, a unique hash value
is obtained by combining S1 and S2 into a single integer.

A directed edge represents a dependency on the output/input of
another task. Therefore a task can only be executed if and only



TABLE I: Task metrics of the example application with six tasks.

Task Software (CPU) Hardware (FPGA fabric)

Execution
time / µs

Memory foot-
print / Bytes

Time / µs Memory foot-
print / Bytes

Area Usage
/ LC

Total
execution

Transport
CPU to FPGA

Task
processing

Transport
FPGA to CPU

T1 (generate) 40.33 80 22.92 - 0.92 18.50 100 805

T2 (map) 20.83 76 43.58 19.42 0.92 18.50 144 721

T3 (sort) 79.00 112 49.75 19.42 10.50 18.50 144 840

T4 (max) 33.67 96 23.67 19.42 0.92 0.17 108 686

T5 (sum) 24.92 80 23.67 19.42 0.92 0.17 108 653

T6 (hash) 88.42 144 7.33 0.83 2.25 0.17 72 628

Listing 1: Accessing the task interface through memory
mapped registers.

1 / / s t o r e a l l e l e m e n t o f t h e a r r a y i n t o t h e memory
of t h e t a s k

2 f o r ( u i n t 8 t i = 0 ; i < v e c S i z e ; i ++) {
3 TASK MAX−>MEM ADDR = i ;
4 TASK MAX−>MEM WDATA = i n p u t D a t a [ i ] ;
5 TASK MAX−>MEM WRENA = 1 ;
6 TASK MAX−>MEM WRENA = 0 ;
7 }
8 / / s t a r t t h e t a s k
9 TASK MAX−>VALID = 1 ;

10 / / check r e a d y f l a g o f t a s k u n t i l i t s done
p r o c e s s i n g

11 w h i l e ( !TASK MAX−>READY) ;
12 / / l o a d max v a l u e
13 maxVal = TASK MAX−>MAX VALUE;

if the required data is available. For example: Task T2 (map) can
only be executed if the data from task T1 (generate) is available.
This results in constraints for the order in which the tasks can be
executed. At the same time, these tasks can be implemented into
a hardware description by hand to evaluate the feasibility of the
implementation step of the top level flow from Fig. 1. For each
task an implementation in C and SpinalHDL is implemented and
measured for their metrics such as execution time, area consumption
after synthesis, software memory footprint and transportation time
of the data between CPU and FPGA fabric.

The task graph structure already implies requirements with re-
spect to the technical implementation. For example: Task T1 gener-
ates data that is used in task T2 and T3. Passing the data from and to
the tasks T2 and T3 have to be handled as part of the scheduling. A
fork in that sense means also that the output data from T1 has to be
copied to be available for both tasks independently (e.g. memcpy()
on an array of data).

Furthermore, a directed edge in the graph can represent three
different types of data transactions:

1) A task in software is succeeded by a task in hardware and data
is moved from the software task to the hardware task.

2) A task in hardware is succeeded by a task in hardware and
data is moved from one hardware task to another hardware
task.

3) A task in hardware is succeeded by a task in software and data
is moved from the hardware task to the software task.

These three cases will look different in the realization of the
schedule and their implementation varies based on the features of
the embedded system too.

In general our architecture requires the software code to access
the memory mapped registers via the system bus. This type of access
is an essential part of the RISC-V architecture as well as many other
embedded systems, thus such transactions as mentioned above don’t
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Fig. 3: Scheduling outcome from our proposed algorithm for
the example application.

give rise to additional challenges.
Listing 1 shows such an exemplary transaction between the CPU

and the hardware task. Lines 2 to 7 move data into the tasks memory,
line 9 starts the task and after line 11 retrieves the ready flag from
the task line 13 reads the result register of the task.

Compared to an approach with a DMA or shared memory this
approach requires copying and moving data to and from tasks
in order to execute the tasks. It has to be noted that additional
features such as DMA will minimize the memory footprint on using
hardware tasks.

If preemption of tasks is included in the considered properties of
our task scheduling strategy, the active checking for the ready flag
(see 1 line 11) could be handled through interrupts.

C. Metrics and Scheduling
Table I shows the measured task parameters of our example

application. The task parameters from the software and hardware
tasks are fed into our ILP formulation from Section II-C. Together
with the top-level constraints (e.g. deadline at 200µs, area budget of
1500LC) the CPLEX [24] solver, which we employ for ILP solving,
generates an optimal task mapping and scheduling according to our
ILP formulation. In this case we obtain the scheduling as shown
in Fig. 3.

Fig. 3 shows the calculated schedule for the tasks with the
parameters from Table I. Please note, that the time parameter on
the x-axis is not true to scale, but is meant to show the results of
the task mapping and scheduling in a compact way. The tasks T1,
T2, T4 and T5 are mapped on the CPU and the tasks T3 and T6 are
mapped to be executed as hardware tasks on the FPGA. The total
runtime is calculated as 128µs, which is far below the deadline of
200µs. The additional hardware area used is 1468LC which also is
below the budget of 1500LC.

With this schedule we can now use the mapping for the software
and hardware tasks and implement the top level schedule such that
it executes the proposed solution. After the bootcode of the SoC has
completed, the proposed schedule is executed. The SW tasks are
implemented as C functions, which are called with their parameters
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Fig. 4: Compared schedule results for application study. Top: calculated schedule (also refer to Fig. 3), Bottom: executed
schedule implemented in application study.

TABLE II: Baseline of the case-study setup, Lattice
Semiconductor HX8K FPGA with VexRiscv, Murax SoC.

Description Maximum available Used Available

Memory usage / Bytes 2048 776 1272

Area usage / LC 7680 2514 5166

and their return value is stored into a variable to be accessed by
the next task. For the hardware tasks, the software implementation
is used as a specification. Control flow elements from the software
task are implemented as finite state machines while the data flow
elements represent the data path of the circuit.

D. Results
Initially we look into a comparison between the calculated ILP

scheduling with the measured scheduling execution on the embed-
ded system. Fig. 4 shows the respective schedules for comparison.
The top plot shows the calculated schedule from our proposed
scheduling algorithm. The bottom plot shows the real execution
of the schedule on the embedded system. The events and their
timestamps are reconstructed from a wavetrace, the source code
and the disassembly of the implemented schedule. The deadline of
the application is marked with a dotted line (purple). Each task is
delimited with two vertical dashed line (black) and annotated with a
task identifier corresponding with I. The top half of the plots show
the execution traces of the tasks on the CPU part of the system (red
and blue events). For the CPU tasks, the strike through events (red)
show the task execution on the CPU, while the dashed event is the
execution of housekeeping data. This is required, as for example
T3 and T2 both require the same data from T1 and thus it needs to
be copied once. The bottom parts of the plots show the execution
traces for the hardware tasks on the FPGA fabric (yellow and green
events). For the FPGA tasks, the strike through events (green) show
the task execution on the FPGA fabric, while the dashed (yellow)
events are data transmission for the tasks. This is required, as
our application case-study leverages an embedded system without
shared memory or DMA for devices on the memory bus.

Table II shows the baseline values for the memory usage in Bytes
and the area usage in LCs. These values declare the maximum

TABLE III: Proposed schedule in context to executing all
tasks in software or hardware.

Property

Schedule
All Software Proposed All Hardware

Memory Footprint (complete) / Bytes 1352 1460 1440

Memory Footprint (no bootcode) / Bytes 576 684 664

Area Usage (complete) / LC 2514 3956 7015

Area Usage (w/o SoC) / LC 0 1442 4501

Total Execution Time / µs 294.24 175.50 189.49

budget of the memory and area that are available. In our application
case-study we limited the budget to values lower than the available
space.

Table III shows a comparison of three schedules: The column All
Software and All Hardware represent the non-optimal boundaries
in which the schedule results of the ILP-based scheduling can
be expected. For the schedule All Hardware we kept the same
sequential order for task execution as for All Software. The memory
footprint and the area usage are declared twice. In the rows with
(complete) annotation, the absolute size in terms of Bytes and LCs
is shown. The other rows show the values for just the software and
hardware solution of the tasks, respectively. These values are calcu-
lated as the difference to the baseline values of the embedded system
from Table II. As expected the All Software schedule requires no
additional hardware, while the All Hardware requires 4501LC to
implement all tasks in HW. The All Hardware schedule needs 664
Bytes of code, in order to interact with the HW tasks and move the
task data around. Our proposed schedule requires 20 Bytes more
than the All Hardware schedule while requiring much less area of
the FPGA fabric.

V. DISCUSSION AND FUTURE WORK

The results shown in Fig. 4 show differences in how the schedule
is executed on the embedded system. We can observe that additional
time is spent in setting up the execution of tasks. For example due to
the fork in the task graph (in Fig. 2 the task T1 forks to T2 and
T3) our architecture needs an additional copy of the data of T1.
This can be seen as the time interval marked in blue on the bottom



schedule plot. Additionally, data needs to be transferred from and to
the tasks memory if a task is executed in hardware. These transfers
are plotted as yellow time intervals in the bottom schedule plot.
Such architectural considerations and constraints are not part of the
ILP constraints and thus are not part of the calculated schedule.
The advantage of the ILP-based mapping and scheduling is that
at this point we can refine our constraints to represent our system
architecture. For example additional information on the transport
duration (see Table I column 5 and 7) can be formulated as part of
the hardware tasks that are necessary to contain the execution time.
Constraints like these can either be formulated in advance with our
given set of ILP constraints or refined in an additional iteration of the
methodology in Fig. 1. This might be useful if different task graphs
based around the same set of tasks are explored and compared.
But such additional ILP constraints are specific to the properties
of the underlying embedded system (refer to Section III-A, Sec-
tion III-B and Section IV-A) as well as the tasks graph and tasks
of the application. The set of ILP constraints already provided in
this paper deliver a set of common scheduling constraints found
in many real-time applications. Therefore, the ILP-based mapping
and scheduling can provide early estimations independent of the
underlying system architecture while being adaptable for refinement
due to more specific system details.

For future work, we aim to consider further evaluations that
involve different heterogeneous real-time systems and different
application examples. These systems should contain a range of
different features to expand on the general and specific consider-
ations. Through more evaluations we can refine our methodology,
for example with a feedback loop, to include application specific
properties and constraints. Additionally we plan to investigate au-
tomating the implementation of tasks through High-Level Synthesis
(HLS) in order to speed-up the development and verification cycles.
Using HLS allows for faster design space exploration and can aid in
obtaining estimates for task metrics much faster. Lastly, we want
to investigate the use of a Virtual Prototype (VP) as a reference
model of a heterogeneous real-time system. VPs allow early HW-
SW co-design and verification, thus a possible feedback loop in the
methodology can be achieved more efficiently.

VI. CONCLUSION

In this paper we proposed a static scheduling strategy and
methodology for mapping and scheduling application tasks for
a heterogeneous real-time system. The strategy encompasses an
ILP-based optimization of constraints modeling the applications
properties. Through these constraints we describe general schedul-
ing properties (such as deadlines or preemption behavior) as well
as relevant system architecture and application specific properties
(such as hardware area budget or software memory limits). We pro-
posed general practical and technological considerations that help
engineers in making decisions and understanding the advantages,
disadvantages as well as the limitations of the underlying systems
architecture. With a case-study we provide an evaluation through
which we show the consequences that follow from considering
specific systems decisions (e.g. no DMA, specific hardware task
interfaces, etc.). Our evaluation demonstrates the applicability of
our proposed scheduling algorithm in providing practical results for
a heterogeneous CPU+FPGA system. Finally, we provided ideas for
future work to further boost our methodology and broaden the scope
of our scheduling algorithm to consider more general and applica-
tion specific constraints as well as different system architectures.
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