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Abstract—Resistive RAM (RRAM) has emerged as a promising
technology for in-memory computing by enabling storage and
computation within the same physical substrate. While its analog
computation capability, particularly the multiply-accumulate (MAC)
operation, has been effectively used in neuromorphic systems, its
potential for logic synthesis remains underexplored. Logic synthesis
using MAC not only unlocks new efficiency gains but also aligns
with hardware already present in neuromorphic accelerators. In
this work, we present the first automated framework for evaluating
arbitrary Boolean functions on standard RRAM crossbars using
highly parallel MAC operations. The proposed method introduces
a logic computation core for RRAM-based neuromorphic archi-
tectures without requiring additional hardware, leveraging existing
peripheral circuitry. To ensure functional correctness, we further
integrate a formal verification approach based on equivalence
checking via SAT solvers. Experimental results on standard bench-
marks demonstrate substantial reductions in computation cycles
and improved efficiency compared to existing RRAM-based logic
synthesis methods, highlighting the practical potential of MAC-based
logic in emerging computing systems.

Index Terms—In-Memory Computing, Logic Synthesis, MAC
Operation, Formal Verification.

I. INTRODUCTION

Resistive RAM (RRAM) is a non-volatile memory technology
whose internal resistance can be switched between low and high
states to represent binary bits [1]. This abrupt switching property
enables performing basic logic operations and therefore allows
to unify memory and processing units known as in-memory
computing. In addition to logic operations, RRAM allows to
perform the multiply-accumulate (MAC) operation driven by mea-
surements based on current flowing memory columns with tuned
device conductivities. This enables highly parallel computation of
matrix-vector multiplication which is essential for neuromorphic
structures [2]-[4].

Various automated approaches for logic-in-memory computing
with RRAM devices have been proposed. These methods usually
exploit different universal logic operations that are executable
within RRAM devices such as material implication(IMPLY) [5],
resistive majority of three (MAJ) [6], [7], and Memristor-Aided
LoGIC(MAGIC) [8].

However, MAC has been partially used for logic computation
only in a few approaches despite its advantages for parallelization.

In [9], MAC operation is utilized in a BDD-based approach
to evaluate logic functions on RRAM crossbar. The approach
uses only two crossbar rows and thus cannot explore the full
parallelism potential of MAC. More recently, a MAC-based SAT
solver was proposed [10] for evaluating Conjunctive Normal Form
(CNF) representations which is not efficient as a solution for logic
synthesis due to high computational complexity.

While various approaches have been proposed for RRAM-
based logic-in-memory computation, most current methods de-
pend on universal logic primitives such as IMPLY, MAIJ, or
MAGIC design. Nevertheless, these approaches often face chal-
lenges such as limited scalability due to the large number of
required write cycles and inefficient handling of parallelization.
The MAC operation, commonly used in memristive architec-
tures, offers a promising alternative by enabling efficient parallel
evaluation of Boolean functions within RRAM crossbars. This
paper aims at leveraging MAC for logic synthesis while exploring
its parallelism potential. To the best of our knowledge, we
introduce a novel MAC-based design and mapping approach for
the first time, combined with a formal verification framework,
to enhance both efficiency and reliability in RRAM-based in-
memory computing.

Our proposed design introduces a logic computation core
within RRAM-based neuromorphic units, utilizing available pe-
ripheral circuitry, sense amplifiers, ADC/DAC, and other re-
quired control elements without imposing additional overhead.
The approach requires a one-time crossbar initialization proce-
dure, which remains effective for all input variations. While the
initialization process contributes to overall latency, our method
outperforms state-of-the-art approaches in scenarios requiring
frequent evaluations, as it eliminates the need for regular memory
refreshing or intermediate value updates.

Beyond the design aspect, this work also addresses the critical
challenge of verification in RRAM-based in-memory computing.
As in-memory designs grow in complexity, ensuring computa-
tional correctness becomes increasingly important. Traditional
validation techniques, such as manual inspection or simulation,
become impractical for large-scale designs with numerous in-
puts and outputs. We use equivalence checking to compare
the function descriptions of conventional logic netlists with



the micro-operations mapped to the RRAM crossbar, ensuring
their functional correctness. While recent studies have explored
formal verification for memristive logic primitives in RRAM
devices [11], [12], or focused on verifying the OIG netlist
of MAC operations [13] but verification techniques specifically
targeting MAC-based computation on RRAM crossbars are being
performed for the first time in this paper.

As emerging applications such as edge Al, real-time signal
processing, and embedded neuromorphic systems demand faster
and more energy-efficient computing, RRAM-based in-memory
architectures are gaining increasing attention. However, the lack
of scalable logic synthesis methods and trustworthy verification
flows for such systems remains a significant bottleneck. Existing
logic-in-memory schemes often fall short in exploiting parallelism
or ensuring functional correctness at scale. Meanwhile, MAC
operations remain an underutilized opportunity for logic process-
ing. By enabling reliable and parallel Boolean computation using
MAC operations, our work bridges this gap and opens the door
to reconfigurable, low-latency, and verifiable computing directly
within memory fabrics.

II. BACKGROUND
A. MAC Operation

RRAM’s unique analog computation capabilities distinguish it
from other emerging memory technologies, particularly in neu-
ral network implementations. These capabilities enable efficient
MAC operations, which are crucial for matrix-vector multiplica-
tion.

In the crossbar structure shown in Fig. 1, the resistive values
of RRAM devices are initialized with a;;. By applying voltages
Z1,...,T, to the rows, up to m MAC operations can be per-
formed simultaneously across m crossbar columns.
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Fig. 1: MAC computation in RRAM crossbar

The outputs are the currents flowing in the corresponding
crossbar columns, which is the sum of currents in each RRAM
device, i.e. i; = ZZ:I Zj - aj ;. This can be denoted as 1 = X A,
where I = (i1,...,%m), € = (21,...,2,) and the matrix A is
defined as follows:
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Thus, m MAC operations, each involving n multiplications,
can be computed in parallel within a single cycle. While MAC
operations are extensively used in neuromorphic computing with

RRAM, their potential for logic applications remains largely
untapped. This paper explores their use in computing Boolean
functions through our proposed RRAM crossbar mapping ap-
proach.

B. Boolean Satisfiability (SAT)

The Boolean Satisfiability Problem (SAT) is a fundamental
NP-complete problem in computer science, where the goal is to
determine whether a Boolean formula can be satisfied by some
assignment of its variables [14]. If such an assignment exists,
the formula is satisfiable (SAT); otherwise, it is unsatisfiable
(UNSAT) [15].

To solve combinatorial problems using SAT, formulas are
typically converted into Conjunctive Normal Form (CNF), a
conjunction of clauses, where each clause is a disjunction of
literals. This standard form allows efficient processing by modern
SAT solvers, which are widely used in logic synthesis and formal
verification.

C. Related Works

Many existing approaches to logic synthesis with RRAM de-
vices rely on gate-level circuits derived from function descriptions
such as Binary Decision Diagrams (BDDs) [16], AND-Inverter
Graphs (AIGs) [17], and Majority-Inverter Graphs (MIGs) [18],
as well as other graph-based representations. In [5], material
implication was demonstrated using resistive devices, and a
memristive NAND gate capable of realizing any Boolean function
was introduced. This foundational work opened new directions for
non-von Neumann computing architectures by enabling compu-
tation within memory arrays.

MIGs were introduced in [19] as a logic representation us-
ing only the majority function and negation, which simplifies
the design of logic circuits and field-programmable gate arrays
(FPGAs). MIGs are particularly suitable for RRAM-based circuit
synthesis since resistive majority operations can be directly exe-
cuted [6]. A comprehensive synthesis method leveraging BDDs,
AlIGs, and MIGs for resistive in-memory computing was pre-
sented in [20]. This method supports parallel computing on multi-
row crossbar architectures and provides alternative implementa-
tions to optimize metrics such as the number of RRAM devices,
operations, area, and delay. Experimental results demonstrated
substantial improvements in area and latency. However, these
designs face complexity challenges due to conflicting write oper-
ations across multiple devices, requiring additional resources and
longer computation times to maintain data integrity.

MAGIC-based logic synthesis was explored in [21], where the
authors proposed a method to map multi-output Boolean functions
onto RRAM crossbars using NOR gates. The technique included
gate scheduling to reduce hardware overhead and achieved no-
table reductions in cycle count and energy consumption. Nev-
ertheless, the proposed crossbar optimization strategies did not
account for sneak path issues, which can compromise system
reliability and functionality.

In terms of verification, various in-memory techniques have
been developed, primarily targeting Majority- and MAGIC-based
logic styles. These methods aim to ensure the correctness of
operation sequences generated by automated crossbar mapping
tools. For Majority-based designs, formal methods have employed
SMT solvers such as CVC4 [22] and Z3 [11], and BBD [23],
using intermediate representations such as ReRAM Sequence
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Fig. 2: The overall flow of MAC-based Synthesis and Verification

Graphs [11] and ReRAM Matrices [23]. In contrast, MAGIC-
based verification remains relatively underexplored. A recent
work, veriSimpler [12], addresses formal verification of NOR-
netlists produced by the Simpler mapping method [24], using
SAT-based equivalence checking with Z3. While this marks a
significant step forward, it does not perform verification at the
level of individual mapping operations. Thus, there remains a need
for a more holistic synthesis, mapping, and verification framework
for MAGIC-based in-memory computing [25].

III. PROPOSED MAPPING AND VERIFICATION
METHODOLOGY

In this section, we present our approach for mapping arbitrary
Boolean functions to generate MAC micro-operations in RRAM-
based crossbar architectures. We also describe the corresponding
verification methodology used to ensure the correctness of these
micro-operations. An overview of the entire process is illustrated
in Fig. 2.

A. MAC-Based Mapping Methodology

The proposed methodology adopts the sum of products (SoP)
approach for performing MAC operations. To leverage its struc-
tural advantages, we employ the Or-Inverter Graph (OIG) as the
underlying functional representation.

An OIG is a directed acyclic graph composed of three distinct
types of nodes. The first type, which has no outgoing edges,
represents a terminal node that acts as the primary output. The
second type, lacking incoming edges, functions as the primary
input. The third type consists of nodes with n incoming edges
(where n is 10 or fewer) and a single outgoing edge, representing
a Boolean OR operation.

The OR nodes are connected by two types of edges: a regular
edge representing the actual functionality and a complementary
edge representing its negation. More formally, an OIG is defined
as follows:

Definition 1: An OR Inverter Graph (OIG) over the primary
input variables X = {x1,29,...,2,} and the primary output
variables Y = {y1,¥2,...,ym} is a directed acyclic graph H =
(V, E) with the following characteristics:

e A finite set of nodes V = Vx U Vyx U Vy, where Vx
and Vy are terminal nodes that specify the primary input
nodes, and primary output nodes, respectively, and Vi =
{VUn1,Vn2,...,vnk} are non-terminal nodes representing a
logical OR operation.

o An edge e € E between a source node v € V and a target
node v € V can be either a regular edge or a complement
edge. Specifically, an edge e is represented as (u, (v X p)),
where v ¢ Vi and v ¢ V. Here, p denotes the type of
edge: p = 1 for a regular edge that signifies the actual
functionality, and p = 0 for a complementing edge that
indicates the negation of this functionality.

The depth of the OIG corresponds to its total number of
levels. In this paper, the OIG is optimized to minimize depth by
prioritizing OR gates with larger fan-ins at lower levels whenever
possible.

As shown earlier in Fig. 2, the process begins with a Boolean
function specified in Verilog format. Using the ABC tool [17],
we employ a custom-designed library to map the function into
an OIG representation. Next, a levelized intermediate file is
generated to support MAC-based mapping. In this stage, all
nodes are analyzed by examining their inputs and outputs and
are then organized into levels based on output dependencies.
This levelization facilitates the identification of nodes and their
corresponding connections at each computation stage.

Upon generating a levelized netlist, our MAC-based mapper
transfers values to the RRAM crossbar. For a Boolean function
with n primary inputs and m primary outputs, assuming the
synthesized netlist comprises /N gates and L levels, The required
write cycles or initialization cycles for synthesizing a function are
equal to N, i.e:

#lnitialization Cycle = N. 2)

In our method, initialization cycles for different inputs are exe-
cuted only once, unlike in the MAJ and MAGIC-based methods.
Although the increased frequency of write cycles might seem like
a disadvantage, it becomes an advantage in the context of a larger
processor. All gates in each level can be computed in one MAC



cycle. However, we add an extra cycle per level for intermediate
delays, caused by the column currents being fed into ADCs and
written back into the crossbar for the next level. Primary outputs
are not mapped to the rows and can be read from the columns.
Total MAC cycles are calculated as:

#MAC Cycle = (2 x L) — 1. 3)

Hence, the total number of cycles required for evaluating is
given below:

#Total Evaluation Cycle = N + (2 x L) — 1. 4)

The size of the RRAM crossbars varies depending on the
Boolean function type. If a Boolean function has independent
outputs, i.e. its primary outputs that are not influenced by any
other primary output as input, then the number of required rows
in the crossbars is:

#Rows =2 X (n+ N —m). ®)

Every variable here, either a primary input or an intermediate
input of gates, and their complement, requires two rows within
the crossbars. Similarly, the output of each level, along with
its complement, is mapped to subsequent rows. For dependent
primary outputs, the calculation for the required number of rows
is:

#Rows =2 x (n+ N +d—m). (6)

Here, d denotes the number of primary outputs that are de-
pendent on each other. The number of required columns will be
equal to N since each gate is implemented in a separate column.
This value remains consistent for both scenarios.

B. MAC netlist representation

This section describes the micro-operation file format and the
algorithm that generates it from a levelized OIG netlist. The tool
takes this netlist as input and generates a .mac file, which can be
directly mapped to the crossbars. Generating the .mac file requires
three types of instructions:

1) Primary Input mapping instruction: This instruction pro-
vides information about the primary inputs and the rows to
which they, along with their complements (denoted by ’-’),
are mapped. The syntax is as follows:
<row0> <var0> <rowl> <-var(0> <row2> <varl>
where <row> denotes the wordline, and <var> signifies the
primary input variable name.

2) Column to row mapping instruction: Since a levelized
netlist requires outputs and their complements from some
levels as inputs for the next level, this instruction maps a
column’s (gate’s) output to a row for further processing. It
shows the connection of the crossbar’s columns to the rows
of the crossbars. The syntax of the instruction is:
<row0> <col0> <rowl> <-colO>
In this notation, <row> represents the row, and <col>
indicates the column linked to that row.

3) RRAM initialization instruction: Each OR gate in the OIG is
mapped to a column in the crossbars. To evaluate these gates,
we initialize the RRAM for the variables in that column. This
instruction sets the RRAM, specified by row and column, to
the low resistance state. It follows the syntax:
<col> False <rowl> True <rowl> True

O\a 1\-a 2\b 3\-b 4\cin 5\—cin
6\0 7\-0 8\1 9\-110\2 11\-2
12\3 13\-3 14\5 15\-5 16\6 17\-6

level 5
level 4

0 False
1 False
2 False
3 False
4 False
5 False
6 False
7 False

3 True
2 True
9 True
9 True
11 True
13 True
15 True
17 True

1 True
0 True
7 True
7 True
7 True
4 True
11 True

level 3
eve 5 True

level 2

level 1
Outputs : carry —> 4, sum —> 7
Crossbarsize : 18 x 8
Initialization cycles : 8
Evaluation cycles : 9

(b)

Fig. 3: (a) The OIG Graph of Full adder, and (b) Fulladder.mac
file

Here, <col> represents the column, and <row> represents
the row. This constitutes a column-parallel operation where
RRAM devices in a column are activated concurrently by
applying False to the column and then True to the row of
the intended RRAM devices.

For instance, Fig. 3a illustrates the OIG graph of a Full
Adder. In this graph, triangles represent primary inputs, while
circles denote OR gates with varying fan-ins—up to three in this
example, though the number may vary depending on the Boolean
function. Each bubble indicates the negation of its corresponding
input, and rectangles signify the outputs.

The OIG for this Full Adder comprises three inputs: a, b, and
cin, and produces two outputs: sum and carry. The graph spans
five levels and includes seven OR gates, concluding with a NOT
gate at the final level. This intermediate representation serves as
the input for subsequent stages, enabling the generation of micro-
operation files for crossbar mapping.

Fig. 3b presents the micro-operations generated for the Full
Adder. The first instruction defines the row connections for
primary inputs and their complements: a, —a, b, —b, ¢, and
—cip are assigned to rows 0, 1, 2, 3, 4, and 5, respectively. Next,
a column-to-row mapping is performed, where the Oth column
is mapped to the 6th row, and its complement is mapped to the
7th row, maintaining a sequential pattern. Ultimately, the primary
outputs are located in columns 4 and 7.

IV. MAC-BASED MICRO-OPERATION VERIFICATION

Referring back to Fig. 2, the overall verification methodology
involves two representations of the same function: the Verilog-
based Boolean function, which serves as the golden model, and
the MAC-based micro-operation representation, considered the
Design Under Test (DUT). The verification process begins by
converting the micro-operations into an OIG netlist file, a gate-
level representation. An equivalence checker, employing an SAT
solver, is then used to determine whether the golden model and
the DUT are functionally equivalent.

A. Verification Methodology

The fundamental idea behind SAT-based equivalence checking
is to express the equivalence problem as a Boolean satisfiability
instance, which is then evaluated by an SAT solver. If the solver



returns SAT, it indicates a difference between the two designs;
otherwise, an UNSAT result confirms that they are functionally
identical. From a circuit design perspective, this process starts by
constructing a miter circuit between the golden model and the
DUT. This miter circuit is then converted into a Boolean repre-
sentation suitable for SAT-based analysis. The transformation is
carried out by propagating Boolean expressions from inputs to
outputs, progressively integrating the logic functions defined by
individual gates. To enable efficient SAT solving, the Boolean for-
mula is reformulated CNF using Tseitin transformation, ensuring
that the resulting CNF remains proportional in size to the original
formula.

Difference-

Inputs detection

Outputs

Golden Model

I .
Y

DUT

Fig. 4: The layout of a miter circuit for SAT-based verification

Fig. 4 illustrates the overall structure of the miter circuit used
for equivalence checking. Corresponding inputs from the golden
model and the Design Under Test (DUT) are connected to ensure
they receive identical values. Each pair of outputs is compared
using XOR gates, and the results are aggregated through a single
OR gate. If the OR gate outputs a logical ’1’, it indicates there
is at least one mismatch between the models.

To build this structure, intermediate bench files are generated
for both the golden model and the DUT. A Python-based frame-
work then merges the two representations and constructs the miter
circuit within a combined CNF. This CNF is subsequently passed
to the Z3 SAT solver, which verifies whether the two models are
functionally equivalent.

V. EXPERIMENTAL RESULTS

To present the experimental results of our proposed method,
which includes both MAC-based mapping and its verification,
we divide this section into two parts. The first part provides a
comparative evaluation of the mapping process, while the second
focuses on the verification results, demonstrating the accuracy and
precision of our approach.

All experiments were conducted using the ISCAS-85 and IWLS
2005 benchmark sets [26], [27] on a machine equipped with an
Intel® Core™ i7 2.10 GHz processor and 8GB of main memory.

A. Evaluation of MAC-Based Mapping

Table I presents the results of our MAC-based synthesis method
on the IWLS benchmarks, including benchmark names, number
of primary inputs and primary outputs (#PI/PO), and key perfor-
mance metrics: number of levels (#L), crossbars size, write cycle,
MAC cycle, and total cycle. It also compares the total cycle over
the MAJ-based [28], and the MAGIC-based [29] methods. Our

MAC-based method demonstrates significant improvements over
both MAJ and MAGIC-based designs, achieving an average total
cycle reduction of 50.60% and 40.30%, respectively.

Similarly, Table II provides results for the ISCAS-85 bench-
marks. The performance metrics are structured similarly, with
additional comparisons between serial and parallel MAGIC-
based designs. Our method outperforms MAJ and serial MAGIC,
reducing the total cycle by 12.67% and 46.33%, respectively.
However, compared to parallel MAGIC, our method does not
show an improvement in cycle count. Nevertheless, MAC-based
computing proves to be more efficient in scenarios requiring
repeated function evaluations. Fig. 5 shows that the MAC-based
approach outperforms both MAJ and parallel MAGIC, even in
the worst-case ¢4 99 benchmark. As the number of iterations in-
creases, the total cycle count of the MAC-based method decreases
significantly compared to the alternatives.

Another key advantage of our method lies in the reduced num-
ber of write cycles, as depicted in Figure 6. In function synthesis,
the number of initialization cycles is a crucial parameter. With
the MAJ-based function, all inputs must be initialized for each
iteration or various inputs, whereas for the MAC-based function,
only one-time initialization is required. This immensely improves
the endurance of our proposed method. Unfortunately, the write
cycle data from [21] could not be included in Figure 6, as it did
not provide information about write cycles.

In summary, our experimental results highlight the efficiency
of the MAC-based approach in most scenarios, particularly in
reducing total cycles and write cycles. While parallel MAGIC
remains competitive in terms of cycle count, MAC-based comput-
ing offers notable advantages in endurance and repeated function
evaluations, making it a strong candidate for scalable in-memory
computing applications.

B. Verification and Accuracy Analysis

Ensuring the correctness of MAC-based micro-operations is
crucial for reliable computation. To this end, we use an SAT-
based approach to verify their functional equivalence against the
original Boolean functions.

Table III presents the verification results, comparing the pro-
posed method with the MAIJ-based approach. The first three
columns list the benchmark names, along with the number of
Primary Inputs (PI) and Primary Outputs (PO). The next two
columns report the performance of our method in terms of the
number of variables and clauses generated. The following two
columns show the runtime (in CPU seconds) required by the Z3
solver to verify functional equivalence for both equivalent and
non-equivalent cases. The final two columns present the corre-
sponding runtimes for the MAJ-based method [11]. A timeout
was assumed for instances that could not be solved within two
hours.

For each benchmark, we first generate MAC-based micro-
operations, which are directly mapped onto the crossbars. The
verification process then compares these micro-operations against
the original Verilog representation of the function.

To evaluate the accuracy of our method in detecting non-
equivalence, we introduced random modifications by inserting
or deleting logic operations in the crossbar micro-operations,
while keeping the golden model unchanged. In all such cases, the
SAT solver correctly detected the discrepancy, confirming non-
equivalence.



TABLE I: Comparing results of the proposed method for IWLS 2005

Benchmark Proposed MAIJ [28] MAGIC [29]
Name #PI/PO #L Crossbars(r x ¢) Write Cycle MAC Cycle Total Cycle Total Cycle  Total Cycle
9sym_d I 11 112 x 48 48 21 69 176 138
conlfl 772 4 42 x 16 16 7 23 48 42
examl_d 3/1 4 16 x 6 6 7 13 30 42
exam3_d 4/1 3 24 x 8 8 7 15 30 54
max46_d I 12 234 x 109 109 23 132 404 114
newill_d 8/1 6 46 x 15 15 11 26 80 78
newtag_d 8/1 4 26 X 5 5 7 12 41 42
rd53f1 5/3 6 84 x 40 40 11 51 81 48
rd73f1 7/3 11 192 x 92 92 21 113 175 96
rd84f1 8/1 9 136 x 61 61 17 78 153 126
sao2fl 10/1 7 64 x 23 23 13 46 91 84
sym10_d 10/1 11 116 x 49 49 21 80 221 168
t481_d 16/1 7 82 x 26 26 13 39 46 174
xorS 51 6 32 x 12 12 11 23 45 54
TABLE II: Comparing results of the proposed method for ISCAS 85
Benchmark Proposed MAJ [28] MAGIC [21]
Name #PI/PO  #L  Crossbars(r x ¢) Wrire C. MAC C. Total C. Total C.  serial parallel
c432 36/7 17 248 x 91 91 33 124 408 361 222
c499 41/32 15 766 x 374 374 33 407 254 692 178
c880 60/26 14 566 x 249 249 43 292 412 610 180
cl355 41/32 14 802 x 360 374 29 403 300 683 156
c1908 33/25 23 742 x 338 338 45 383 448 702 240
c2670  233/140 20 1156 x 478 478 39 517 755 1149 180
c3540 50/22 30 1548 x 735 735 59 794 1173 1583 324
c5315 178/123 31 2856 x 1348 1348 61 1409 1826 2138 300
c6288 32/32 88 3750 x 1875 1875 175 2050 1801 3077 720
c7552  207/108 31 3048 x 1398 1398 61 1459 2252 2473 258
As expected, verifying equivalence generally requires more
. . . .. . . [ Proposed MAC-based
time than detecting non-equivalence. This is because, in equiva- 1 s MAGIC-based g
lent cases, the SAT solver must exhaustively explore the solution 65000 1 [ MAJ-based 28
space to confirm functional equivalence. In contrast, in non- g 2
equivalent cases, the solver can terminate as soon as a mismatch 30000 - S& [
is found. S i
The results demonstrate that our method consistently out- é 15000 1 i
performs the MAJ-based design style, achieving average im- & S 5
provements of 82.35% in equivalent cases and 92.07% in non- 10000 1 2 S
equivalent cases. The SAT solver efficiently determines solutions o
(i.e., SAT or UNSAT) for most benchmarks, including large ones 23 S &
like ¢3540 and c7552. However, the benchmark c6288, a 16- 2000 4 - s =
bit array multiplier circuit, requires significantly longer runtimes 3 © ¥ %_H
due to its large number of clauses. Specifically, c6288 includes 100 L= i i i i
240 full-adder and half-adder units, forming extensive XOR 1 10 Iter zigions 100 250

networks. These increase the complexity of the SAT instance and
enlarge the search space, leading to notably longer solving times
for this benchmark.

Overall, the results validate the robustness and efficiency
of our SAT-based verification approach for MAC-based micro-
operations. The significant runtime improvements, particularly for
larger and more complex circuits, demonstrate the scalability of
our method and its suitability for practical use in in-memory
computing applications.

Fig. 5: Evaluation Cycle Analysis for a single function (c499
[26])

VI. CONCLUSION

This work introduced a comprehensive MAC-based synthesis
and verification framework designed to enhance the computational



TABLE III: Comparing results of the proposed method / Equivalent and Non-Equivalent cases

Benchmark Proposed Method MAJ-based Method [11]
Name #PI  #PO  Variables Clauses Equivalence(s) Non-equivalence(s) Eqivalence(s) Non-equivalence(s)
cl7 5 2 36 72 0.0103 0.0074 - -
c432 36 7 581 1326 0.0153 0.0099 2.013 2.331
c499 41 32 1822 4479 0.0379 0.0147 9.541 10.673
- c880 60 26 1295 3088 0.0431 0.0142 - -
% cl355 41 32 1846 4551 0.0769 0.0251 - -
2 c1908 33 25 1485 3694 0.0425 0.0137 10.636 10.333
% 3540 50 22 3707 9411 0.7668 0.0254 time>2 Hour time>2 Hour
= 5315 178 123 6029 14591 0.2050 0.0349 - -
c6288 32 32 7688 19188 time>2 Hour 0.0470 time>2 Hour time>2 Hour
c7552 207 108 6517 15639 0.1990 0.0346 - -
9sym_d 9 1 232 528 0.0164 0.0088 0.059 0.59
alu4_98 14 8 3939 10020 0.2600 0.0283 - -
conlfl 7 2 93 198 0.0146 0.0072 0.053 0.053
examl_d 3 1 35 77 0.0138 0.0068 0.039 0.039
exam3_d 4 1 43 93 0.0136 0.0072 0.049 0.049
&8 max46_d 9 1 572 1432 0.0228 0.0092 0.152 0.152
g, newill_d 8 1 96 202 0.0129 0.0079 0.089 0.089
9 newtag d 8 1 57 103 0.0132 0.0071 0.042 0.042
E rd53f1 5 3 187 452 0.0150 0.0072 0.141 0.141
rd73f1 7 3 432 1065 0.0204 0.0081 0.179 0.179
rd84f1 8 1 312 754 0.0173 0.0077 0.258 0.258
sao2f1 10 1 153 341 0.0138 0.0072 0.258 0.258
sym10_d 10 1 264 622 0.0160 0.0084 0.062 0.062
xor5 5 1 70 148 0.0137 0.0060 0.033 0.033
F : : 1 for large-scale circuits. The proposed method efficiently detects
| | = Proposed MAC-based ] functi 1 di . h introduced. hichlichti
. MAJ-based | functional discrepancies when errors are introduced, highlighting
105 F - its robustness for practical applications. These findings establish
i ] MAC-based design as a promising paradigm for logic-in-memory
I i architectures, combining computational efficiency with formal
10 correctness. The proposed framework lays the groundwork for
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Fig. 6: Total Write Cycle Analysis for a single function (c499
[26])

efficiency and functional reliability of in-memory computing sys-
tems. Through experimental evaluation, we demonstrated that the
proposed approach significantly outperforms existing methods,
such as Majority (MAJ)-based and MAGIC-style designs, in terms
of total computation cycles, write efficiency, and scalability across
a diverse set of benchmarks.

In addition to synthesis improvements, we presented a formal
verification strategy leveraging SAT-based techniques to ensure
the correctness of the generated MAC-based micro-operations.
The verification results validate the functional integrity of our ap-
proach, accurately identifying both equivalent and non-equivalent
implementations, even in the presence of structural errors or

future advances in scalable and verifiable in-memory computing
systems.
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