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Abstract—Today, circuits are used in various safety-critical
systems, therefore yielding a high demand for reliable systems.
Consequently, a lot of research is conducted to improve the
testability of designs by increasing the test coverage or reducing
the required test time. In this context, provable computational
bounds are crucial to ensure fast test pattern generation. Previous
works proved polynomial test set generation for Binary Decision
Diagram (BDD) circuits. Later, the testability of Kronecker
Functional Decision Diagrams (KFDDs) was assessed, as KFDDs
can exponentially reduce the required logic. However, the test
set generation for KFDD circuits generally requires exponential
resources. In this paper, we present a technique to derive circuits
from KFDDs, for which a complete test set under the Cellular
Fault Model (CFM), as well as the Stuck-At Fault Model (SAFM),
can be generated within polynomial resources. The derived circuit
is linear in size regarding the KFDD size, and in contrast to
previously derived KFDD circuits, no redundant faults can occur,
yielding fully testable circuits under CFM and SAFM. In our
evaluation, the complete test set generation was up to 50 times
faster than the previous exponential method, clearly showcasing
the advantages of our polynomial approach.

Index Terms—Synthesis for Testability, Kronecker Functional
Decision Diagrams, Logic Synthesis

I. INTRODUCTION

Nowadays, Integrated Circuits (ICs) are omnipresent in
our daily life, e.g. in smartphones, cars, etc. To address
the growing functional requirements, the complexity of ICs
constantly increases, where cost-effective realizations require
a small circuit design. As a result, the risk for manufacturing
faults steadily increases, leading to faulty chips. The resulting
malfunctions can lead to tremendous damage, especially in
safety-critical systems. Thus, a lot of research is conducted in
the area of synthesis for testability to design circuits with a
high test coverage and a reduced test time [1].

A circuit design for which the testability has been thor-
oughly researched is circuits derived from BDDs. While BDDs
are typically used for the formal verification of circuits, they
can also be converted into a circuit by replacing every node
with a multiplexer. The resulting circuit can be verified in
polynomial time regarding the circuit size [2] and provides
excellent testability properties. First, it has been shown that
all redundancies (non-testable faults) and a complete test
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set can be computed within polynomial resources and that
full testability under CFM, SAFM and the Path Delay Fault
Model (PDFM) can be achieved if certain redundancies don’t
occur within the circuit [3]. Later, the BDD circuit was adapted
by adding one input and one inverter such that all redundancies
are eliminated, therefore providing fully testable BDD circuits
under CFM, SAFM and PDFM [4].

However, BDD circuits can generally have an exponential
size, as the underlying BDDs can be exponential. For some
functions, other data structures, such as KFDDs, can be
exponentially smaller than BDDs [5]. As circuits can also
be derived from KFDDs, a KFDD circuit can require a
significantly smaller area than the respective BDD circuit,
therefore overcoming drawbacks from the BDD circuits while
maintaining the property of being verifiable in polynomial
time [6]. The testability of KFDD circuits has also been
studied before, where it has been shown that all redundancies
can be computed and a full testability under CFM and SAFM
can be guaranteed if certain redundancies don’t occur within
the circuit [7]. However, in contrast to BDD circuits, the
computation of the redundancies and the test set cannot be
done in polynomial time, but is generally exponential with
respect to the underlying KFDD size.

In this paper, we therefore propose a synthesis for testability
approach for the original KFDD circuits, such that a complete
test set can be generated in polynomial time regarding the
circuit size, while also guaranteeing full testability under CFM
and SAFM. Therefore, the proposed method simultaneously
solves the problem of exponential test pattern generation and
removes all redundancies, providing fully testable circuits even
if BDD circuits become impractical due to their exponential
growth and hence costs. Using the KFDD circuits and test
pattern generation method presented in this paper, a polyno-
mial time complexity for the test set generation and a 100%
test coverage are guaranteed. The proposed circuit design
requires a linear amount of gates regarding the size of the
underlying KFDD. Furthermore, the additional inputs needed
for testing the design can be realized with a scan chain,
therefore requiring only a constant amount of additional inputs.
In our evaluation, we could show a significant speedup, where
the proposed polynomial method was on average 4.19 times
and up to 50.11 times faster than the exponential test set
generation of the original KFDD circuit.
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Fig. 1: Example KFDD for the function f = x1x2x3⊕x2⊕x3

II. PRELIMINARIES

A. KFDDs

A KFDD [8], [9] F is a directed acyclic graph representing
a function with n inputs f(x1, ..., xn). The graph contains a
root node and two terminal nodes representing the constant
values 0 and 1. Each non-terminal node has two outgoing
edges and is associated with a variable xi. In an Ordered
KFDD (OKFDD), the variables appear in the same order on
every path from the root node to a terminal node. Furthermore,
a Reduced OKFDD (ROKFDD) is minimal, i.e. no node can
be removed without altering the function represented by the
KFDD. For the remainder of this paper, we assume ordered
and reduced KFDDs when referencing KFDDs.

Unlike BDDs [10], where a single decomposition type –
i.e. the Shannon decomposition – is used for all variables, the
variables in a KFDD can be decomposed according to either
the Shannon decomposition (S), the positive Davio decom-
position (pD) or the negative Davio decomposition (nD). Let
f0
i be the cofactor of a function f , where the variable xi is

replaced with 0, while f1
i is the cofactor where xi is replaced

with 1. Furthermore, let f2
i be defined as f2

i = f0
i ⊕ f1

i . The
function for a node using the Shannon decomposition is:

f = xif
0
i + xif

1
i (1)

Furthermore, the positive Davio decomposition is computed
using the following equation:

f = f0
i + xif

2
i (2)

Finally, the negative Davio decomposition is defined as:

f = f1
i + xif

2
i (3)

For each variable xi, one of the three decomposition types is
chosen and defined within the Decomposition Type List (DTL).
For a given variable ordering, e.g. (x1, x2, x3), the DTL
lists the decomposition types used for each variable, e.g.
(pD, S, nD). Similar to BDDs, KFDDs are canonical for a
given variable ordering and DTL. Due to the addition of
the decomposition types pD and nD, KFDDs can have an
exponentially reduced size compared to BDDs [5].

In Figure 1, an example of a KFDD for the function
f = x1x2x3⊕x2⊕x3 with the variable ordering (x1, x2, x3)
and the DTL (pD, S, nD) is shown.
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Fig. 2: Subcircuits for S, pD and nD nodes

While operations on BDDs, such as AND, OR, XOR and
NOT, can be carried out in polynomial time [10], polynomial
upper bounds are not guaranteed for all operations on KFDDs.
Let F and G be KFDDs for the functions f and g, where |F |
and |G| denote the sizes of the KFDDs, i.e. the number of
nodes. Similar to BDDs, the KFDD for the XOR operation
f ⊕ g can be carried out in O(|F | · |G|). Using complemented
edges, the NOT operation can even be carried out within
constant time. However, the AND and OR operations on
KFDDs have an exponential worst case behavior [5], [9].

B. KFDD Circuits

To derive a circuit computing a function f , a KFDD F can
be constructed and then converted into a circuit. To construct
a circuit from a KFDD, the input variables x1, ..., xn are
turned into PIs, the root node is connected to the PO, and
the terminal nodes are constant values 0 and 1. Subsequently,
each node is replaced by a subcircuit corresponding to the
respective decomposition type, as shown in Figure 2. As can be
seen from Equation (1), a node with the S decomposition can
easily be realized using a multiplexer, i.e an inverter, two AND
gates and one OR gate (see Figure 2(a)). Furthermore, the pD
decomposition as defined in Equation (2) can be realized with
one AND gate and one XOR gate (see Figure 2(b)), while the
nD decomposition from Equation (3) additionally requires an
inverter (see Figure 2(c)) [11].

The circuit resulting from the application of the described
method to the KFDD from Figure 1 is shown in Figure 3.
For clarity, the subcircuits for all decomposition types are
simplified.

While the optimization of circuits can generally negatively
influence their testability by introducing redundancies, some
optimizations can safely be made for KFDD circuits. If at
least one input to a subcircuit is the constant 0 or 1, the
respective subcircuit can be simplified, which we call degen-



TABLE I: Degenerated subcircuits for the S, pD and nD decomposition types

Shannon positive Davio negative Davio

inputs degenerated subcircuit inputs degenerated subcircuit inputs degenerated subcircuit

f0
i = 0, f1

i = 1 f = xi f0
i = 0, f2

i = 1 f = xi f1
i = 0, f2

i = 1 f = xi

f0
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i = 0 f = xi f0
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i = 1 f = xi f1
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i = 1 f = xi

f0
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Fig. 3: KFDD circuit for the KFDD shown in Figure 1
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Fig. 4: KFDD circuit with degenerated subcircuits for the
KFDD circuit shown in Figure 3

erated. Additionally, if both inputs are equal or complements
of each other, the subcircuits can be degenerated as well.
More precisely, the degenerations in Table I are applied for
the respective subcircuits [7]. The circuit with degenerated
subcircuits resulting from Figure 3 is shown in Figure 4.
The two nD subcircuits are degenerated, as both inputs are
constant. Furthermore, the left S subcircuit is degenerated, as
the inputs of the subcircuit are complements of each other,
while one input of the right S subcircuit is a constant, also
resulting in a degenerated subcircuit.

The area of the resulting circuit is linear in the number of
nodes in the KFDD F , as each subcircuit requires a constant

number of at most 4 gates, resulting at most 4 · |F | gates for
the complete KFDD circuit. Additionally, the delay is linear in
the number of variables n, as the longest path in a KFDD has
at most n nodes, where each node is replaced by a subcircuit
with constant delay of at most 3.

In this paper, we consider KFDD circuits over two dif-
ferent libraries. We denote CSTD as a KFDD circuit over
STD = {AND,OR,NOT}, i.e. all XOR gates have to
be realized using gates from STD. Furthermore, we define
CKFDD as a KFDD circuit with gates from KFDDLIB
consisting of S (see Figure 2(a)), pD (see Figure 2(b)) and nD
(see Figure 2(c)) subcircuits, as well as degenerated subcircuits
as defined in Table I. Furthermore, CKFDD contains XOR
gates needed for our proposed circuit transformation.

C. Fault Models

During manufacturing, errors can occur, leading to faulty
chips even if their design is correct. Using fault models, classes
of faults can be defined and therefore tested. In this paper, we
consider two static fault models, i.e. CFM and SAFM.

1) Cellular Fault Model: CFM [12], [13] assumes that a
fault modifies the behavior of exactly one node in a circuit,
while the faulty behavior is still combinational. Thus, a cellular
fault can be defined as (w, I,X/Y ), where w is the faulty
node, I is the input for which w behaves faulty, and X is the
correct output of the circuit, whereas Y is the faulty output [3].

2) Stuck-At Fault Model: In contrast to CFM, SAFM [14]
assumes the fault within the input or output signals of nodes,
instead of the nodes themselves. Here, SAFM defines faults
where exactly one input or output of a node in the circuit
has a constant value of 0 for a stuck-at-0 fault and 1 for a
stuck-at-1 fault. A stuck-at fault at the i-th input of a node w
can be formally described as (w[i], ϵ), where ϵ ∈ {0, 1} is the
respective constant value of the faulty input. A stuck-at fault
at the i-th output of a node w can analogously be described
as ([i]w, ϵ) [3].

A test pattern for a fault at the node w in the circuit is
defined as an input which results in the correct output if the
fault does not occur, while it results in the wrong output if
the fault occurs. If there exists no test pattern for a fault, then
the respective fault is called redundant, i.e. non-testable. A
complete test set contains test patterns for all testable faults,
while a circuit is called fully testable if every possible fault
is testable [3]. Thus, to achieve a fully testable circuit under
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Fig. 5: Proposed addition of XOR gates to the subcircuits for
S, pD and nD nodes

CFM, the test set has to test every possible input combination
for every node within the circuit, while guaranteeing that the
fault is propagated to the PO and not canceled out by the
remainder of the circuit. Similarly, to achieve a fully testable
circuit under SAFM, a test set has to contain a test for every
possible stuck-at fault within a circuit, while ensuring that the
fault is propagated to the output.

III. RELATED WORK

The testability properties of circuits derived from decision
diagrams have been studied before in various works. The
testability of BDD circuits was first studied in [3], where
it was shown that all redundancies, as well as a complete
test set under CFM, can be computed in polynomial time.
Furthermore, it was shown that all subcircuits can be catego-
rized into different Controllability Classes (CCs), which define
redundancies at the subcircuits. Here, the circuits are fully
testable under SAFM and PDFM if certain CCs are empty.

The problem of occurring redundancies in BDD circuits was
later fixed by [4], where a toggle input was proposed, elimi-
nating all redundancies and therefore enabling full testability
under CFM, SAFM and PDFM without additional constraints
on CCs.

The work of [3] was also extended to other types of
decision diagrams in [15] and [7], where Functional Decision
Diagrams (FDDs) and KFDDs were considered, respectively.
Here, it was shown that all redundancies and a complete test
set under CFM can be computed in exponential time. Again,
the full testability under SAFM was shown with constraints
on the CCs.

In [11], a different approach for testable KFDD circuits
was presented, which was based on a BDD circuit synthesis
method from [16]. Here, Boolean matrix multiplication was
used to achieve a circuit with logarithmic depth. Even though
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Fig. 6: Example for the proposed circuit design for the KFDD
from Figure 1

the resulting circuits provided good testing capabilities in ex-
perimental results, the circuits are not generally fully testable,
and no polynomially bounded algorithm for the test pattern
generation has been shown.

Thus, despite the excellent testability properties of circuits
derived from BDDs, no method has yet been established for
the efficient generation of test sets for fully testable circuits
derived from KFDDs.

IV. CIRCUIT TRANSFORMATION

In this section, we propose a circuit design based on KFDDs
that is fully testable in CFM and SAFM while guaranteeing a
polynomial runtime for the test pattern generation.

Let v be a KFDD node with the variable xi representing
the function f , and let w be the respective subcircuit for v
as shown in Figure 2. If w can be degenerated according
to Table I, v is realized using the respective degenerated
subcircuit. However, if w cannot be degenerated, we add two
XOR gates in our proposed circuit transformation. If v uses
the S decomposition, the XOR gates negate the inputs f0

i and
f1
i if a toggle signal ti is set to 1, resulting in the following

equation:
f = xi(ti ⊕ f0

i ) + xi(ti ⊕ f1
i ) (4)

The S subcircuit with the added XOR gates resulting from
Equation (4) is shown in Figure 5(a). Similarly, two XOR
gates and the toggle input are added for pD and nD nodes,
resulting in the following equations, respectively:

f = (ti ⊕ f0
i ) + xi(ti ⊕ f2

i ) (5)

f = (ti ⊕ f1
i ) + xi(ti ⊕ f2

i ) (6)

The pD and nD subcircuits with the added XOR gates and
the toggle input are shown in Figure 5(b) and Figure 5(c),
respectively. An example of the circuit derived from the KFDD
in Figure 1 using the proposed method can be seen in Figure 6.
As the only non-degenerated subcircuit is the pD subcircuit,
the XOR gates are added to only one subcircuit, and only one
toggle input t1 has to be introduced.



TABLE II: Controllability classes

class applicable values
1 00 01 10 11
2 01 10 11
3 00 01 10
4 00 10 11
5 00 01 11

Let F be a KFDD with n variables from which the proposed
circuit is derived. In general, at most 2 · |F | XOR gates have
to be added compared to the original KFDD circuit, as each
node requires at most two additional XOR gates, resulting in
at most 6 · |F | gates in total. Furthermore, at most n toggle
inputs have to be added to the design.

However, as the toggle inputs are only needed for testing
the circuit, while they are otherwise all set to 0, they can be
realized with a scan chain [17]. For this, n state elements are
needed, storing the values of the toggle inputs. If a single scan
chain is used, one scan input is needed for the realization. To
reduce the test time, multiple scan chains can also be used,
where m scan inputs are required if m scan chains are used.
Furthermore, one scan enable input is needed to switch the
chain into scan mode, as well as one test clock TCK. To
test the circuit for a given pattern where no toggle input is
activated, the scan chains are deactivated by setting the scan
enable input to 0. If a test case requires ti = 1 for some
1 ≤ i ≤ n, the scan chains are activated and the respective
ti can be set to 1 within a maximum of n

m clock cycles. In
the following cycle, the test pattern can be applied, testing the
circuit for the respective input combination. Afterwards, the
scan enable signal is set to 0 again and the toggle inputs are
flushed with 0’s within a maximum of n

m clock cycles until all
toggle inputs are set to 0. As the values of the state elements
after the application of the test pattern are irrelevant, the scan
chains do not require a scan out.

V. POLYNOMIAL TEST PATTERN GENERATION

As described in [3] for BDDs and in [7] for KFDDs, to
generate a complete test set, test patterns for each subcircuit
have to be generated. The exponential blow-up from [7]
results from the test pattern generation for non-degenerated
subcircuits. Let w be a non-degenerated subcircuit for a KFDD
node v with the variable xi representing the function f . Then,
flow and fhigh are defined as the low- and high-children of
v, i.e. flow = f0

i for S, pD and flow = f1
i for nD, whereas

fhigh = f1
i for S and fhigh = f2

i for pD and nD. To compute
test patterns for w, first an input assignment for all xj with
j > i has to be found that results in a possible fault, which
then has to be propagated to the PO by an assignment of all
xk with k < i.

Four combinations of the inputs flow and fhigh have to
be applied to the subcircuit w to test all functionality, i.e.
the combinations 00, 01, 10 and 11. Assignments for all
xj , such that the four input combinations are applied to w,
can be computed by building four KFDDs using four AND
operations [7]:

• flow · fhigh (00)
• flow · fhigh (01)
• flow · fhigh (10)
• flow · fhigh (11)

Then, a satisfying assignment for each resulting KFDD has
to be determined. Determining a satisfying assignment of a
KFDD with n inputs can be done in O(n) by traversing the
KFDD starting from the root and following the low-children
with at most n backtracking steps until the terminal 1 is
reached. However, for KFDDs, the AND operation generally
has an exponential complexity, therefore leading to an expo-
nential computation time for the test pattern generation.

For the proposed circuit transformation, however, it is pos-
sible to compute satisfying assignments for all four input com-
binations within polynomial time using one polynomial XOR
operation and one constant NOT operation. As established
in [7], all non-degenerated subcircuits can be categorized into
five CCs shown in Table II. The CC 1 includes subcircuits
where all input combinations are applicable at flow and
fhigh, i.e. 00, 01, 10 and 11 are possible input combinations.
Contrarily, for all other CCs, exactly one input combination
isn’t applicable at the inputs of the subcircuits categorized in
the respective CC. E.g., the non-degenerated pD subcircuit
in Figure 4 is in CC 4, as no assignment for x2 and x3

can satisfy the function flow · fhigh = x2 ⊕ x3 · x2x3 and
therefore, the input combination 01 is inapplicable at this node.
As can be seen from Table II, at least three of the four input
combinations are applicable at each subcircuit in an original
KFDD circuit. From these CCs, it can therefore be observed
that both flow⊕fhigh and flow ⊕ fhigh have to be satisfiable.

To compute assignments for all xj and all four input
combinations, the KFDD for flow ⊕ fhigh is computed within
O(|Flow| · |Fhigh|) = O(|F |2). A satisfying assignment for
flow ⊕ fhigh can then be found in linear time O(n) and
all toggle inputs are set to 0. It holds that the computed
assignment results in either the input combination 01 or 10.
To achieve a satisfying assignment for the respective other
input combination, the toggle input ti is set to 1 while all
other toggle inputs remain at 0. With ti set to 1, flow and
fhigh are complemented and therefore, the respective other
combination can be satisfied as well. Using a constant NOT
operation, the process is repeated with flow ⊕ fhigh, yielding
satisfying assignments for the input combinations 00 and 11.
Overall, the satisfying assignments for all four combinations
can therefore be computed within quadratic time with respect
to the KFDD size.

To achieve a complete test pattern, the propagation of a fault
to the PO has to be ensured, which can be done by a linear
algorithm regarding the KFDD size. Let v be the KFDD node
with the variable xi for which the respective subcircuit w is
tested. As all toggle inputs except for the toggle input at the
fault location are set to 0, the additional XOR gates introduced
by our proposed circuit transformation do not interfere with the
propagation properties of KFDD circuits. First, the KFDD is
traversed to mark all nodes that can be reached from the node
v, i.e. all nodes through which the fault at w can be propagated,
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Fig. 7: Fault propagation for pD subcircuits

which can be done in linear time O(|F |). Then, the values
of xk with k < i are set by constructing a path from the
PO to the fault location as follows: We start at the subcircuit
which is directly connected to the PO and run towards the
fault location within linear time O(n). If the encountered
subcircuit is degenerated, the respective variable xk can be
set accordingly to propagate the fault, and the process is
repeated for the input of the subcircuit. E.g., if the degenerated
subcircuit computes the function f = f0

k + xk, then xk is set
to the non-controlling value 0, and the process is repeated for
f0
k . If the encountered subcircuit is non-degenerated, the fault

can be propagated by setting xk according to the respective
decomposition type as described in the following.

If the encountered non-degenerated subcircuit is an S sub-
circuit, it is checked from which child the fault location can
be reached. If the fault can be reached from f0

k , then xk is set
to 0 to propagate the fault, and the process is repeated for f0

k .
Otherwise, the fault can be reached from f1

k , therefore, xk is
set to 1, and the process is repeated for f1

k .
The propagation is exemplarily shown in Figure 7 for pD

subcircuits, where the faulty inputs, i.e. the inputs that can be
reached from the fault location, are marked in red, as well
as the fault propagation through the subcircuit. As can be
seen from Figure 7(a) and Figure 7(b), the fault from f0

k is
propagated if xk = 0, as the output of the AND gate is then
0. A fault that is only reachable from f2

k can be propagated
by setting xk = 1. In this case, the fault location cannot be
reached from f0

k , therefore, an occurrence of the fault does
not change the value of the signal f0

k . Thus, the XOR gate
computing f will output a faulty value if the fault occurs at
f2
k and if xk is set to 1, as can be seen from Figure 7(c).

Analogously, for negative Davio subcircuits, xk is set to 1 if
the fault location can be reached from f1

k . Otherwise, the fault
can only be reached from f2

k , therefore xk is set to 0.
The proposed circuit transformation and the test pattern

generation yield the following results on the testability under
CFM and SAFM.

A. Cellular Fault Model

Theorem 1. Let F be a KFDD and CKFDD the resulting
proposed circuit. Then, CKFDD is fully testable in CFM
and has no redundancies, while a complete test set can be
generated in time O(|F |3).

Proof. To achieve a fully testable circuit under CFM, each
gate has to be tested with all possible input combinations,
while faults have to be propagated to the PO. The gates in the
circuit CKFDD are degenerated and non-degenerated S, pD
and nD subcircuits, as well as the XOR gates needed for the
toggle inputs. For each node in the KFDD F with n variables,
all possible input combinations for the respective subcircuit,
as well as for the added XOR gates, have to be tested.

Let v be a node for the variable xi in the KFDD with a
degenerated subcircuit w. Then, w has either one input xi or
two inputs xi and f c

i with c ∈ {0, 1, 2}. If the subcircuit
has only one input xi, it can simply be set to 0 and 1,
respectively, to cover all input combinations. Furthermore, the
algorithm for the fault propagation as described above has
to be carried out, yielding an overall complexity of O(|F |)
for this case. If the degenerated subcircuit has two inputs xi

and f c
i , it holds that both inputs don’t share any functionality

due to the read-once property of KFDDs and can therefore
be set independently from each other. Thus, xi can be set
to 0 and 1, and both cases have to be combined with a
satisfying assignment for f c

i and a satisfying assignment for
f c
i , respectively. f c

i can be computed using a constant NOT
operation, while the satisfying assignments can be computed
in time O(n). Combined with the linear fault propagation
algorithm, the test pattern computation for this case therefore
has a linear complexity O(|F |).

Now let v be a node with a non-degenerated subcircuit
w. Then, both the subcircuit, as well as the XOR gates for
the toggle input, have to be tested. To test the XOR gates,
the same argument as for the degenerated subcircuit holds,
as the XOR gates have two independent inputs, therefore
requiring a linear complexity with respect to the KFDD size.
For non-degenerated subcircuits, test patterns for all input
combinations can be computed with one polynomial XOR and
one constant NOT operation as described above. Including the
linear algorithm for the fault propagation, the test patterns for
w can hence be computed in quadratic time O(|F |2).

Thus, for each node in the KFDD F , the test pattern
generation for all input combinations has at most a quadratic
complexity, therefore yielding an overall complexity of |F | ·
O(|F |2) = O(|F |3). As the size of the KFDD circuit directly
depends on the KFDD size, the test pattern generation is
polynomial in both the KFDD size as well as the circuit
size.

B. Stuck-At Fault Model

Theorem 2. Let F be a KFDD and CKFDD and CSTD

the resulting proposed circuit over different libraries. Then,
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Fig. 8: Stuck-at faults for a realization of XOR in STD

CKFDD and CSTD are fully testable in SAFM, while a
complete test set can be generated in time O(|F |3).

Proof. As shown in [7], for CKFDD, all possible stuck-
at faults at degenerated and non-degenerated subcircuits are
testable in SAFM. As the subcircuits in our proposed circuit
transformation provide the same functionality, the subcircuits
are still fully testable in SAFM, where the respective test
patterns can be computed with one XOR and one NOT
operation in O(|F |2) as described above. The only extra gates
in our proposed method are the XOR gates for the toggle
inputs, which can also be fully tested for stuck-at faults. Let
ti and f c

i with c ∈ {0, 1, 2} be the inputs to an added XOR
gate. A possible input combination for testing stuck-at-1 faults
at an XOR gate is 00, i.e. ti = 0 and f c

i = 0, while stuck-at-0
faults can e.g. be tested with the input combinations 11 and
01. Again, satisfying assignments for f c

i and f c
i can be found

in linear time O(n).
Stuck-at faults at the stem of an input xi or ti can be

tested as well. Here, an assignment for the fault propagation is
computed with the method described previously in Section V
with the exception that all nodes with the faulty input xi or
ti are initially marked as reachable from the fault location.
After marking all other reachable nodes, a path from the root
node to the fault location is constructed until a node with
the respective xi or ti is encountered. A stuck-at fault at
the stem of the input can then be tested at the respective
encountered node. To achieve a test pattern for the stuck-at
fault, a satisfying assignment for the needed input combination
at the encountered node can be computed using one XOR and
one NOT operation in O(|F |2).

Similar to CFM, the complete test set can be computed
in O(|F |3), as the bottleneck for the computation using our
proposed test pattern generation is the quadratic computation
of the XOR operation, which has to be executed for each node
in the KFDD, therefore yielding an overall cubic complexity.

In contrast to CFM, the proposed circuit design is not only
fully testable for CKFDD, but also for CSTD. Here, it was
shown in [7] that the circuit is fully testable in SAFM, if the
CC 3 contains no pD or nD subcircuits, CC 4 is empty and CC
5 contains no S subcircuits. Due to the toggle inputs introduced
in our approach, all nodes are in CC 1 and therefore, all
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Fig. 9: Test set generation time for the original [7] and the
proposed KFDD circuit

degenerated and non-degenerated subcircuits are fully testable
in SAFM, where the test patterns for a subcircuit w can be
computed in O(|F |2). To complete the proof, the testability
of XOR which is realized with STD gates has to be shown.
Let ti and f c

i with c ∈ {0, 1, 2} be the inputs to an added
XOR gate. Figure 8 shows possible locations for a stuck-
at fault in the STD realization. In the following, we give
exemplary input combinations for testing stuck-at faults at the
different locations. All stuck-at-0 faults at the signals marked
with s1 can be tested with the input combination 10, i.e. ti = 1
and f c

i = 0. A stuck-at-1 fault at the same signals can be
tested with 00. For signals marked with s2, the stuck-at-0 and
stuck-at-1 faults can be tested with 01 and 00, respectively.
The combinations 10 and 11 are needed to test the signal
marked with s3, whereas testing s4 requires the combinations
01 and 11. As ti and f c

i are independent of each other, all
combinations of 0 and 1 are applicable at the inputs of the
XOR gate, therefore yielding full testability of the XOR gate
for the toggle inputs in CSTD. The cubic complexity of the
test set generation is analogous to CKFDD.

VI. EXPERIMENTS

To evaluate our proposed polynomial test pattern generation
and KFDD circuit transformation, we compare our approach
with the approach for the original KFDD circuits in [7]. Com-
plete test sets were computed for over 1000 random KFDDs
with up to n = 16 inputs and a KFDD size of up to over 8000
nodes. For the evaluation, the KFDD implementation within
the open-source framework FrEDDY [18], [19] was used. The
timeout per circuit and method was set to one hour.

In Figure 9, the computation time is shown for random
KFDDs with a size of up to 2000 nodes. The method of [7],



TABLE III: Timeouts for larger KFDD circuits

KFDD size Time [7] Time proposed [s]
3146 T.O. 81.97
4488 T.O. 222.97
6365 T.O. 796.11
8054 T.O. 1141.18
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Fig. 10: Redundancies for the original KFDD circuit from [7]

where four exponential AND operations have to be carried
out, is shown in black, whereas our proposed method, which
computes the test patterns with one XOR and one NOT
operation, is shown in red. It is apparent that our proposed
method requires much less resources for the pattern generation
than the method from [7]. Overall, the maximum speedup
achieved on the exemplary circuits was 50.11, where the
method from [7] took 323.72 seconds, whereas our proposed
method took 6.46 seconds for a full test set generation. On
average, our proposed polynomial approach was 4.19 times
faster than the exponential method.

For some random KFDDs with more than 3000 nodes, the
test pattern generation from [7] reached a timeout, i.e. the test
pattern generation took longer than one hour. The results for
a few test cases with large KFDD sizes where a timeout was
reached are shown in Table III. As can be seen, for some large
KFDDs, the test set generation of [7] reached the timeout of
one hour, while our proposed method was still able to generate
a complete test set within a few minutes.

In addition to the speedup, the proposed method eliminates
all redundancies within the circuit. In Figure 10, the number
of redundancies of [7] occurring in our evaluation is shown,
i.e. the number of cases where a subcircuit is not in CC 1,
leading to untestable faults. As each subcircuit can be in one
of the CCs 2-5, the number of redundancies rises linearly with
the KFDD size. As all subcircuits in our proposed approach
are in CC 1, no redundancies occur for the proposed design.
Overall, our evaluation shows that the test set generation for
our proposed KFDD circuit is significantly faster than for the
original KFDD circuit [7], while simultaneously eliminating
all redundancies.

VII. CONCLUSION

In this paper, we have shown a synthesis for testability
approach for circuits derived from KFDDs that increases the
testability to 100% under CFM and SAFM. For the resulting
KFDD circuits, we have proposed an algorithm computing the
test set in polynomial time regarding the circuit size, therefore
allowing efficient automatic test pattern generation. As KFDDs
can be exponentially smaller than BDDs, the resulting KFDD
circuits enable full testability for some functions where BDD
circuits are limited by their exponential growth. In our evalua-
tion, the advantages of our method were clarified, overcoming
the drawbacks of the existing exponential algorithm with a
maximum speedup factor of 50.
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