
Transformation-Aided Verification of MAC Designs
using Symbolic Computer Algebra
Lennart Weingarten⋓, Kamalika Datta∆,⋓, Rolf Drechsler∆,⋓ Fellow, IEEE

∆German Research Centre for Artificial Intelligence (DFKI), Bremen, Germany
⋓Institute of Computer Science, University of Bremen, Germany

{kdatta, len wei, drechsler}@uni-bremen.de

Abstract—The increasing complexity of modern digital circuits
requires robust verification to ensure reliability and prevent
costly failures. Among various formal verification methods,
Symbolic Computer Algebra (SCA) offers a powerful approach
by representing circuits using polynomials. However, a significant
challenge in SCA verification is the exponential term expansion
during substitution, which drastically increases verification time.
This paper addresses this challenge by investigating the impact
of circuit transformations on SCA verification efficiency. We
propose a transformation-aided verification process, showcasing
its effectiveness through a case study on Multiply-and-Accumulate
MAC-based designs. Specifically, we examine the transformation
of NAND/NOR-based designs and demonstrate its substantial
impact on verification time for certain MAC circuits. Experi-
mental results reveal interesting findings, notably a many-fold
performance gain for some benchmarks.

Index Terms—Formal Verification, Symbolic Computer Alge-
bra (SCA), Multiply and Accumulate (MAC)

I. INTRODUCTION

The increasing complexity of modern digital circuits ne-
cessitates rigorous verification to ensure functionality and
reliability. As designs grow in scale and complexity, the poten-
tial for errors increases, leading to costly failures. Therefore,
robust verification methodologies are crucial to guarantee the
correct operation of these vital systems. For verifying complex
functionalities, particularly in arithmetic circuits, a range of
formal proof engines are employed, including Binary Decision
Diagrams (BDDs) [1], Satisfiability Solvers (SAT) [2], Answer
Set Programming (ASP) [3], and Symbolic Computer Algebra
(SCA) [4].

SCA-based verification involves representing a digital cir-
cuit’s functionality and structure using polynomials [5], [6].
The process starts by creating a Specification Polynomial
(SP) that mathematically describes the desired behavior of
the circuit in terms of its inputs and outputs. Then, Gate
Polynomials (GPs) or Node Polynomials (NPs) are constructed
to represent the behavior of individual logic gates or nodes
within the circuit. Verification is achieved through a backward
rewriting procedure. This involves systematically substituting
the GPs or NPs into the SP, working backward from the
circuit’s outputs towards its inputs. Finally, the resulting SP is
evaluated. If the evaluation yields a zero remainder, it indicates
that the circuit’s implementation matches its specification,
implying a bug-free design. Conversely, a non-zero remainder
signifies a discrepancy, revealing a fault or error in the circuit’s
construction.

A key limitation of SCA-based verification is the term
expansion that occurs during the substitution process [7].
While optimization techniques exist to improve the Circuit
Under Verification (CUV), transformations at the circuit level
offer the potential for even greater impact on the overall
verification efficiency [8]. The primary challenge is that the
number of terms can grow exponentially during the substitu-
tion process, leading to increased verification time. Numerous
techniques have been explored in the literature to address
this issue [9], [10]. A critical aspect is how to mitigate this
term explosion. Among other factors we have identified three
crucial factors that influence the explosion during substitution,
whether using GP or NP rules: (i) the substitution order, (ii)
the rule application frequency and (iii) circuit transformation.

Choosing an optimal substitution order is a known opti-
mization problem, and various heuristics have been developed
to address it. While rule application frequency is circuit-
dependent, circuit transformations can significantly alter the
overall frequency. In this work, we have observed that trans-
forming a circuit to a NAND/NOR-based design dramatically
impacts verification time for specific circuit classes.

With the growing popularity of AI/ML Multiply-Accumulate
(MAC) is one of the core designs in such applications, hence
the verification of such units are of immense importance. Re-
cent work [11] demonstrates verification of MAC circuits up to
256 bits for structurally simple designs. However, for complex
MAC circuits, their method requires around 24 minutes to
verify 8-bit circuits, whereas our transformed circuit can be
verified within 0.03 seconds, which amounts to a performance
increase of 44338 times.

Although NAND/NOR-based transformation yield superior
performance for a class of circuits, given the influence of
both substitution order and rule application frequency, further
research is necessary to determine the most effective circuit
transformation for SCA-based verification. Experiments were
conducted on behavioral Multiply-and-Accumulate (MAC) cir-
cuits with complex structures to demonstrate the impact of
circuit transformation on SCA-based verification.

The remainder of this paper is structured as follows: Section
II introduces the concept of SCA-based verification, Section
III elaborates on proposed transformation aided verification
process, Section IV presents the experimental results with case
study on MAC based designs, and finally Section V concludes
the paper.

II. BACKGROUND

A. SCA-based Verification

SCA verification proceeds by defining the Specification
Polynomial (SP), followed by Gate Polynomial (GP) or Node
Polynomial (NP) identification, and concluding with backward
rewriting process. This verification technique can be applied to
circuits represented as either gate-level netlists or And-Inverter
Graphs (AIGs). Initially, the Specification Polynomial (SP) is
created, mathematically defining the intended circuit behavior.
Subsequently, for each gate or node type encountered, a set
of Gate Polynomials (GPs) or Node Polynomials (NPs) is
established. The core of the verification lies in the backward
rewriting phase. Here, the SP is progressively modified by
replacing gate or node outputs with their respective GPs or
NPs, following the circuit’s reverse topological order. Upon
reaching the circuit’s inputs, the final SP is evaluated. A
zero remainder from this evaluation confirms the circuit’s
correctness, while a non-zero remainder indicates the presence
of a fault.

For an AIG the following cases for a primary output edge
of an AND-gate node can occur, they are summarized as gate
polynomial rules:

R1 z = a
a primary output edge can act as a buffer or simple wire

R2 z = 1− a
a primary output edge can act as a complemented edge

R3 z = ab
a simple AND-gate without any complemented inputs

R4 is split into two sub-rules

R4a z = b− ab (a complemented)
R4b z = a− ab (b complemented)

an AND-gate with one complemented input edge
R5 z = 1− a− b+ ab

an AND-gate with both complemented input edges

B. Full Adder Example

Fig. 1 shows the AIG of a full adder. For a full adder, the
SP for input a, b and cin and output sum and carry is given
below:

SPFA = 2carry + sum− a− b− cin = 0

To verify the full adder (Fig. 1), the backward rewriting
process begins by processing each output node (sum and carry)
individually. Node substitution is performed based on the rules
provided above. The step-by-step process is shown in Fig. 2.
There are a total of 11 substitutions, of which 9 are for the
AIG nodes and 2 are for the primary outputs. Of these 11
substitutions, rule R2 is used twice, rule R3 is used four times,
rules R4a and R4b are each used once, and rule R5 is used
three times. After all the substitutions, the final remainder is
0, indicating that the circuit is bug-free.

Fig. 1: An AIG of a full adder. The blue triangle nodes
represent primary inputs and outputs, the square nodes map
a primary input to a node ID, and all the oval nodes model
AND-gates and the small black circles realize complemented
edges.

SP :=2carry + sum− a− b− cin = 0
carry−−−−→

R2
SP1 =2(1− n24) + sum− n2− n4− n6 = 0

sum−−−→
R2

SP2 =2(1− n24) + (1− n18)− n2− n4− n6 = 0

=3− 2n24− n18− n2− n4− n6 = 0

n24−−→
R3

SP3 =− 2n20n22− n2− n4− n6− n18 + 1 + 2n20 + 2n22

...

n22−−→
R3

SP4
n20−−→
R3

SP5
n18−−→
R5

SP6
n16−−→
R4a

SP7
n14−−→
R4b

SP8
n12−−→
R5

SP9

...

n10−−→
R3

SP10 =− n2− n4− n8 + 1 + n2n4 + n2n4n8

n8−−→
R5

SPF =− n2 +−n4− 1(n8) + 1 + n2n4 + n2n4(n8)

=− n2 +−n4− 1 + n2 + n4− n2n4 + 1 + n2n4

+ n2n4− n2n4− n2n4 + n2n4

=(−1 + 1) + (−n2 + n2) + (−n4 + n4)

+ (−3n2n4 + 3n2n4)

=0

Fig. 2: Backward rewriting steps for the full adder AIG

C. Related Works

Over the past decade, SCA has emerged as a powerful tool
for verifying complex arithmetic circuits, including multipli-
ers, dividers, MAC units, and DP units, as evidenced by a
substantial research [4]–[6], [9], [11]–[19]. Most approaches
utilize SCA directly on the AIG representation [10], [11],
[19], [20].

Researchers have explored various strategies to mitigate
the polynomial explosion problem inherent in SCA. These
include techniques for removing redundant terms and ap-
plying algebraic simplifications [7], as well as methods that
decompose the verification task into manageable sub-problems

by analyzing the circuit column-wise [16]. In [10], reverse
engineering is employed to extract circuit structure and al-
gebraic relationships, proving especially beneficial for opti-
mized designs, though this process can be computationally
intensive. Variable ordering and phase selection are leveraged
in [9] to optimize SCA-based verification, offering heuristics
that minimize polynomial growth and enhance performance
compared to existing methods. Hybrid approaches combining
SCA with SAT solvers have also been investigated for mul-
tiplier verification [6], [17]. Moreover, the computational and
memory limitations of Gröbner basis rewriting are addressed
in [18] through parallelization and memory optimization.
Recent studies have extended SCA techniques to verify MAC
and DP units [11], [19], with [11] specifically proposing an
adaptation of RevSCA [10] for MAC designs.

In all above mentioned techniques, as the backward rewrit-
ing process progresses, intermediate polynomials become in-
creasingly complex, leading to excessive memory usage and
computational time. Specifically for optimized circuits where
the circuit structure is not known, the problem becomes ex-
tremely challenging, resulting in high verification overhead. In
this work, we apply various transformations before performing
the verification process. This leads to immense benefits in
terms of verification time and memory. The next section
discusses the specific transformations and their effect.

III. TRANSFORMATION AIDED VERIFICATION FOR SCA

This section details the transformations that enhance SCA-
based verification. The general SCA verification process was
outlined in the preceding section. Here, we demonstrate how
various transformations can influence verification outcomes.
For our case study, we utilized the behavioral model of a
Multiply-Accumulate (MAC) unit, as defined in Listing 1. This
model represents the MAC at a high level of abstraction,
with implementation details generated by a synthesis tool.
The behavioral model’s flexibility allows us to easily generate
MAC units of varying bit-widths by simply adjusting a single
parameter, n.

Listing 1: Behavioral definition of MAC in Verilog
module MAC (parameter n = 8) (A, B , S , R) ;

input [n − 1 : 0] A, B ; / / m u l t i p l y
input [(2 * n) − 1 : 0] S ; / / add
output [2* n : 0] R ;

a s s i g n R = (A*B) + S ;
endmodule

The complete verification process is illustrated in Fig. 3.
Starting with a Verilog behavioral model of a MAC unit, the
code is first synthesized into an AIG. This synthesis involves
two key steps: first, using Yosys [21], we perform the initial
synthesis, apply basic optimizations, and output the result as a
Berkeley Logic Interchange Format (BLIF) file. Optionally, the
commands abc -g NAND or abc -g NOR can be executed to
implement the circuit exclusively with NAND or NOR gates,
respectively. Second, the BLIF file is converted into an AIG

using ABC [22]. This conversion involves reading the BLIF
file, performing structural hashing and refactoring, and then
writing the resulting AIG to a file. We opted to generate
the AIG with ABC rather than directly within Yosys, as we
found it yielded superior synthesized graph results. Finally, the
generated AIG is verified using an extension of RevSCA [10],
[11].

Fig. 3: Overview of the verification process

Using this process, we can create the standard AIG from
a behavioral MAC model, as well as two modified versions
where the graph is first expressed using only NOT and NAND
or NOT and NOR gates. The next subsection illustrates how
the graph’s structure changes when the circuit is transformed,
for example, to a NAND-based representation.

A. NAND/NOR Transformation for a 2-bit MAC
This section analyzes the AIG graph after NAND/NOR

transformation. Fig. 4 and Fig. 5 show the graph structure
with and without NAND/NOR transformation. We analyze the
following parameters [10] for the verification process:

• Atomic Block Detection: To enhance verification effi-
ciency, specific AIG nodes are organized into Atomic
Blocks(ABs), enabling word-level substitution. Half
adders and full adders serve as common examples of
these ABs.

• Vanishing Monomials: During the substitution of SP
variables with AIG node polynomials, the monomial
count typically rises. However, subsequent substitutions
often result in the cancellation of these monomials. These
are termed as Vanishing Monomials (VMs).

• Converging Cones: The cones starting from half-adder
outputs and ending in a converging node are called
Converging Node Cones (CNC). They are known to be
the origin of VM. CNC are comprised of extra nodes,
which are not part of any atomic block: half-adder or full-
adder. Having no CNC in a design or the local removal of

VM in CNCs results in a vanishing-free global backward
rewriting process. Which should ideally result in a blow
up free verification process.

Fig. 4: 2-bit MAC representation (AND)

Fig. 5: 2-bit MAC representation (NAND/NOR)

In both Fig. 4 and Fig. 5, the AIG nodes are visually
grouped based on their constituent atomic blocks. Nodes
belonging to half-adder atomic blocks are enclosed in blue
frames, while those within full-adder atomic blocks are framed
in red. In particular, certain nodes participate in multiple
atomic blocks, often serving as primary inputs or outputs for
these blocks. To highlight this shared functionality, these nodes
are marked in gray.

Examining the standard AIG synthesized design shown in
Fig. 4, we observe a composition of six half-adder atomic
blocks and one full-adder atomic block, along with several
nodes that do not fall within any defined atomic block. In
contrast, the NAND/NOR-transformed AIG in Fig. 5 presents
a significantly transformed structure. Here, the number of half-
adder atomic blocks is reduced to three, while the number of
full-adder atomic blocks increases to three. Furthermore, a key
distinction is that every node in the NAND/NOR-transformed
AIG is integrated into an atomic block, eliminating any extra
nodes. Because there are no extra nodes, vanishing monomials
are eliminated, which also minimizes intermediate blowup.
This indicates that the NAND transformation has restructured
the graph to exclusively consist of atomic blocks, potentially
impacting the verification process.

While our observations indicate that NAND or NOR trans-
formations can significantly alter circuit structure, potentially
influencing verification outcomes, it is crucial to acknowledge
that this effect is not universally applicable across all circuit
types. Our experimental findings suggest that the impact of
these transformations is highly circuit-specific and, therefore,
cannot be generalized. In essence, the effectiveness of NAND
or NOR transformations in optimizing verification is depen-
dent upon the inherent characteristics of the circuit being
analyzed. Therefore, careful consideration of the circuit’s
architecture and functionality is essential before applying such
transformations, as they may not consistently yield improve-
ments.

IV. EXPERIMENTAL RESULTS

The SCA-based verification approach is implemented using
C++. All experiments were performed on a AMD Ryzen 7
PRO 4750U with 40GB main memory and 8GB of Swap. We
have used the extended RevSCA [11] tool for our experimen-
tation.

A. Transformation Comparison

Table I provides a comparative analysis of verification
results for Multiply-Accumulate (MAC) designs, ranging from
2 to 12 bits, across three distinct AIG representations: the
standard AND-based design, and two transformed variants,
NAND-based and NOR-based. The MAC designs are gener-
ated from the behavioral verilog and hence there is no struc-
tural details known unlike other MAC designs as mentioned
in [11]. The columns show, in order from left to right: MAC
bit size, Atomic Blocks (AB), Vanishing Monomials (VM),
Maximum Polynomial (MP), and Verification Time (VT), with
results for AND, NAND, and NOR given sequentially for each

MAC bit size. The last two columns present the Verification
Time Improvement (VTI) and Maximum Polynomial Improve-
ment (MPI). Certain experiments were terminated due to a
Memory Time Out (MTO), and these instances are indicated
as MTO in the table. VTI and MTO present the ratio between
the old and the new value, for verification time and maximum
polynomial respectively. The table is designed to facilitate a
clear understanding of the impact of these transformations on
verification metrics.

The NAND and NOR transformations consistently reduce
the number of VM to zero across all successfully verified
cases. These transformations also generally reduce the MP
size and VT compared to the standard AND representation.
This demonstrates a significant improvement in verification
efficiency through these transformations. For MAC bit sizes
(2-8 bits), NAND and NOR transformations result in substan-
tial reductions in VT, with some cases showing a significant
improvement as shown on the last two columns. For example,
at MAC bit size 2, the verification time improved by a
factor of 1.33. As shown in the MPI column, the maximum
polynomial size is significantly reduced by a factor of 1.46.
The standard AND representation encounters MTO for MAC
bit sizes (10-12 bits), indicating its inability to handle the
increasing complexity. The NAND and NOR representations,
while also encountering MTOs for the largest bit sizes (9 and
12), but can successfully verify MAC circuits (10-11 bits)
compared to the AND representation. These results suggest
that NAND/NOR transformations do not consistently yield
performance improvements across all circuit types. Conse-
quently, a transformation does not guarantee an advantage over
the standard AND representation in all cases. But in some
cases (like 5-8,10 and 11 bits), it improves significantly, by
a maximum factor of 44338 for VTI and 17320 for MPI (for
8-bit MAC).

B. Rule Frequency Analysis

Table II presents an analysis of AIG node polynomial rules
for different bit sizes (2 to 12 bits) across three circuit repre-
sentations: AND, NAND, and NOR. The table aims to quantify
the complexity of Node Polynomial (NP) rules associated with
each representation, providing insights into their impact on
verification processes. The first column indicates the bit size.
The next 12 columns represent the various NP rules (R3, R4
and R4) and the number of negated edges (NE) for all three
representations (AND, NAND, and NOR).

The NAND and NOR representations show very similar
counts for R3, R4, R5, and NE across all bit sizes. This
suggests that the transformation either NAND or NOR results
in a similar level of polynomial complexity. In most cases,
the AND representation has higher counts for R3, R4, and NE
compared to NAND and NOR. This indicates that the NAND
and NOR transformations tend to simplify the polynomial
representation of AIG nodes, potentially leading to more
efficient verification. The counts for R5 are consistently higher
than R3 and R4 across all bit sizes and representations. This
suggests that R5 rules, are more prevalent in the polynomial

representation of AIG nodes. Analyzing the distribution of
R3, R4, and R5 rules provide insights into the specific char-
acteristics of polynomial representations and their impact on
verification performance.

While the frequency of rule application, as given by the data
in Table I, influences verification performance, it is crucial
to acknowledge that NAND and NOR transformations do
not entirely eliminate the risk of verification failures due to
Memory Time Out (MTO). Specifically, the 9-bit and 12-bit
MAC designs, despite undergoing these transformations, still
resulted in MTO. This observation emphasize that, although
circuit transformations can significantly impact verification
efficiency, they do not guarantee complete mitigation of the
intermediate polynomial blowup problem. The inherent com-
plexity of larger circuits can still lead to an unmanageable
explosion of intermediate terms, ultimately resulting in time
outs. Therefore, a more in-depth, circuit-specific analysis is
necessary to draw definitive conclusions about the efficacy and
limitations of these transformations in various scenarios.

C. Case study for 8-bit MAC

To demonstrate the effectiveness of transformations aided
verification, we present an example using the behavioral 8-
bit MAC verification, comparing results with and without
transformation. Fig. 6 illustrates the polynomial size over time
for both the standard AND and the NAND transformation. The
Y-axis represents the Specification Polynomial (SP) size on a
logarithmic scale, while the X-axis indicates the substitution
steps.

Fig. 6: Polynomial size over the substitution steps for an 8-bit
MAC with standard AND and NAND transformation

From the figure, it can be observed that the SP size
of the standard AND circuit experiences a rapid increase,
or ”blowup,” after approximately one-third of the substitu-
tion steps, followed by a rapid decrease after two-thirds.
In contrast, the NAND-transformed MAC exhibits a minor
peak shortly before the 50th substitution step, but avoids
any significant intermediate blowup. Furthermore, the NAND-
transformed MAC requires fewer substitution steps for verifi-
cation compared to the AND circuit. A numerical comparison
of AND and NAND is presented in Table III. Table III clearly

TABLE I: Verification Result

AND [11] NAND NOR Ratio
MAC AB VM MP VT AB VM MP VT AB VM MP VT MPI VTI

2 7 4 19 0.0012 6 0 13 0.0009 6 0 13 0.0009 1.46 1.33
3 13 4 29 0.0016 12 0 23 0.0016 12 0 23 0.0014 1.26 1.14
4 22 18 49 0.0025 20 0 34 0.0022 20 0 34 0.0021 1.44 1.14
5 37 21 4297 0.1150 29 0 50 0.0061 29 0 50 0.0071 85.94 18.85
6 51 24 418960 176.2480 43 0 90 0.0093 43 0 90 0.0056 4655.11 18951.40
7 68 31 732122 274.2510 61 0 146 0.0090 61 0 146 0.0110 5014.53 30472.33
8 89 80 5819510 1445.4100 77 0 336 0.0326 77 0 336 0.0332 17319.97 44337.73
9 112 87 5888912 2472.2900 MTO MTO MTO MTO MTO MTO MTO MTO - -
10 MTO MTO MTO MTO 125 0 1261 0.1277 125 0 1261 0.1335 - -
11 MTO MTO MTO MTO 147 0 50908 15.6242 147 0 50908 12.9876 - -
12 MTO MTO MTO MTO MTO MTO MTO MTO MTO MTO MTO MTO - -

TABLE II: AIG Node Polynomial Rule Analysis

AND NAND NOR
Bits R3 R4 R5 NE R3 R4 R5 NE R3 R4 R5 NE

2 15 3 20 45 11 4 19 43 11 4 19 43
3 25 14 42 100 22 14 41 97 22 14 41 97
4 46 28 73 177 37 28 71 171 37 28 71 171
5 73 44 120 288 56 46 109 265 56 46 109 265
6 96 68 170 412 85 69 160 391 84 71 159 390
7 128 94 229 557 114 93 223 540 114 93 223 540
8 168 128 300 734 152 119 295 714 148 127 291 710
9 211 161 379 926 183 159 363 886 183 159 363 886
10 256 201 462 1133 232 189 463 1120 231 191 462 1119
11 306 243 557 1366 276 232 551 1339 275 234 550 1338
12 361 293 658 1619 333 273 658 1597 328 283 653 1592

TABLE III: 8-bit MAC example

AND NAND

Sub. steps 189 171
VT (s) 1445.41 0.0326
#Node 613 583

#HAs 37 24
#FAs 52 53
#Atomic 89 77

#Cone 100 94
#VM 80 0
#MaxPoly 5819510 336

demonstrates the advantage of the NAND-transformed MAC
over the standard AND MAC by comparing key metrics. These
metrics include: substitution steps (Sub.steps), verification time
(VT), the number of nodes in the AIG (#Node), the number
of atomic blocks (#HA, #FA, #Atomic), the number of cones
(#Cones), the number of vanishing monomials (#VM), and the
maximum polynomial size (#MaxPoly) during verification. VT
is drastically reduced from 1445.41 seconds (approximately
24 minutes) to just a fraction of a second. The number of
vanishing monomials is eliminated, dropping from 80 to zero.
Beyond the significant reduction in verification time, the most
substantial impact of the NAND transformation is observed
in the maximum polynomial size, which decreases from 5.8
million monomials to a mere 336. This transformation con-
tributes significantly to the NAND-transformed MAC being
more memory-efficient than its AND counterpart.

V. CONCLUSION

SCA is a powerful formal verification method for complex
digital circuits, but its efficiency is affected by exponential
term expansion during substitution. This paper addresses this
by investigating the impact of circuit transformations on SCA
verification time. A transformation-aided process, converting
verilog to NAND/NOR-based designs, is proposed and eval-
uated on behavioral MAC circuits. Experimental results show
that this transformation has the potential to drastically reduce
the maximum polynomial size and verification time, while
also eliminating vanishing monomials, leading to a many-
fold speedup for certain benchmarks (maximum improvement
factor of 44338 for VTI and 17320 for MPI (for 8-bit MAC)).
Although circuit transformations can significantly impact ver-
ification efficiency, they do not guarantee complete mitigation
of the intermediate polynomial blowup problem for certain
cases. The inherent complexity of complex circuits can still
lead to an unmanageable explosion of intermediate terms,
ultimately resulting in time outs. This indicates the need for
further research to identify optimal transformation strategies
for different circuit types and verification scenarios.

ACKNOWLEDGMENT

This work was supported in part by DFG within the
Reinhart Koselleck Project PolyVer (DR 287/36-1) and partly
by the German Federal Ministry of Research, Technology
and Space (BMFTR) within the ECXL project under grant
no. 01IW22002.

REFERENCES

[1] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” TC, vol. 35, no. 8, pp. 677–691, 1986.

[2] M. W. Moskewicz et al., “Chaff: Engineering an efficient SAT solver,”
in Proceedings of the 38th annual Design Automation Conference, 2001,
pp. 530–535.

[3] M. Nadeem and R. Drechsler, “Polynomial formal verification of multi-
valued logic circuits within constant cutwidth architectures,” in 2024
IEEE 54th International Symposium on Multiple-Valued Logic (ISMVL),
2024, pp. 149–154.

[4] F. Farahmandi and B. Alizadeh, “Gröbner basis based formal verification
of large arithmetic circuits using gaussian elimination and cone-based
polynomial extraction,” MICPRO, vol. 39, no. 2, pp. 83–96, 2015.

[5] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler,
“Formal verification of integer multipliers by combining Gröbner basis
with logic reduction,” in DATE, 2016, pp. 1048–1053.

[6] D. Kaufmann, A. Biere, and M. Kauers, “Verifying large multipliers by
combining SAT and computer algebra,” in FMCAD, 2019, pp. 28–36.

[7] A. Mahzoon, D. Große, and R. Drechsler, “PolyCleaner: Clean your
Polynomials before Backward Rewriting to verify Million-gate Multi-
pliers,” in ICCAD, 2018, pp. 1–8.

[8] R. Drechsler, “Preserving and Improving Verifiability of Circuits Based
on Local Transformations,” in 2025 IEEE 26th Latin American Test
Symposium (LATS), 2025, pp. 1–2.

[9] A. Konrad and C. Scholl, “Symbolic Computer Algebra for Multipliers
Revisited-It’s All About Orders and Phases,” in FMCAD, 2024, pp. 261–
271.

[10] A. Mahzoon, D. Große, and R. Drechsler, “RevSCA-2.0: SCA-Based
Formal Verification of Nontrivial Multipliers Using Reverse Engineering
and Local Vanishing Removal,” TCAD, vol. 41, no. 5, 2022.

[11] L. Weingarten, K. Datta, and R. Drechsler, “Towards Polynomial Formal
Verification of Neuromorphic Architectures,” in ISED. IEEE, 2024.

[12] C. Yu, W. Brown, D. Liu, A. Rossi, and M. Ciesielski, “Formal
verification of arithmetic circuits by function extraction,” TCAD, vol. 35,
no. 12, pp. 2131–2142, 2016.

[13] D. Ritirc, A. Biere, and M. Kauers, “Column-wise verification of
multipliers using computer algebra,” in FMCAD, 2017, pp. 23–30.

[14] C. Yu, M. Ciesielski, and A. Mishchenko, “Fast algebraic rewriting based
on and-inverter graphs,” TCAD, vol. 37, no. 9, pp. 1907–1911, 2017.

[15] D. Ritirc, A. Biere, and M. Kauers, “Improving and extending the
algebraic approach for verifying gate-level multipliers,” in DATE, 2018,
pp. 1556–1561.

[16] D. Kaufmann, A. Biere, and M. Kauers, “Incremental column-wise
verification of arithmetic circuits using computer algebra,” Formal
Methods in System Design: An International Journal, Feb. 2019.

[17] R. Li, L. Li, H. Yu, M. Fujita, W. Jiang, and Y. Ha, “RefSCAT: Formal
Verification of Logic-Optimized Multipliers via Automated Reference
Multiplier Generation and SCA-SAT Synergy,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, pp. 1–1,
2024.

[18] H. Liu et al., “Parallel Gröbner Basis Rewriting and Memory Optimiza-
tion for Efficient Multiplier Verification,” in DATE, 2024, pp. 1–6.

[19] L. Weingarten, K. Datta, and R. Drechsler, “Late Breaking Results:
Towards Efficient Formal Verification of Dot Product,” in DATE. IEEE,
2025.

[20] R. Drechsler and A. Mahzoon, “Polynomial formal verification: Ensur-
ing correctness under resource constraints,” in ICCAD, 2022, pp. 70:1–
70:9.

[21] C. Wolf, “Yosys Open SYnthesis Suite,” https://yosyshq.net/yosys/,
2024.

[22] “Abc: A system for sequential synthesis and verification,” available at
https://people.eecs.berkeley.edu/∼alanmi/abc/, 2018.

https://yosyshq.net/yosys/
https://people.eecs.berkeley.edu/~alanmi/abc/

	Introduction
	Background
	SCA-based Verification
	Full Adder Example
	Related Works

	Transformation Aided Verification for SCA
	NAND/NOR Transformation for a 2-bit MAC

	Experimental Results
	Transformation Comparison
	Rule Frequency Analysis
	Case study for 8-bit MAC

	Conclusion
	References

