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ABSTRACT
In recent years, hardware systems have significantly grown in

complexity. Due to the increasing complexity, there is a need to

continuously improve the quality of the hardware design process.

This leads designers to strive for more efficient data structures

and algorithms operating on them to guarantee the correct be-

havior of such systems through verification techniques like model

checking and meet time-to-market constraints. A Binary Decision
Diagram (BDD) is a suitable data structure as it provides a canon-

ical compact representation of Boolean functions, given variable

ordering, and efficient algorithms for manipulating them. How-

ever, reduced ordered BDDs also have challenges: There is a large

memory consumption for the BDD construction of some complex

practical functions and the use of realizations in the form of BDD

packages strongly depends on the application.

To address these issues, this paper presents a novel multi-core

package called Engineer Decision Diagrams Yourself (EDDY) with

dynamic memory management and reduced fragmentation. Exper-

iments on BDD benchmarks of both combinational circuits and

model checking show that using EDDY leads to a significantly

performance boost compared to state-of-the-art packages.
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1 INTRODUCTION
Very Large Scale Integration (VLSI) circuits with up to several billion

transistors are present in many technical devices today. Technolog-

ical progress has increased so that a multitude of daily tasks in our

society are now supported by computer systems. Examples are the

anti-lock braking system in cars and monitoring in medicine. Due

to the increased complexity, a VLSI design is no longer possible

without Computer-Aided Design (CAD), making it an essential part

of the design process [17].

In order to meet user requirements, it is necessary to guaran-

tee the quality of the increasingly complex hardware design pro-

cess through continuous algorithmic improvements in the field

of verification. Model checking [2] is an important approach to

assessing the correctness of systems through state exploration and

property checking. Algorithms and data structures for represent-

ing automata were originally implemented with consideration of

explicit states [10]. Thus, only automata with at most 10
3
to 10

6

reachable states could be processed [8]. However, real models have

billions of states, not all of which can be considered in a reasonable

amount of time [7]. Therefore, Reduced Ordered Binary Decision
Diagrams (BDDs), specified by R. Bryant [4] in 1986, are suitable as

they can compactly encode Boolean functions and allow efficient

algorithms such as And-Exist and reachability analysis, leading to

a breakthrough in model checking [6, 16].

Subsequently, improvements have been researched, especially

in terms of efficient implementation of BDDs [3]. These include,

i. a., hash-based Unique Tables (UTs) with collisions resolved by

chaining for storing nodes, hash-based Computed Tables (CTs) for
caching nodes, Garbage Collections (GCs) for clearing dead nodes,

and complemented edges for efficiently negating functions [12]. In

summary, these concepts can be found in BDD packages [18, 22, 26]

that are used in CAD tools such as NuSMV [9].

Although a BDD is an efficient data structure for Boolean func-

tions and provides efficient algorithms for manipulating them, there

are still some challenges to overcome: There is a large memory

consumption for the BDD construction of some complex practical

functions such as multipliers [5] and TCAS [9], as well as the respec-

tive package performance is strongly dependent on the problem

domain such as a model. Studies such as [25] have shown that the

model dependency of packages in terms of performance is mainly

due to memory management: (1) locks have a negative impact on

the speedup of parallel programs [19], (2) static CT size can have

a negative impact on BDD applications [28], and (3) while GCs

and variable reorderings can reduce the number of nodes existing

at runtime, they are generally time-consuming [23]. In addition,

pointer-based approaches complicate debugging and may even

increase the node size depending on the architecture [14].
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To address the aforementioned issues, in this paper, we present

Engineer Decision Diagrams Yourself (EDDY), a novel index-based

multi-core BDD package based on [13], with dynamic memory

management and reduced fragmentation. Experiments on BDD

benchmarks of both combinational multilevel circuits and model

checking confirm that using EDDY leads to a significantly perfor-

mance boost compared to state-of-the-art BDD packages. In this

context, EDDY is on average about three times faster with overall

lower memory usage.

In summary, the main contributions of this paper are as follows:

(1) Multithreading for parallel synthesis and concurrent access

to BDDs;

(2) Lock-free CT with dynamic caching for faster computations;

(3) Delayed GC with fragmentation handling.

The rest of this paper is organized as follows: We summarize funda-

mentals on BDDs and give an overview of existing BDD packages

in Section 2. Section 3 presents the proposed approaches that are

realized in EDDY. In Section 4, the experimental setup and results

are shown. Finally, Section 5 concludes the paper and discusses

possible future work.

2 BACKGROUND
In this section, important fundamentals and formal notations are

introduced in an attempt to keep this work self-contained. First,

Section 2.1 presents basic concepts for understanding Boolean func-

tions and BDDs as one of their representations. Then, in Section 2.2,

state-of-the-art BDD packages are briefly discussed in terms of

implementation techniques.

2.1 Preliminaries
In digital circuits, signals can be symbolized as variables 𝑥1, . . . , 𝑥𝑛
that take logical values from B := {0, 1}. In propositional logic [27],

0 (1) ∈ B is interpreted as false (true). Therefore, output sig-
nals whose values are uniquely specified by input signals can be

described by Boolean functions.

Definition 1. A mapping 𝑓 : B𝑛 → B𝑚 is called a Boolean func-
tion, where 𝑛,𝑚 ∈ N. B𝑛,𝑚 := {𝑓 | 𝑓 : B𝑛 → B𝑚} describes the set
of Boolean functions, where B𝑛 := B𝑛,1.

The Boolean calculus [20] and, i. a., methods developed for e. g.

circuit analysis by C. Shannon [21] are the basis for today’s digital

computer systems and allow computations with Boolean functions

as well as their manipulation.

Definition 2. The quadruple (B𝑛,𝑚, +, ·, ) with

𝑓 + 𝑔 ∈ B𝑛,𝑚 := (𝑓 + 𝑔) (𝛼) = 𝑓 (𝛼) ∨ 𝑔(𝛼)∀𝛼 ∈ B𝑛

𝑓 · 𝑔 ∈ B𝑛,𝑚 := (𝑓 · 𝑔) (𝛼) = 𝑓 (𝛼) ∧ 𝑔(𝛼)∀𝛼 ∈ B𝑛

𝑓 ∈ B𝑛,𝑚 := 𝑓 (𝛼) = 1⇐⇒ 𝑓 (𝛼) = 0∀𝛼 ∈ B𝑛

is called the Boolean algebra of functions.

If a circuit is modular, an application such as model checking can

first compute representations for modules in order to subsequently

combine them. The basis for such computations with Boolean func-

tions is provided by Shannon expansion.

𝑥1

𝑥2

0 1

(a) Disjunction

𝑥1

𝑥2

0 1

(b) Conjunction

𝑥1

0 1

(c) Negation

Figure 1: BDDs representing the Boolean basis functions

Definition 3. Let 𝑓 ∈ B𝑛 be a 𝑛-ary Boolean function. By parti-

tioning 𝑓 to 𝑥𝑖 with 𝑓𝑥𝑖=1 (𝛼1, 𝛼2, . . . , 𝛼𝑖−1, 1, 𝛼𝑖+1, 𝛼𝑖+2, . . . , 𝛼𝑛) and
𝑓𝑥𝑖=0 (𝛼1, 𝛼2, . . . , 𝛼𝑖−1, 0, 𝛼𝑖+1, 𝛼𝑖+2, . . . , 𝛼𝑛) ∀𝛼 ∈ B𝑛 :

𝑓 = 𝑥𝑖 · 𝑓𝑥𝑖=1︸︷︷︸
positive cofactor

+ 𝑥𝑖 · 𝑓𝑥𝑖=0.︸︷︷︸
negative cofactor

If variables are successively decomposed using Definition 3 while

respecting a total order 𝜋 and avoiding redundancies/isomorphisms

by exploiting laws of Boolean algebra, a BDD results.

Definition 4. A BDD is a directed acyclic graph𝐺 = (𝑉 , 𝐸) over
variables𝑋𝑛 := {𝑥1, . . . , 𝑥𝑛} and a value setB. Each node is assigned
such a label, where a Boolean function is interpreted as follows:

If 𝑣 is labeled with 𝑏 ∈ B, then the leaf describes the constant

function that maps each argument to 𝑏.

If 𝑣 is an inner node, it is labeled with 𝑥𝑖 ∈ 𝑋𝑛 , where the
variable is decomposed using Definition 3, respecting a total

order 𝜋 : 𝑥1 < 𝑥2 < . . . < 𝑥𝑛 .

The edge set 𝐸 consists of all pairs (𝑣, 𝑣 ′), with the child 𝑣 ′

referenced by the parent 𝑣 .

If, in addition, (𝑓𝑣)𝑥𝑖 ≠ (𝑓𝑣)𝑥𝑖∀𝑣 ∈ 𝑉 and no distinct nodes 𝑣,𝑤 ∈ 𝑉
exist which are labeled with the same variable and whose children

are identical, then 𝐺 is reduced.

Example 1. BDDs for the Boolean basis functions +, ·, ∈ B2 are
given in Figure 1: (1) disjunction (Figure 1a), (2) conjunction (Fig-

ure 1b), and (3) negation (Figure 1c).

Remark. The referencing is typically drawn using solid edges (1-

edges) and dashed edges (0-edges).

The successive “top-down” use of Definition 3 requires repeat-

edly performing an equivalence test to check whether subfunctions

are already represented [17]. A more efficient way is to consider

nodes as decisions and combine (synthesize) them via

𝑓 ⊗ 𝑔 = 𝑥𝑖 · (𝑓𝑥𝑖=1 ⊗ 𝑔𝑥𝑖=1) + 𝑥𝑖 · (𝑓𝑥𝑖=0 ⊗ 𝑔𝑥𝑖=0),
where ⊗ ∈ B2. These operations can be generally traced back to

the ternary operator

ite(𝑓 , 𝑔, ℎ) = 𝑓 · 𝑔 + 𝑓 · ℎ (1)

such as 𝑓 + 𝑔 = ite(𝑓 , 1, 𝑔), which is compatible with Definition 3

because of

𝑓 · 𝑔 + 𝑓 · ℎ = ite(𝑥𝑖 , ite(𝑓𝑥𝑖 , 𝑔𝑥𝑖 , ℎ𝑥𝑖 ), ite(𝑓𝑥𝑖 , 𝑔𝑥𝑖 , ℎ𝑥𝑖 )).
Such a recursive formulation allows efficient storing/indexing of

BDDs and forms the basic structure of the so-called UT, where each
node is stored as a triple (variable, children).
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2.2 Related Work
The efficiency of BDD syntheses and related algorithms, as well as

data structures, can be increased using different techniques beyond

the theoretical point of view described in the last section. Therefore,

based on ideas in [3], a lot of research work has been conducted

in BDD packages in the last decades. A comprehensive survey is

available in [14]. In the following, we briefly explain the widely

used state-of-the-art packages with regard to their differences.

CUDD [22] stands for “Colorado University Decision Diagram”

and is programmed in C/C++. Nodes are referenced pointer-based

respecting complemented edges. Nodes that are no longer needed

are cleared by a GC using reference counting. In addition, numerous

operations, including finding a “good” variable order, are supported,

where they share a CT and can coexist.

BuDDy [18] is written in C/C++, where nodes are referenced

index-based. Nodes can be cleared by a mark-and-sweep GC. The

package provides the most used operations for BDD manipulation,

including dynamic reordering. Several CTs are used for operations.

Sylvan [26] is a BDD library written in C that can perform basis

BDD operations in parallel. Moreover, the most commonly used

operations like And-Exist are supported here as well.

Although the aforementioned packages share some conceptual

similarities with EDDY, they come with some drawbacks in terms

of (1) sequential performing of operations or increased use of locks,

(2) static caching, and (3) time-consuming GCs. Hence, the main

goal of this work is to overcome these limitations.

3 ENGINEER DECISION DIAGRAMS
YOURSELF (EDDY)

In this section, we present our main novel approaches in detail,

summarized as a BDD package called EDDY based on [13], which

is pointerless because of easier debugging and a node size that is

independent of the respective architecture. It supports common

operations, including multiple-operand functions like And-Exist,

and is therefore useful for model checking.

For this purpose, Section 3.1 forms the multi-core support for

the memory management consisting of dynamic caching and de-

layed GC with fragmentation handling, which are then described

in Section 3.2 and Section 3.3.

3.1 Multithreading for Parallel Synthesis
In general, BDD syntheses and related operations are performed

sequentially in packages such as [22] and [18]. However, it was

shown in [25] that a significant speedup is possible by parallel

computation. Traditionally, concurrency issues such as data races

are solved by locks, providing mutual exclusion but also potentially

decelerating a system [11].

Thus, to address issue (1) listed in Section 2.2, the synthesis

operator ite (Equation 1) is parallelizedw. l. o. g., oriented to [26], but
with minimization of locks using automatic thread management.

Algorithm 1 presents the pseudocode of the parallelized ite op-
eration based on [3]. The function takes three arguments which

are indices to a respective BDD. Terminal cases are checked in

Lines 1–7. Using an operation cache, Lines 8–10 check for an al-

ready computed operand combination and – if existing – return it.

Otherwise, two cofactors are computed in parallel in Lines 11–15,

Algorithm 1: Parallel BDD synthesis using ite

Input: BDDs 𝑓 , 𝑔, ℎ

Output: BDD for ite(𝑓 , 𝑔, ℎ)
1 if 𝑓 = 1 ∨ 𝑔 = ℎ then
2 return 𝑔

3 end if
4 if 𝑓 = 0 then
5 return ℎ

6 end if
7 . . . ⊲ other terminal cases

8 if ct .has_entry(𝑓 , 𝑔, ℎ) then
9 return ct (𝑓 , 𝑔, ℎ)
10 end if
11 𝑥 ← top variable of 𝑓 , 𝑔, ℎ

12 future_t ← async(ite, 𝑓𝑥𝑖 , 𝑔𝑥𝑖 , ℎ𝑥𝑖 )
13 𝑡 ← future_t .get ()
14 future_e← async(ite, 𝑓𝑥𝑖 , 𝑔𝑥𝑖 , ℎ𝑥𝑖 )
15 𝑒 ← future_e.get ()
16 if 𝑡 = 𝑒 then
17 return 𝑡

18 end if
19 𝑟 ← ut .find_or_add (𝑥, 𝑡, 𝑒)
20 ct .insert (𝑓 , 𝑔, ℎ, 𝑟 )
21 return 𝑟

decomposing according to the previously determined variable of

order. Since each call represents an independent task, both recur-

sive function calls can be parallelized. Thus, multiple threads can

be easily used: A thread is automatically started using async and
waits until the result as a future object can be obtained by get. Both
routines are high-level wrappers of the C++ standard library, i. e.

the task is automatically decoupled from the result.

Remark. The described use of multiple threads is also possible for

BDD operations such as satcount and satall [24], where the traversal
is similar to ite.

After computing both subproblems, Lines 16–18 check for iso-

morphism. In Line 19, canonicity is atomically ensured by either

finding or adding the computed triple in the hash table ut, respecting
complemented edges. To avoid undefined behavior, synchronization

between the threads with respect to the BDDs contained globally

in the shared UT is sufficient here. In addition, Line 20 stores the

result in the CT, followed by the return of the index for accessing

the computed BDD.

3.2 Lock-Free CT With Dynamic Caching
Generally, the CT size is statically adjusted in BDD packages. For

example, in [22] there is a “reward-based” policy where the CT size

is doubled when a large cache hit rate (30 %) is observed, unless

a predefined maximum size has been reached. In [18], the CT size

is doubled when the load factor of the UT equals 100 % and there

are no more dead nodes than a maximum of 20 %. Reasons for

these strategies are, i. a., a higher chance that valuable cache hits

survive longer, especially to solve large problems, and, secondly,

the effort to achieve optimal utilization of the CT in relation to
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Algorithm 2: Caching of entries (insert) in the CT

Input: Subentries 𝑎, 𝑏, 𝑐, 𝑟

1 index ← hash(𝑎, 𝑏, 𝑐) mod size
2 slot ← entries[index]
3 spinlock(slot)
4 assign(𝑎, 𝑏, 𝑐, 𝑟 )

Algorithm 3: CT adjustment based on the hit rate

1 if 𝑐𝑜𝑢𝑛𝑡 ≥ 𝛿 then
2 if ct .curr_hit_rate() ≥ ct .old_hit_rate() then
3 ct .expand ()
4 end if
5 ct .old_hit_rate() ← ct .curr_hit_rate()
6 𝛿 ← count · 2
7 end if

Algorithm 4: CT adjustment in find_or_add

Input: Variable 𝑥 and BDDs 𝑡, 𝑒

Output: BDD found or added

1 assert (𝑡 ≠ 𝑒)
2 . . . ⊲ search for BDD and return if found

3 if 𝛽 ≥ 𝛽max then
4 . . . ⊲ UT adjustment

5 ct .expand ()
6 end if
7 . . . ⊲ make node

8 return BDD added

the UT respecting GCs. However, since the so-called large cache
hit rate is not dynamically adjusted at runtime or, respectively, the

maximum load factor is not observed, such strategies can have a

negative impact on BDD applications and there is also a higher

collision probability [15, 28].

Therefore, to address issue (2) listed in Section 2.2, CTs for BDD

operations are dynamically adjusted in EDDY. The CT as a data

structure is developed using the lock-free atomic_flag data type
of the C++ standard library. Critical sections in functions with a

minimal amount of work, such as Algorithm 2 for caching entries,

are developed with spinlocks using atomic_flag, since there are
fewer context switches compared to mutexes [1].

To dynamically adjust the hit rate of CTs for operations, a thresh-

old value 𝛿 (initial value corresponds to the predetermined CT size)

is introduced in Algorithm 3 that triggers such an adjustment when

the respective function call counter count reaches this value (Line 1).
When the current hit rate reaches the old hit rate, the CT is dou-

bled (Lines 2–4). Therefore, the hit rate is subsequently updated

and 𝛿 is adjusted by 𝑐𝑜𝑢𝑛𝑡 · 2 (Lines 5–6).

Remark. It is sufficient to put Algorithm 3 at the beginning of a

BDD operation such as ite and satcount , which supports a CT for

caching results.

old
young

...
20 21 22 23 24 25 26 27 28 29

...

idx

Figure 2: Node memory and the concept of GC

To reduce collisions and increase the chance for optimal utiliza-

tion of CT in relation to UT, the maximum load factor 𝛽max (70 %

according to [15]) is introduced in Algorithm 4 for finding and

adding BDDs. In this context, canonicity is first ensured (Line 1).

It is checked whether a triple already exists and a BDD node is

returned immediately if a corresponding triple is found in the

UT (Line 2). Otherwise, when the current load factor 𝛽 of the UT

reaches the defined threshold value (Line 3), both the UT and CT

are adjusted (Lines 4–6). A BDD node is then created, added to the

UT, and returned (Lines 7–8).

3.3 Delayed GCWith Fragmentation Handling
The GC type used in a BDD package is reference counting [22] or

mark-and-sweep [18]. While more memory is required for nodes

when using reference counting, as well as there is an overhead

due to incrementing/decrementing the counters, a mark-and-sweep

GC is more complicated to implement and can lead to increased

fragmentation of available memory [13]. Regardless of type, GC is

classically triggered based on the percentage of dead nodes. How-

ever, in applications such as model checking, a high rebirth rate

usually exists [28].

To address issue (3) listed in Section 2.2, reducing performing of

syntheses due to recently cleared nodes and therefore to reuse sub-

results, a delayedmark-and-sweep GCwith fragmentation handling

is proposed.

Due to the high rebirth rate mentioned, the GC should be de-

layed as long as possible, i. e. it is triggered automatically when the

free physical memory is almost exhausted. In the mark phase, the

living (reachable) BDD nodes are marked via a depth-first search.

Bit manipulation is used for this by setting the most significant bit

of the variable. In the sweep phase, any dead (not reached) node is

cleared. For this purpose, the UT is iterated backward so that the

index idx for choosing the next node slot points to the vacated lo-

cation in the direction of the beginning of the node memory, which

is exemplarily illustrated in Figure 2. Since idx is set to the next

free available slot after occupancy and so on, this automatically

overwrites possible present memory fragments with nodes in the

further process.

4 EXPERIMENTAL RESULTS
This section summarizes the experiments conducted to empirically

analyze EDDY and demonstrate the benefits of the approaches

proposed in the last section. To this end, Section 4.1 discusses the

configured system specification and benchmark instances used for

the following performance evaluations. Section 4.2 investigates the

impact of the approaches by comparing them against state-of-the-

art BDD packages to test their suitability for applications such as

model checking.



Engineer Decision Diagrams Yourself (EDDY) ASPDAC ’23, January 16–19, 2023, Tokyo, Japan

Table 1: Experimental comparison of EDDY and state-of-the-
art BDD packages in terms of runtime and memory usage

Instance

CUDD BuDDy Sylvan EDDY

𝑇 𝑀 𝑇 𝑀 𝑇 𝑀 𝑇 𝑀

c2670 12 297 11 252 11 271 4 241

c3540 9 504 8 403 9 446 5 308

c6288-14 37 1,637 67 4,109 38 1,441 29 1,295

c6288-15 127 4,753 265 12,569 134 4,477 94 3,412

c6288-16 405 13,605 — MO 417 12,847 334 10,603

dpd75 492 176 1,008 308 402 152 32 482

ftp3 41 301 39 288 339 52 13 424

mmgt20 328 118 477 255 337 112 12 249

over12 89 295 65 198 79 232 21 327

tcas 298 4,850 TO — 332 5,070 172 3,448

𝑇 Runtime in sec

𝑀 Memory usage in MB

TO Time Out
MO Memory Out

4.1 Experimental Setup
To evaluate the proposed approaches, they were implemented in

C++20. For performance evaluation, EDDY is compared to state-

of-the-art BDD packages discussed in Section 2.2 in terms of run-

time 𝑇 (in sec) and memory usage𝑀 (in MB). To demonstrate the

effectiveness of memory management, EDDY was modified by re-

placing its memory management with the one of the index-based

package BuDDy, which is called EDDY∗. In addition, to show the

speedup 𝑆𝑛 =
𝑇1
𝑇𝑛

due to multi-core support, we compare EDDY

with Sylvan using 𝑛 threads. To allow a fair comparison, the initial

size of the CT (UT) was set to the same value 2
18

(2
20
) according to

[18], taking into account the respective problem domain complex-

ity. The used variable order follows the order of appearance in the

respective file.

The used benchmark instances are taken from the standard

ISCAS-851 and SMV traces2 benchmark sets, as they are representa-

tive in the context of combinational multilevel circuits and model

checking applications [28].

All evaluations were carried out on a Fedora 28 machine with an

Intel Xeon E3-1270 v3 CPU with 3.5 GHz (up to 3.9 GHz boost) and

32 GB of main memory. For each instance considered, 10 runs were

performed and then the average was calculated. The Time Out (TO)
was set to 30 min, whereas the Memory Out (MO) was configured

to 16 GB.

4.2 Performance Evaluation
First, EDDY is compared to the state-of-the-art BDD packages based

on the experiments performed using the selected benchmark in-

stances, which are shown in Table 1.

The experimental results show that EDDY is more efficient than

the state-of-the-art packages. For all considered benchmark in-

stances of ISCAS-85 and SMV traces, EDDY is faster. In addition,

1
The instances are available at https://web.eecs.umich.edu/~jhayes/iscas.restore/

benchmark.html (successfully accessed October 31, 2022).

2
The instances are available at https://nusmv.fbk.eu/examples/examples.html (success-

fully accessed October 31, 2022).

c2670 c3540 c6288-14 c6288-15 c6288-16 dpd75 ftp3 mmgt20 over12 tcas
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Figure 3: Performance comparison betweenEDDY andEDDY∗

using ISCAS-85 benchmarks and SMV traces

EDDY consumes less memory for each ISCAS-85 benchmark in-

stance. While EDDY for e. g. ftp3 uses minimally more memory

compared to the other packages due to the delayed GC, it solves the

problem significantly faster due to fewer GCs performed, making

it a successful compromise. Moreover, EDDY is stable in solving

problems, meaning over12 is solved in the best case in 20 sec, and

the worst case corresponds to 23 sec. For example, with CUDD,

the best case is 72 sec, and the worst case corresponds to 101 sec,

caused by increased hash collisions. Considering only the model

checking instances, EDDY is on average about six times faster in

comparison to the other BDD packages. Considering all benchmark

instances, EDDY is on average about three times faster with overall

lower memory usage.

The main reason for the experimental results shown for EDDY

is its dynamic memory management, the effectiveness of which

is demonstrated in Figure 3. For this purpose, EDDY is compared

with EDDY
∗
, which uses the memory management of BuDDy. It

can be seen that EDDY is consistently better than EDDY
∗
when

considering the benchmarks of ISCAS-85 and SMV traces. Moreover,

EDDY can solve any instance.
3

The multi-core support in EDDY can further increase its per-

formance, which is shown by comparing Figure 4 with Figure 5

considering the speedup achieved for the benchmark instances

used. First, they show that larger circuits and models have higher

speedups for both Sylvan and EDDY. However, due to the lock min-

imization in EDDY, its speedup is higher on average. In this context,

the speedup increases with the number of threads. For example, if

eight threads are considered, on average there is a speedup of 3.1

in EDDY, which is higher compared to 2.7 in Sylvan.

In summary, these results clearly confirm that the proposed

approaches meet the objectives of this work.

3
If no bar is specified, a TO or MO exists, respectively.

https://web.eecs.umich.edu/~jhayes/iscas.restore/benchmark.html
https://web.eecs.umich.edu/~jhayes/iscas.restore/benchmark.html
https://nusmv.fbk.eu/examples/examples.html
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Figure 4: Parallel speedup of Sylvan based on problem com-
plexity and number of threads
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Figure 5: Parallel speedup of EDDY based on problem com-
plexity and number of threads

5 CONCLUSION
In this paper, we presented EDDY, an index-based BDD package

with novel approaches: (1) operations with automatic thread man-

agement, (2) lock-free CT with dynamic caching, and (3) delayed

GC with fragmentation handling. Our experimental results demon-

strated that EDDY outperforms the state-of-the-art packages due

to its memory management. EDDY is on average about three times

faster with overall lower memory usage and a possible average

speedup of 3.1. Besides supported functions like And-Exist, EDDY

allows verification tasks like model checking.

We believe that the efficiency of packages can be further im-

proved. Therefore, parameters for the adjustment of hash tables

will be investigated in the future. Furthermore, the proposed ap-

proaches can be integrated into other packages. Finally, various

studies can be made using further benchmark instances.
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