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Abstract—Large Language Models (LLMs) are being explored
for their use in the domain of Electronic Design Automation
(EDA). In this paper, we discuss state-of-the-art works showing
the use of LLMs in verification, testing, and design generation.
We provide a summary of the existing works and highlight the
methods that have been used to enhance the quality of the output
of the LLMs, like prompt engineering, Retrieval Augmented
Generation (RAG), fine-tuning, multi-shot prompting, etc. We
show that LLMs can aid in the domain of EDA, however, several
challenges need to be addressed, such as data availability for fine-
tuning the LLMs, integration with EDA tools, scalability, etc. This
paper aims to highlight the use of LLMs in EDA, improve the
output quality when using LLMs, and highlight the challenges
and future directions that can be useful for further research.

Index Terms—Large language models, formal verification,
testing, Verilog, assertion based verification.

I. INTRODUCTION

The capabilities of the Large Language Models (LLMs) are
improving rapidly and they are being employed in a wide
variety of applications [1], [2]. The ability of the LLMs to
understand the context of data and generate human-like text
is unparalleled [3]. LLMs achieve this capability by being
trained on substantial amounts of data, which is both cost and
resource-intensive [4], [5]. As a result, LLMs can produce
a high-quality output for some of the tasks and can directly
be used [6]. However, for complex domain-specific tasks,
LLMs cannot be used directly as they are trained on massive
datasets that are very generalized. Also, training the models
from scratch for a particular application is not feasible as it
would require a large time and cost, limiting the applicability
of LLMs [7]. However, the key advantage these models
have is that they are already pre-trained on vast amounts
of data and only need to be fine-tuned on domain-specific
datasets to be used readily [8], [9]. Another such method is
Retrieval Augmented Generation (RAG), which can be used
to improve the quality of the output generated by LLMs for
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Fig. 1. Generalized LLM Application Architecture

domain-specific applications [10], [11]. RAG achieves this
by providing more domain related context to the LLM. This
allows the LLMs to be used in a wide variety of domains
including Electronic Design Automation (EDA) [12]–[14].

In the domain of EDA, some areas in which the LLMs are
employed are verification, testing, and design [15]–[17]. The
use of LLMs in EDA ranges from directly using the web-
based interface to building fully automated pipelines using
frameworks like LangChain and Haystack [18], [19]. These
frameworks ease the integration of LLMs into the development
pipeline and can be used to either build proof-of-concept or
entire applications. The approach to integrating LLMs to solve
EDA problems in previous works varies widely given the
range of problems that have been explored. However, there
is a general approach to integrating the LLMs to help solve
domain-specific problems.



A general application pipeline using LLMs is shown in
Fig. 1. The LLM application architecture can be broken into
three separate stages depending on when they appear in the
pipeline. As mentioned earlier, while the LLMs are trained
on a large set of data, for complex domain-specific tasks
they may not give adequate quality results. While LLMs
can be fine-tuned with domain-specific datasets which is also
discussed later in the paper, this application architecture can
be used without re-training to improve the output quality. The
application architecture can be divided into three stages. i)
Pre-processing, ii) In-processing, and iii) Post-processing.

i) Pre-processing: In the first stage the information related
to the domain needs to be passed to the LLMs. Typically, the
information is present in different formats like specification
documents, pseudo codes, waveforms, libraries, etc. These
must be converted into a format that can be understood by
the LLM. Otherwise, asking LLM domain-specific questions
can lead to hallucinations and incorrect responses from the
LLMs [20], [21]. The conversion of entire documents cannot
be done at once, as the LLMs have a limited context window,
i.e., they only have context for up to a specified number
of tokens. The data needs to be broken down into smaller
segments of text, called data chunks. The data chunks are first
processed by an embedding model, which converts them into
vector representations (embeddings). These embeddings can
then be used for similarity search or passed to a LLM for
downstream tasks [22]. The vector embeddings are stored in
the vector databases, which are used to provide more context
related to domain-specific queries [23].

ii) In-Processing: In this stage, the LLMs are queried. The
LLMs can be used without the pre-processing stage and will
generate a response. However, to improve the quality of the
response generated from the LLMs, the preprocessed vector
database can now be used. The construction of the prompt
heavily dictates the quality of the output generated from the
LLM, hence, careful prompt construction is crucial [24]. The
database in the pre-processing stage is queried to obtain rele-
vant information. The query alongside the relevant information
is crafted into a prompt, i.e., the input to the LLM. Various
prompting techniques, such as chain-of-thought, multimodal
prompts, etc., in addition to the results obtained from the EDA
tools, can be further used to improve the quality of the output
generated from the LLMs [25].

iii) Post-Processing: The output generated from the LLMs
can be used directly or needs further processing depending
upon the application. The output of the LLM can be fed to
the EDA tools once or in an iterative manner, depending on
the task. To improve the response time of the LLMs, caching
can be used, i.e., the frequently accessed data is stored and
accessed as needed [26]. The prompts and the responses can
be effectively tracked using the logging tools like Promptlayer.
Lastly, to tailor the quality of the output generated from the
LLMs, guardrails can be used to limit the response of the LLM
only to the provided context [27]. Guardrails can provide an
additional layer of safety and consistency before the responses
are generated and used.

These frameworks allow for the rapid development and
adaptation of LLMs in EDA. In the following sections, we will
discuss the use of LLMs for verification, testing, and design
generation. While not all the stages of the LLM application
architecture is used in one work, a selection of these are used
and shows how LLMs can aid in the EDA domain. The paper
is organized as follows. In Section II, we discuss the use of
LLMs for verification. In Section III, we discuss the use of
LLMs for testing. In Section IV, we discuss the use of LLMs
for designing the hardware. Lastly, in Section V, we conclude
the paper.

II. LLMS FOR VERIFICATION

Several works have explored machine learning techniques
for verification [12], [28]. In this section, we aim to highlight
the research problems in verification where LLMs in particular
have shown potential. Even though the use of LLMs initially
in the domain of EDA was limited to the generation of
the hardware description code, it has significantly advanced
thereafter in the area of verification.

In [29], is one of the first works in which the authors
proposed using LLMs to aid in the verification process. The
authors proposed a framework called nl2sva, that can generate
System Verilog Assertions (SVAs) for a required circuit from a
generic specification in natural language. The methodology is
based on few-shot prompting and chain of thought examples
were given to the LLM for improving the quality of the
generated SVA. The human and the model checker are used to
provide feedback to the LLM to aid in the debugging process.
The authors state that given the limited context window of
the LLMs, the approach cannot be extended for complex
designs. Hence, the authors plan to look into methods that can
extract necessary information from the circuit required for the
generation of the SVAs.

In [30], the authors highlighted the difficulty of converting
the specifications in natural language to assertions that can be
used in the verification as it requires a lot of manual effort. To
mitigate this, the authors showed that the process can be auto-
mated using the LLMs. However, rather than asking the LLMs
to directly generate the specifications from the description files
the authors proposed a three-step automated methodology, a)
extraction of the information related to the generation of SVAs
from the specification document, b) aligning the names in the
natural language specification and the Hardware Description
Language (HDL) implementation, and c) generation of the
SVA. The authors were able to generate 89% of the SVA that
were both structurally and functionally correct.

In [31], the authors propose a two-step methodology for
generating SVAs for the Open Titan designs. In the first
step, the design specifications were converted to a JSON
file for being fed as a prompt to the LLM. The JSON file
has a fixed formatting for the specification. In the second
step, the SVAs generated from the LLM are checked for
correctness using the VCS simulation tool. The log files of
the simulation tool are used to correct the SVAs as needed
iteratively. While less than 27% of the assertions required



refinement, the authors comment that domain-specific LLM
for Assertion Based Verification (ABV) would improve the
quality of the generated assertions.

In [32], the authors reduced the number of iterations in
the generation of the SVAs, by introducing a loop. In this
loop, the Verilog design is fed alongside the specification
to the LLM. This helps in the synchronization of the signal
names in the design files and the SVAs. In addition to this
manual prompting and the errors obtained from the simulator
were used to refine the SVAs generated using the LLMs. The
authors have suggested that consistency and completeness of
the properties would be evaluated in the future [33].

In [34], the authors investigated the quality of the invariants
generated using the LLMs. The invariants were generated by
using the specification and the Verilog code using the LLMs.
Mutations were generated in the design using the Yosys tool,
and then the quality of the invariants was investigated. The
authors also mentioned several additional insights that they
observed during their experiments. LLMs work well a) with
structured data, as also shown in [31], b) positive feedback
and monetary incentives help generate better results from the
LLMs, c) given the counterexample, the LLMs were unable
to patch the design, d) the LLMs were unable to understand
flattened netlists.

In [35], rather than using a general LLM, the authors
propose the use of domain-specific models, i.e., a general
model that is further trained on VLSI domain data to achieve
better results. The authors use the syntax pass@k and the
BLEU score as the metrics for comparison with existing
LLMs. While their proposed approach was better than similar-
sized models, the GPT-4 model outperformed every other LLM
model in the SVA generation from the natural specification.
The authors state that further improving the quality of results
from the domain-adapted LLM requires training on formal
verification-specific data.

In [36], the authors showed the methodology for patching
bugs in the design using LLMs and RAG. The authors de-
veloped an iterative process for the detection and patching of
bugs in the design. RAG was used to give more context to the
LLM while prompting. The authors classified the five different
types of bugs and introduced these into the Opentitan designs.
LLM was able to patch the design for four types of these bugs,
except for the case where the bug was related to an incorrect
value of a constant.

In [37], the authors highlight the issue that the generated
Verilog code using the LLMs has a lot of syntax errors and
needs to be fixed. In addition to RAG, the authors use React-
based prompting consisting of thought, action, and observation
to improve the quality of correction of the Verilog code. It
was shown that 98.5% syntax errors were corrected using
their methodology. It was also shown that GPT-4 was able to
achieve 98% syntax correction even with one-shot prompting.
However, their approach can be used with smaller LLMs to
improve the quality of the syntax correction.

In [38], the authors propose an iterative methodology for
the correction of syntactical errors as well as functional errors.

The authors use two LLM-based agents, one for debugging the
Register Transfer Level (RTL) design and the other to score the
quality of the RTL design in terms of completeness and overall
quality. The authors improve the quality of the correction by
fine-tuning the LLM and using prompting techniques like self-
planning and role prompting.

In [39], the authors proposed using domain-specific LLM
for the debugging of hardware. To train the LLM, the authors
propose to use the design defects and their correction from the
version control data of the open-source repositories to generate
the training dataset. The authors then train a medium-sized
LLM using this dataset for the detection and correction of
bugs. The authors commented on the varying quality of results
obtained using different fine-tuned models as a problem that
needs to be addressed.

In [40], the authors proposed the first comprehensive bench-
mark suite in addition to an evaluation framework that tries
to understand the capabilities of LLMs for the generation of
SVA. The benchmark suite captures three different cases. First,
NL2SVA-Human, checks the capability of the LLM to generate
SVA, given a high-quality human-written testbench and high-
level design specifications. Second, NL2SVA-Machine, focuses
on whether the LLM can handle diverse specifications in
natural language and generate the same SVA. Lastly, and the
most challenging is the Design2SVA in which the capability
of the LLM to generate the SVA only given the RTL design
is checked. In [41], a comprehensive set of more than 1000
programs for High Level Synthesis (HLS) was selected. In each
of the designs, up to 40 different bugs were injected. Hence,
this dataset can be used to train the LLM for bug detection
and correction.

In [42], the authors proposed the verification of RISC-V
processors (traditional) and neuromorphic processors (domain
specific) using LLMs. It was shown that LLMs have the
potential for the verification of processors achieving up to 89%
coverage. However, their methodology requires human inter-
vention, making the scalability of their approach a challenge.
The authors suggest that their methods can be made more
scalable using automation, for example in the conversion of
coverage results to prompts for the LLM.

In [43], the authors used the LLM to generate proofs that
can be used for verification. The problem of proof generation
was done in multiple steps. The code was initially split
into smaller modules, then simple modules were identified,
properties were generated for these simple modules, then the
connections to these basic modules were identified, and the
interconnection properties were generated. This approach of
proof generation can be useful for designs that are imple-
mented in a hierarchy, as the proof process can be iterated
going up the hierarchy, eventually generating the proof for
the entire design. In [44], the authors use the LLMs to
generate helper properties which aid in the verification of
the complex properties. The authors also used the counter-
example generated during the induction-based verification step
to generate assertions that aid during the k-induction-based
proofs.



In all the above-mentioned works, the focus is on the
correctness of the functionality of the designs. However, in
recent years, the security of the designs has also become a
serious concern. Some works are also exploring LLMs for the
generation of assertions from the perspective of making the
designs secure [45]–[47].

From the prior works, it is clear that the LLMs indeed have
immense potential for use in hardware verification. Methods
like training the LLMs, using RAG, and prompt engineering
can be used to improve the quality of the results significantly.
However, there are limited datasets that can be used for fine-
tuning the LLMs for verification, and there is a need for
the development of such datasets. Most of the data chunking
strategies that are being used are the same as those used
for the natural language. Different chunking strategies need
to be explored to improve the quality of the LLMs when
RAG is employed. Multimodal LLMs, i.e., rather than only
using text as input, waveform files, state machine diagrams,
etc., can further enhance the quality of the LLMs. In terms
of the applications, the main focus of the use of LLMs has
been on the correctness of the designs, other metrics like
consistency and completeness need more exploration. Also,
with the advancements of the LLMs, harder problems related
to proof generation and deductive reasoning can be explored.

III. LLMS FOR TESTING

Recently, the advent of LLMs demonstrates their superior
capabilities and expertise in the field of EDA [49], [50],
and their application in hardware testing is emerging as a
particularly promising frontier. Although LLMs have proven
effective in automated hardware testing, the complexity of
testing tasks and the specialized nature of HDLs continue to
pose significant challenges. In this section, a comprehensive
review of recent advancements in LLM-aided hardware testing
is provided to evaluate whether this integration is an actual
breakthrough or an overestimated future.

A key step in these advancements is the use of interactive
prompts and iterative improvements, which are essential for
LLM-aided hardware testing. In [51], the authors use conversa-
tional prompts to produce testbenches that systematically ver-
ify the design functionality. By iteratively refining testbenches
based on feedback from simulation tools, this method aims
to achieve comprehensive functional coverage with minimal
human intervention. Experimental results show that LLM-
generated testbenches are effective in bug detection but still
struggle to fully cover all aspects of the design and accurately
reflect the intended behavior.

In [52], the authors introduce LLM4DV, a novel prompt
template that interactively generates test stimuli by inte-
grating four prompting techniques. Experimental results on
three self-designed Design Under Test (DUT) modules show
that LLM4DV outperforms conventional Constrained Random
Testing (CRT) by effectively leveraging the LLM’s inherent
mathematical reasoning and extensive pre-trained knowledge.

Building on this foundation, the LLM-Driven Test Genera-
tion (LLM-TG) framework in [53] uses LLMs to interpret RTL

behavior and construct effective prompts that produce high-
quality test cases. Moreover, an open-source prompt library
has been developed to standardize test generation for pro-
cessor verification, thereby enhancing efficiency and reducing
human intervention. Experimental results on a 12-stage, multi-
issue, out-of-order RV64GC processor indicate that LLM-TG
increases testing coverage effectively compared to the previous
work [52].

In [54], the authors focus on enhancing the generation of
testbenches, which are crucial for validating the functionality
and achieving comprehensive coverage of RTL designs. By
integrating iterative feedback from simulation tools into the
testbench generation workflow, this framework accurately ana-
lyzes Verilog code to produce test stimuli that target previously
uncovered branches and transitions in Finite State Machine
(FSM). Experimental results demonstrate that the framework
not only improves test coverage compared to random testing
but also increases the precision in detecting functional discrep-
ancies.

As conversational prompts and iterative improvements con-
tinue to evolve, testing methodologies are becoming increas-
ingly essential. VerilogReader [55] leverages LLMs to reshape
the Coverage Driven Test Generation (CDG) process. In this
approach, the LLM acts as a ’Verilog Reader’, accurately
parsing the Verilog code to identify its underlying logic
and then generating stimuli that activate previously untested
code branches. Moreover, the coverage-explainer and design-
under-test-explainer are also introduced to enrich prompts,
thereby refining the generation of test stimuli. By comparing
LLM4DV [52] with conventional CRT, the authors demon-
strate that their framework significantly outperforms CRT
within the LLM’s comprehension range.

Fine-tuning large language models for hardware testing is
also a promising and interesting direction. In [39], the authors
pioneer this approach by adapting domain-specific models for
automated bug detection and repair in hardware designs called
LLM4SecHW. It generates a dataset of bugs from version
histories, which is used to fine-tune medium-sized LLMs. For
bug detection, the fine-tuned models analyze natural language
prompts alongside HDL, identifying potential bugs by com-
paring the implementation to established design guidelines. In
the subsequent bug repair, the system uses the same domain-
specific knowledge to generate repair suggestions, refining
HDL iteratively until all bugs are resolved. Experimental
evaluations demonstrate that the framework can detect and
repair bugs with high precision, significantly reducing the
manual effort traditionally required in hardware testing.

Due to incomplete analysis that could lead to ambiguities in
the LLM’s understanding, step-wise reasoning becomes essen-
tial in hardware testing. In [56], the authors propose an LLM-
aided approach to automating hardware testing by integrating
hardware designs with progressive principles (What, Where,
Why). This method enables the linear scaling of dataset
volumes without relying on costly, expert-crafted prompts,
thereby reducing manual labor significantly. By fine-tuning
fifteen general-purpose LLMs on this enriched dataset, the
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authors demonstrate a marked improvement in the models’
capability to detect and repair bugs in hardware designs.
The framework not only enhances reliability in test stimuli
generation but also improves the overall accuracy of bug
detection and repair.

The frontier of LLM-driven testing is also being further
advanced in hardware-software interdisciplinary such as HLS.
One notable advancement is the development of the Chrysalis
dataset [57], which introduces various logical bugs into real-
world HLS applications, creating a comprehensive benchmark
that reflects bugs often overlooked by engineers. The dataset’s
construction involves a systematic process of HLS design
collection, bug injection, and comprehensive validation, which
assists in evaluating the efficiency of LLMs in bug detection,
thereby simplifying HLS testing workflows. In addition, the
paper discusses the quantization trade-off of LLMs, where re-
ducing bit precision decreases memory usage and latency [58],
but may lose accuracy.

In the following subsections, two case studies are presented
to highlight the capabilities of LLMs in testbench generation.

A. LLM-Aided TestBench Generation for HDL Design

Simulation-based functional verification using a testbench
is a crucial phase in the design of digital hardware. A
testbench consists of two primary parts: the driver and the
checker. The driver is responsible for generating test stimuli
and directing the DUT to produce outputs. Subsequently, the
checker captures these signals from the DUT and verifies the
DUT’s correctness. Traditional methods for testbench genera-
tion primarily automates the design of drivers with random test
stimuli, while checkers remain manually designed due to their
task-specific nature. Moreover, the use of randomly generated
test stimuli can be inefficient during debugging since they lack
additional context information.

Motivated by the significant performance of LLMs in circuit
design, the first automatic and systematic testbench generation
framework, AutoBench, was introduced in [48] to automates
the design processes of both drivers and checkers, as illustrated
in Fig. 2. The framework’s only input is the RTL specification
(SPEC) in natural language. Ultimately, it produces a hybrid

testbench comprising both Python and Verilog codes. The
workflow begins with identifying the circuit type from the
given RTL SPEC, based on an imperfect RTL code generated
by LLM using the RTL SPEC, as outlined in Stage 0 of Fig. 2.
Subsequently, in Stage 1, the RTL SPEC is translated into a
TB SPEC by the LLM to support the subsequent stages.

1) Design of the driver: The driver code is responsible for
generating test stimuli and directing the DUT. Here, the driver
code comprises several test scenarios, each containing one
or more test stimuli. In Stage 2, a list of test scenarios in
natural language is produced by the LLM using the TB SPEC
to facilitate comprehension in the subsequent stage. In Stage
4, the LLM is provided with both the SPEC and the scenario
list to generate the complete testbench driver code in Verilog.

2) Design of the checker: The checker code in AutoBench
is implemented in Python rather than Verilog due to Python’s
higher level of abstraction. Additionally, LLMs, leveraging a
more extensive training dataset, exhibit superior performance
in Python programming. The LLM generates the Python driver
in two steps: it first creates the core functions in Stage 3 and
then produces the complete code in Stage 5.

3) Self-Enhancement: With the generated driver and
checker, a self-enhancement process is undertaken to improve
the testbench’s correctness, as depicted in the right part of
Fig. 2. Automatic code standardization and completion are
performed according to predetermined formatting rules. For
the checker, scenario checking is conducted to ensure that
all scenarios in the list are present in the final driver code.
Subsequently, both codes are executed to detect any syntax
errors. The LLM attempts to resolve these errors using debug-
ging information. If it fails after several attempts, the system
reboots at the code generation process from Stage 4 or Stage
5, depending on the code type.

The final revised and corrected codes will constitute
the hybrid testbench produced by AutoBench. The imple-
mentation of AutoBench is accessible as open-source on
https://github.com/AutoBench/AutoBench.
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B. LLM-Aided TestBench Generation with Self-Correction

Although achieving an average 57% improvement compared
with directly generating testbench using LLMs, AutoBench
still suffers from a low success rate. This limitation arises
from the inherent uncertainty of LLMs, such as hallucination
[60] and laziness [61]. Additionally, AutoBench employs
only syntax self-checking, similar to RTLFixer [62], without
implementing functional self-checking. The absence of a self-
checking mechanism indeed limits the potential performance
of the AutoBench framework.

To address the aforementioned issues, [59] proposed Cor-
rectBench, the first framework for automatic testbench gen-
eration that incorporates functional self-validation and self-
correction. The code implementation is also accessible as
open-source on https://github.com/AutoBench/CorrectBench.

The framework of CorrectBench is drawn in Fig. 3. Cor-
rectBench mainly focuses on the functional validation and cor-
rection of LLM-generated testbenches. Thus, the AutoBench
[48], as mentioned in Section III-A and Fig. 2, is used as the
testbench generator.

The generated testbench, called “raw” TB, is sent to the
validator to do the functional validation (blue box in Fig.
3). The core part of CorrectBench is its validator, using an
ensemble of imperfect RTLs to validate the correctness of
generated testbenches from AutoBench. The testbench will
generate a report for each RTL in each test scenario, which
forms the RTL-Scenario matrix, as is depicted in Fig. 4. The
more red blocks in one scenario, the more RTLs are marked
as “wrong” by the testbench. Then, this test scenario is more
likely to be wrong because the randomly distributed RTLs are
likely to have errors in the same scenario.

After validation, a report with correct, wrong, and uncertain
test scenario indexes (bug information), as well as the correct-
ness of the testbench, is provided to the action agent (purple

box). The action agent then decides one of the three actions as
the next action: correcting such testbench with the corrector
(orange box), rebooting the whole process, or ending it.

IV. LLMS FOR DESIGN

LLMs often work best when working with natural language
specifications, so the question quickly arose: “Can LLMs
reduce the burden on hardware designers by quickly mapping
from a specification to a complete design?” To this end, numer-
ous works have explored the process of designing hardware
using LLMs, either as assistants to human engineers or as fully
autonomous systems.

A. LLMs for Verilog Design

The first paper to explore the use of LLMs to gener-
ate functional hardware descriptions was DAVE—a finetuned
GPT-2 model trained on simple textbook-style Verilog prob-
lems [63]. The custom dataset used to train DAVE used a set of
“Task/Result” problems, similar to those that would be taught
as “novice” problems. The templates used were rather rigid,
resulting in Verilog that was often correct, with a success rate
of 94.8% across its validation tests, but lacked creativity or
complexity. DAVE was not able to generate multiple styles of
response to a task and did not create additional signals that
were not provided in the request. This work was also limited
by the LLMs of the time, with GPT-2 being significantly
underpowered by current state-of-the-art standards.

In [64], the authors propose VeriGen, which is built upon
the work from DAVE, by expanding the training dataset
significantly as well as leveraging a more complex LLM.
VeriGen consisted of five different fine-tuned LLMs, with the
CodeGen family of models being the largest and most capable.
These models were trained using a corpus of both open-source
Verilog designs queried from GitHub and Verilog textbooks.
The finetuned VeriGen models were shown to be similarly
capable to the recently released at the time ChatGPT-3.5 and
-4 models for small and medium problems, though GPT-4 was
more capable with increasing complexity.

In [65], the authors propose VerilogEval, which is another
finetuned LLM for generating Verilog, that followed after
VeriGen and tuned the same CodeGen models. VerilogEval
leveraged supervised fine-tuning on both Verilog extracted
from GitHub and a set of synthetic data created by analyzing
modules and using GPT-3.5 to generate functional descriptions
of the modules. Similarly, RTLCoder [66] is another more
modern family of finetuned LLMs aimed at generating Verilog,
this time finetuning over Mistral and DeepSeek models. Both
VerilogEval and RTLCoder are fully open-sourced models that
claim to give higher rates of success than the major pre-trained
models at their time of publishing, as well as VeriGen.

Finally, in [67], the authors propose CodeV that provides a
series of new open-source instruction-tuned models for gener-
ating Verilog. These models differ from the previous offerings
by tuning the base LLMs using summarized descriptions of
the modules as well as the Verilog code itself. Thus far,
CodeV claims to have the highest level of success on the



VerilogEval series of benchmarks, discussed in greater detail
in Section IV-D

B. General Knowledge LLMs for Verilog

In [68], the authors propose Chip-Chat an experienced
hardware engineer leveraged ChatGPT-4, at the time the
most modern commercially available LLM, to assist in the
specification, design, implementation, and testing of a novel
8-bit accumulator-based microprocessor architecture, which
was ultimately taped out using the Skywater 130nm process.
ChatGPT was prompted only using natural language and was
responsible for all of the HDL used in the design of this
architecture, as well as a Python assembler compatible with its
custom Instruction Set Architecture (ISA). The conversations
responsible for creating this design were unstructured, but
different conversations were leveraged for different aspects of
the design, such as “Register specification,” “Control signal
planning,” and “ALU optimization.” Chip-Chat demonstrated
that, while not inherently capable of formulating a complete
design of this nature on its own, an LLM could act as a
significant force-multiplier in the hands of an experienced
engineer, enabling them to use their time more efficiently for
complex tasks and allowing the LLM to handle much of the
actual HDL development.

Another work sent for tapeout was [52], in which ChatGPT-
3.5 and -4 were prompted using a strict conversational script,
aimed at developing both a simple design and testbench
with minimal human intervention. Icarus Verilog was used to
compile and simulate the designs and their testbenches, and
the amount of user explanation needed to achieve functional
designs was tracked. Eight different designs were prompted
for, each three times, ranging from a simple shift register to
state machines and a simple simulated dice roller—designs
chosen to mimic designs that would be expected of under-
graduate students taking a digital hardware design class. The
initial set of designs generated by ChatGPT-4 were sent for
tapeout on the same TinyTapeout shuttle as the processor in
Chip-Chat, and came back functioning as expected, once again
with no human-written HDL in the design. Prompting for
both design and testbench did show some issues in LLMs’
abilities to understand the specific functionality of the design
being generated, however, as some testbenches could be made
for which the design would pass all test cases, but still have
incorrect functionality.

Several commercial hardware design-focused LLMs have
been released as well, each claiming to have different special-
ties and capabilities. These include Nvidia’s ChipNemo [69],
Cadence’s JedAI [70], Synopsys’ Copilot [71], PrimisAI’s
RapidGPT [72].

C. Hardware Design with HLS

Verilog is not the only language able to be used to design
hardware, and so is not the only language LLMs are being used
for. In [73], the authors propose C2HLSC, which leverages
LLMs to convert non-synthesizable C designs into HLS-

Fig. 5. C2HLSC framework [73]

compatible code. The framework for this conversion is shown
in Fig. 5.

The flow is divided into three steps. The first step does not
use LLMs and its purpose is to set up the testing environment
so that the LLM’s outputs can be tested for functional cor-
rectness. Steps 2 and 3 work on a single function at a time,
in a bottom up approach. This allows the flow to work with
hierarchical designs, focusing on one function at a time. To
avoid the users the burden of providing unit tests for each
function, step one builds unit tests for each function starting
from a top level test. Steps 2 and 3 work in a similar fashion: a
feedback loop is used to prompt the LLM iteratively, providing
feedback on its output. Step 2 has the goal of fixing synthesis
errors, while Step 3 has the goal of inserting pragmas for
optimization. The output of the LLM is first compiled and
the obtained binary is executed to test for correct functionality
using the test provided by step 1. Then the code is synthesized
using the HLS tool. If an error arises from any of these
substeps, a prompt asking to fix the error is generated and
sent to the LLM.

D. Evaluating/Benchmarking LLMs

Quantifying the design abilities of an LLM in a standard
and complete manner has remained a challenge since the first
works on the subject began. VeriGen [74] proposed a set
of 17 problems ranked as basic, intermediate, or advanced.
These ranged from generating a simple wire or gate up to
state machines and shift registers. A very similar subset of
these problems was used in [52], but due to the I/O and clock
speed restrictions of taping out with TinyTapeout3 only eight
problems were given and were restricted in their complexity.
These were, however, not intended to be used as global metrics
for success.

In [75], the authors proposed RTLLM, where the first
notable effort in creating an LLM-specific set of benchmarks
that could be used to evaluate the design capabilities of LLMs.
This included a total of 30 open-source benchmark designs,
focusing on both arithmetic operations and logical operations,
and varying significantly in the size and complexity of the
designs. Simpler designs, such as a 0 to 12 counter, would
require few lines of code, while more complex designs, such
as an asynchronous FIFO, could require well over 100 lines



Fig. 6. Automatic hierarchical framework [77]

of HDL. The most complex benchmark was a simplified RISC
CPU, which required over 500 lines of code, which could not
able to be done by any of the available LLMs at the time of
its release.

In [76], the authors proposed VerilogEval, which sought to
expand the size of the benchmark set significantly by using the
problems from the Verilog teaching website HDLBits. While
these benchmarks were originally used with VeriGen, they
were further formalized in VerilogEval and became available
with complete testbenches for evaluation. 156 different prob-
lems were made available with this benchmark set, allowing
for a significant level of additional evaluation of generated
designs. However, the HDLBits problems were simple, and
all were single-module designs. A second version of the
VerilogEval benchmark set was released, which simplified the
methods of using the benchmarks and added more complex
benchmarks that tested for more aspects of design.

E. Automated Design with LLMs

Most of the previously mentioned LLMs and frameworks
are designed to be used by a human engineer to aid in the
design process, however, several works have sought to remove
the human from the loop and enable LLMs given only an
initial setup to generate complete functional designs.

In [77], the authors propose CL-Verilog, which is the most
recent Verilog-specific LLM, fine-tuned over Code Llama.
Along with the CL-Verilog model, a framework for automat-
ically generating large hierarchical designs based on smaller
designs was proposed, which enables the generation of designs
more realistic than those that would be made in practical ap-
plications, such as small cryptographic accelerators or systolic
arrays. This framework is shown in Fig. 6.

This automatic Verilog generation framework aims specifi-
cally at creating larger hierarchical designs by first extracting
a list of necessary submodules from the design description,
then building each submodule, and finally integrating them
into the top-level of the design. Using this structure, along
with a set of specifically hierarchical benchmarks, CL-Verilog
consistently had the highest rate of success, completing most
problems successfully within 5 attempts.

In [78], the authors propose AutoChip, which seeks to use
feedback from EDA tools to automate the process of gener-
ating, evaluating, and further iterating upon a design given
just a natural language specification and a testbench. This
is accomplished using a tree-search methodology, by which

Fig. 7. AutoChip tree search framework [78]

multiple candidate responses are generated and evaluated using
Icarus Verilog and an included testbench, the best of these
responses is then iterated upon until either a correct module is
generated or a stopping criteria is met—tree depth, total token
cost, total number of queries, etc. This framework is shown
in Fig. 7.

AutoChip was evaluated on four commercially available
chat-based LLMs using the set of benchmarks from Verilo-
gEval v1. It was found that the selection of the model had a
significant impact on the usefulness of tool feedback, with it
being more successful and computationally efficient to request
more candidate responses in a zero-shot manner than to rely
on the tree search. The tree search methodology did help with
GPT-4o; however, as GPT-4o seemed better able to interpret
the errors being reported from EDA tools and failed tests.

V. CONCLUSION AND FUTURE WORKS

In this paper, we discussed the use of LLMs in verification,
testing, and generation. We further discussed a generalized
architecture used for integrating the LLMs in the domain of
EDA. We showed how general LLM can be tailored for use in
the domain of EDA. While fine-tuning is one of the strategies,
methods like RAG can be used to provide the LLM with
domain-specific context. To improve the adaptability of LLMs,
domain-specific datasets are required to perform fine-tuning.
For verification problems, consistency and coverage goals still
need significant improvement. For testing, the integration of
coverage-oriented self-correction during testbench generation
can be further explored. Real-time test strategies can be
explored for High-level Synthesis (HLS) testing. For design,
further exploration needs to be done in using feedback to
improve responses and further leveraging LLMs for alternate
hardware design methods like HLS. In general, by developing
adaptive prompt strategies and domain-specific fine-tuning
protocols, models can be better tailored to the nuances of
hardware design.
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