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ABSTRACT
The increasing application of Machine Learning (ML) tech-
niques in the Internet of Things (IoT) devices has led design-
ers to leverage ML accelerators like GPGPUs in such devices.
However, choosing the most appropriate accelerator for such
IoT devices is very challenging as they commonly should
adhere to tight constraints e.g., low power consumption, long
battery lifetime, and low cost of the final products. As a
consequence, designing such application-specific IoT devices
becomes a non-trivial and difficult task. In this paper, we
present a novel approach to estimate power consumption
of CUDA-based Convolutional Neural Networks (CNNs) on
GPGPUs in the design phase. Our approach is able to provide
designers with an early prediction of CNNs power consump-
tion up to an absolute error of less than 2% in comparison
to the real hardware execution.
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1 INTRODUCTION
Machine Learning (ML) algorithms have been increasingly
used in different application-specific Internet of Things (IoT)
devices ranging from manufacturing to scientific-, health- and
security-related applications [2–4, 6].

One of the major challenges that designers are commonly
faced during the design phase of such IoT devices is to choose
the right ML accelerator e.g., GPGPUs that adhere to the
design constraints such as low power consumption, long bat-
tery lifetime, and low cost of the final products [10]. As an
example, assume that designers need to design an IoT device
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where its ML application is performed on a GPGPU (as hard-
ware accelerator). If considering the power consumption and
battery lifetime of the IoT device as the design constraints,
choosing the most appropriate GPGPU that meets the con-
straints early in the design phase can significantly avoid costly
design loops occur. Moreover, in the case of Cloud-based IoT
devices where ML-based data processing performs remotely
on Cloud-based ML accelerators (i.e., GPGPUs), choosing an
appropriate GPGPU can significantly decrease the renting
cost and have a direct impact on the cost of the final product.

One possible solution to approach this issue is using power
prediction techniques. Existing methods use so-called perfor-
mance counters [1, 5, 12] to perform power consumption esti-
mation. Therefore, they rely on the run-time data, meaning
the ML model must be run once on the target GPGPU that
the performance counter results can be measured. However,
this can limit the usage of such methods in the early design
phase as the GPGPU must already be selected. Moreover,
this can increase the required analysis time.

In this paper, we focus on power consumption estimation
of CUDA-based CNNs on GPGPU that is one of the most
popular ML algorithms in automated manufacturing [9]. We
present a novel approach, enabling designers to predict the
power consumption of a given CNN without needing to exe-
cute it on any GPGPUs. Unlike the existing methods that use
performance counters for their prediction, the proposed ap-
proach takes advantage of Parallel Thread Execution (PTX)
code [11] (which is generated at compile time) and GPGPU
architectural information. This empowers designers to choose
for a given CNN, the most efficient GPGPU in terms of power
consumption among the existing models at compile time. The
initial experimental results illustrate the effectiveness of our
approach in estimating the power consumption of CNNs on
GPGPUs where up to an absolute error of less than 2% in
comparison to the real hardware execution is achieved.

2 POWER PREDICTION METHODOLOGY
The proposed methodology is illustrated in Fig. 1 which
consists of two main stages: 1) Information extraction, and
2) Power predictive model generation.

In the first stage, we compare different Nvidia GPGPUs
(different series and types) in terms of architectural infor-
mation (e.g., CUDA Cores, Memory or L2 Cache) and how
a given CNN can load their different components. By this,
those GPGPUs’ attributes and components which have an
impact on performing CNN models are extracted. Next, we
analyze the PTX representation of each CNN and extract the
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Figure 1: Methodology overview.

instructions that must be loaded into GPGPU’s components
to run the CNN. These instructions are classified based on
their types into different classes.

In the second stage, we build a training data set where the
classified extracted CNN instructions and the GPGPU com-
ponents (that have an impact on performing CNN models)
are considered as inputs and the amount of power consump-
tion for each CNN running on the GPGPU as output. The
amount of power consumption for each CNN is measured
on real GPGPUs. For the training phase, we use four dif-
ferent GPGPUs and 18 different CNNs. In the next step, a
neural network is trained with the collected data to create
the power consumption predictive model. It takes as inputs
the GPGPU architecture and the PTX Instruction Classes.
The output is the power consumption of the input CNNs
executed on GPGPUs. Once the predictive model is gener-
ated, the trained neural network can be used to estimate
the power consumption of a given CNN on different GPGPU
architectures.

3 EXPERIMENTAL RESULTS
Our experimental results demonstrate that the power estima-
tion based on the PTX and GPGPU architecture is promising.
Fig. 2 shows the results of our prediction model on estimating
the power consumption for ResNet [7] and Densenet [8] varia-
tions. On average, our prediction model achieves an Absolute
Error (AE) of 8.3%. The best-case prediction result belongs
to ResNet152 with an AE 0.73%. The worst-case prediction
is related to DenseNet201 with an AE of 15.75%. This is due
to the fact, that more ResNet variations are included in the
training data than e.g., Densnet. By increasing the variation
of CNNs in the training data, the prediction can be further
improved which is a part of our future works.
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Figure 2: Absolute error of power estimation of different CNNs
for Nvidia RTX 1080Ti.

4 CONCLUSION AND FUTURE WORK
In this paper, we presented an early power estimation for
CUDA-based CNNs on GPGPUs. We showed how the power
consumption of a given CNN model on GPGPUs can be
estimated by analyzing its PTX code and the GPGPUs’
architectural information. Initial experimental results sound
promising.

For future work, we plan to provide a compiler plugin,
enabling designers to obtain a power profile based on our
prediction model during compilation time. This can signif-
icantly help designers to build better ML systems early in
the design process. Moreover, we work on preparing more
standard CNNs and variations of well-known CNNs to ex-
pand our training data set. A more heterogeneous training
data will improve our model. Finally, we plan to extend our
prediction model to support any kind of CUDA-based appli-
cations as well as other non-functional design aspects such
as performance estimation.
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