
Virtual Prototype based Analysis of Neural Network
Cache Behavior for Tiny Edge Device

Alexander Fratzer1 Vladimir Herdt1,2 Christoph Lüth1 Rolf Drechsler1,2
1Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

2Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
Alexander.Fratzer@dfki.de, vherdt@uni-bremen.de, christoph.lueth@dfki.de, drechsler@uni-bremen.de

Abstract—The demand for AI and specifically machine learn-
ing functionality on edge devices (TinyML) is growing. TinyML
faces several unique challenges, one of them being the require-
ment of having a lower memory footprint for storage and
inference of neural networks.

In this paper, we propose and evaluate an approach to make
Convolutional Neural Networks (CNNs) with higher memory
footprint executable on edge devices. The idea is to combine
flash memory with a cached access for the inference of CNNs.
In order to evaluate the effectiveness of our proposed memory
architecture by measuring the cache hitrate at the system level,
we build a Virtual Prototype (VP) with a dedicated flash device
and an exclusive cache. We are using Tensorflow Lite Micro
(TFLM) for the network inference and mapping all model data
and runtime buffers into the cache enhanced flash memory.
Multiple experiments with several cache configurations show that
a small cache of around 1 KB is able to achieve very high
hitrates over 99%. Additionally, the experimental results show
that the memory planning of TFLM supports the usage of caching
because most memory accesses are adjacent.

I. INTRODUCTION

Deep learning (DL), as a class of Machine Learning (ML),
is a well-known approach in a variety of different applica-
tions ranging from social network analysis over autonomous
driving to natural language processing [1]. In the lifetime of
an ML model, two phases can be distinguished from each
other. First, in the so-called training phase the model learns
the fundamental characteristics of the data in a supervised
context. After a model is trained, it is deployed to a real
world application; this is referred to as model inference.
However, the training phase of a DL model can demand huge
computational resources like memory, electrical power and
processing speed. Consequentially, it is common practice to
use powerful machines with large amounts of storage capacity
and hardware accelerators for this phase, e.g. in a cloud based
infrastructure [2]. From a system design point, the inference
of DL models is much more restricted. Depending on the
specific use case, required throughput rates and real time
constraints can prohibit the use of decoupled and distributed
solutions. As a consequence, the inference on edge devices,
called Embedded Machine Learning or TinyML, has attracted
a lot of attention recently. The unique challenges of TinyML

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project VerSys under contract
no. 01IW19001 and within the project ECXL.

applications according to [3] are: low power, limited memory,
hardware heterogeneity and software heterogeneity.

In modern embedded systems, memory technologies are of
major concern. Currently, no single technology is able meet all
requirements for edge devices. Static Random Access Memory
(SRAM) has fast access speeds and consumes low power
but is expensive because of its low density. On the other
side, Dynamic Random Access Memory (DRAM) is slower
and consumes more power but is much cheaper, while Flash
Memory is Non-Volatile and consumes low power but is very
slow in access [4]. New technologies are emerging [5] but up
to this point, they are not production ready and therefore not a
viable alternative. Considering the application of TinyML, the
lack of low cost, low power, fast accessible and high density
memory is a major restriction. For this reason, a lot of research
in this field is dedicated to develop new designs for DL models
and compression techniques to lower the memory footprint for
storage and inference (cf. Section II).

In this paper, we propose and evaluate an alternate ap-
proach to making DL models with higher memory footprint
executable on edge devices. Instead of reducing the model
complexity and optimizing its storage, the complete model
and runtime memory is located in a dedicated memory with
cached access. We extensively evaluate the effectiveness of
our proposed memory architecture by measuring the cache
hitrate at the system-level with different cache parameters and
Convolutional Neural Networks (CNNs). In order to achieve
this, we extend an open source RISC-V VP [6] with a flash
component and a Set Associative Cache (SA-cache). A VP is
essentially a simulation model of the entire hardware platform
and enables easy observation of various execution metrics
through simulation runs at the system level. We are using
Tensorflow Lite Micro (TFLM) for the network inference and
mapping all model data and runtime-buffers into the cache
enhanced flash memory. Multiple experiments with several
cache configurations show that a small cache of around 1 KB
is able to achieve very high hitrates beyond 99%. Moreover,
our experiments demonstrate that a small cache is already able
to achieve high hitrates on a medium-sized (≈ 4 MB), high
end neural network with a large memory footprint. Finally, the
experimental results also show that the memory planning of
TFLM supports the usage of caching because most memory
accesses are adjacent. Additionally, our work demonstrates the
advantages of early software development using VPs.



II. RELATED WORK

A lot of current research aims at solving the different
challenges TinyML provides. One research direction focuses
on the development of resource optimized architectures of
neural network. In [7], the micro- and macro-architecture of
a CNN is reduced to decrease its size and consequentially its
throughput, but without losing much of its accuracy. A similar
approach was taken in [8]. It proposed a modified version of
the well-known You Only Look Once (YOLO) architecture in
order to increase its throughput in the inference. In [9], a CNN
architecture similar to FastRCNN [10] is used for audio key-
word recognition on edge devices.

Another direction aims at developing compression tech-
niques to lower the memory footprint of general purpose
neuronal networks to make them more suitable for inference
on edge devices. In [11], a compression pipeline to reduce the
size of neural networks by a factor of 39 to 49 is presented.
The results were achieved on well-known high-end network
architectures like AlexNet [12] and VGG-16 [13]. First the
network was reduced with pruning, after that quantization
was applied to reduce the footprint of the weights and in the
last stage the network was encoded with the Huffman-coding
algorithm for further compression. Other research focuses on a
single task of this pipeline, like [14]. It provides an overview of
post training quantization techniques, which are a well-known
method to reduce the memory footprint of neural networks.
By applying these concepts to DL models, the fundamental
datatype used for the models weights is converted to a more
convenient one. Moreover, it is a key concept for the use
of different hardware acceleration in training and inference.
For example, GPUs are generally optimized for floating point
operations, however most arithmetical units in µ-Controllers
(µ-C) can only perform fast integer operations. Hardware
support for floating point units is not always available, which
makes quantization from floating point values to integer values
not only more effective in memory usage but also speeds up
arithmetical operations. Quantization is a technique which can
be applied in-training as well as post-training. While post-
training quantization is very convenient for porting existing
networks to edge devices, in-training quantization is known to
produce less accuracy loss for the network [15].

The authors of [16] propose a software based swapping
technique to exchange neuronal network layers between a
small SRAM and a much larger but slower flash memory.
They implemented so called swapping-kernels for typical
CNNs with an I/O scheduling algorithm and concluded that
the system is able to run large CNNs without any loss in
accuracy by trading reasonable runtime overhead. Their work
is arguably the most similar to ours, as they also try to optimize
the memory architecture of the inference running application
without modifications to the basic DL model. In contrast, we
tackle the problem from a hardware perspective by shifting
the execution fully into slow memory and leveraging reactive
caching technology to overcome I/O delays.

[17] propose using an application specific cache architec-
ture to speed-up execution of deep learning inference targeting
mobile vision applications. Their proposed cache architecture

is customized whereas we investigate general purpose caching
for TinyML applications.

III. PRELIMINARIES

This section presents relevant background information on
virtual prototyping using SystemC (Section III-A) and TFLM
(Section III-B).

A. Virtual Prototyping using SystemC

SystemC is a C++ framework for developing and simulating
hardware behavior [18]. In combination with the Transaction-
Level Modeling (TLM) style, which enables efficient model-
ing of bus transactions, SystemC enables building industrial-
proven VPs at the system-level [19]. In contrast to use of
direct prototyping hardware like Field Programmable Gateway
Arrays (FPGA) SystemC enables faster development cycles.
Moreover, the architecture is very flexible and SystemC does
not force components to have a specific level of detail. The
drawback is that the implementation is only in software which
can increases runtime significantly and can make accurate
timing analyses more difficult. In this work, we use an existing
open source SystemC TLM implementation of a RISC-V VP
as a basis to develop a non-volatile external memory and a
cache.

B. Tensorflow Lite Micro (TFLM)

TFLM [20] is an interpreter-based runtime environment for
execution DL model on edge devices. It is able to run most
Tensorflow models on a variety of different hardware platforms
including RISC-V. The low runtime overhead and efficient
resource management makes it very suitable for our work.
TFLM calculates the required memory of a DL model and
statically allocates runtime buffer in a previous defined address
space called TFLM-arena. The model data self can be accessed
by a file system or directly defined inside the application as
array.

IV. METHODOLOGY

In this section we present our VP-based methodology to
use dedicated caching for neuronal network inference and to
analyse the effectiveness of this proposed TinyML memory
architecture. We start with an overview of our major design
decisions (Section IV-A), then we present our VP-based ar-
chitecture (Section IV-B) and finally provide more details on
the cache behavior and integration (Section IV-C).

A. Design Decisions

The fundamental idea behind our design is to model a
system which is capable of running inference of larger DL
models on tiny devices without changing their architectures.
We identified the following three key aspects:

1) DL models must be stored in persistent memory on the
edge device which requires a lot of capacity.

2) Overall memory footprint in the inference consists of
static model data and dynamic runtime data.



3) Memory I/O is a main bottleneck.
Consequentially, flash memory is the most suited memory
technology to persistently store the model data. While in-
ference requires also large amounts of runtime memory, the
main memory of µ-Cs often is very limited, especially for tiny
edge devices. Hence, the required flash memory can also be
dedicated to the task of holding runtime data during inference.
To overcome the slow I/O rates of the persistent memory, we
use caching as a proven technique for this purpose.

We decided to use a VP to implement and evaluate our
design. The main advantages of a VP are the flexibility of the
design by modeling in software rather than in hardware. Test-
ing and debugging tasks are easier, and all runtime information
of the system is easily accessible. The main drawback is that
a precise timing analysis of the runtime is very difficult, but
in our case the classical metric to evaluate the performance
of a cache is its hitrate rather than its runtime. By placing
the required measurements for the hitrate directly inside our
cache implementation on the VP-level, all accesses regarding
the dedicated memory can be counted accurately together with
the cache hits and misses.

We decided to focus on the inference of CNNs, for two
reasons: First, CNNs are very popular in cooperation with
high dimensional input data (e.g. visual data) which leads
to complex architectures. This is because feature extraction
of high dimensional data requires large network backbones
and consequentially a lot of computational resources. Having
more inference capabilities for CNNs on edge device has the
potential of opening a lot of new possibilities for TinyML
applications. The second reason is that the convolutional layers
can be seen as the main operation in a CNN, and a system’s
ability to execute these layers can be further investigated in
order to evaluate its performance.

We have chosen TFLM as the runtime environment for our
model inference because it is actively maintained and very
stable. Moreover, it is capable of running inference of most
DL models which are trained with Tensorflow. This brings
our technology stack closer to common industrial technolo-
gies and increases transferability of our results to industrial
applications.

B. Platform Overview

An overview of our platform is given in Figure 1. The
left side of this graphic shows the hardware components
which are implemented as the VP, while the right side rep-
resents the memory organization of the TFLM application
and can be understood as the software side of our design.
The application is statically linked with single time allocated
memory. Moreover, the raw model data is represented as a
static data field and directly compiled into the application. We
defined this as the .modelsection. Additionally, the statically
allocated memory area for the TFLM-arena is marked as
.arenasection. We leveraged the linker to place these sections
on fixed memory locations. In the initialization phase of the
VP, an ELF-Loader takes the executable from the host system
and places the different memory segments to their predefined
locations. We divided the full address space of the VP into two

VP M
ain-M

em
ory

µC-
Components

TinyML-
Application

.text

.bss

.rodata

...

.modelsection
SA-Cache

.arenasectionFlash-Memory

Memory Segments

Memory-
Mapper

Fig. 1. VP-based edge device platform with TFLM application. The left side
shows the hardware, which the VP emulates, and on the right is the software.
Data and runtime memory is mapped to the flash memory using a dedicated
cache component.� �

1 template <class ADDR, class CB>
2 CACHE_OP_STATE cache_operation(ADDRESS addr,

CacheLine& cache_line, CB operation) {

4 bool cache_hit = is_cache_hit(addr,
cache_line);

5 CACHE_OP_STATE cstate = CACHE_OP_STATE::
UNKNOWN;

6 count += 1; // memory accesses

8 if (cache_hit) {
9 hits += 1; // cache-hits

10 cstate = CACHE_OP_STATE::HIT;
11 } else {
12 misses += 1; //cache-misses
13 if (cache_line.dirty) {
14 write_back(cache_line);
15 cstate = CACHE_OP_STATE::WB_LOAD;
16 } else {
17 cstate = CACHE_OP_STATE::LOAD;
18 }
19 load_new_cache_line(addr, cache_line);
20 }

22 operation();

24 cache_line.reset_age();
25 return cstate;
26 }� �

Listing 1. Overview on the integrated caching algorithm. Relevant statistics,
such as cache hits, are tracked.

main sections: main memory and flash memory. A dedicated
memory mapping component is used to route accesses to the
correct device. While the ELF-Loader is operating, caching is
disabled. After this, the .modelsection and .arenasection are
placed in the flash memory while all other sections of the
applications are placed in the main-memory. Following this
phase, the caching is enabled, and the VP starts executing the
application.

C. Cache Behavior and Integration

We used a single cache to increase I/O access speed from
the CPU to the flash. While the read-only section for the model



TABLE I
MEMORY FOOTPRINT OF 8-BIT INTEGER QUANTIZED CNNS IN BYTES.

CNN Class CNN Size TFLM Arena Σ

small 300568 82156 382724
large 4566744 1721564 6288308

data and read-write section for the runtime buffers are handled
by the flash, we implemented an SA-Cache with write-back
policy as a trade-off between speed and consistency. The basic
algorithm of the cache is shown in Listing 1. As defined by
its policy, a hit is logged if a cacheline already contains the
required data, in all other cases a miss occurs (Lines 6 − 8).
Moreover, if a cacheline is dirty and a miss occurs, a write-
back operation is performed and the related cacheline is loaded
(Lines 14 − 15). Inside the cache component all memory
accesses, hits and misses are tracked via counters. In order
to use different cache configurations, our implementation is
fully configurable by three main parameters:

1) cache size in bytes;
2) cacheline size in bytes;
3) number of association ways.

For our evaluation (see Section V) we used different combi-
nations of these in order to find the well performing configu-
rations.

V. EVALUATION

We have implemented our proposed methodology from Sec-
tion IV, using the open source RISC-V VP [6] as a foundation.
In the following, we first describe our experimental setup
(Section V-A), then present our obtained results (Section V-B)
and finally provide a more detailed interpretation of the results
(Section V-C).

A. Setup

In order to get a general understanding of the abilities
of our design we run several configurations of our cache
parameters on different CNN architectures using examplary
inputs from the ImageNet database [21]. Depending on the
input dimensions and number of detectable objects, popular
CNN architectures can range from a few kilobytes to hundreds
of megabytes [13], [22]. We selected two CNNs for the task of
image classification with different memory footprints in order
to compare their caching performance. The first one is a person
detection network already in the source of TFLM [20]. It takes
about 3 KB memory for storage and represents the small to
medium size network in our experiments. The second CNN
is called MobileNetV1 [23] and is popular in applications
running on smartphones or other powerful mobile devices. It
is a medium size CNN for multi-class image classification
and takes around 4.5 MB of static storage. Although not
large compared to high performance CNNs employed for this
kind of problem, in the context of TinyML we consider a
model of such a size as large. The memory footprint of
both CNNs can be seen in Table I. The first column of the
table designates the CNN architecture, where small refers to

TABLE II
EXPLORED CACHE CONFIGURATIONS.

Cache Size Cacheline Size

128 32, 64
512 32, 64, 128

1024 32, 64, 128, 256
16384 32, 64, 128, 256
65536 32, 64, 128, 256, 1024

262144 32, 64, 128, 256, 1024

the ≈ 3 KB network while large represents the 4.5 MB
network. The second column shows the number of bytes
which the particular CNN takes in static storage. The third
column shows the runtime memory which TFLM needs for
inference while the last column is the sum of the previous
two. It can be understood as the overall memory footprint of
a CNN. Both nets are compressed using 8-bit integer post-
training quantization to further reduce their static memory
requirements.

We explored multiple configurations for the cache which are
shown in Table II. While there are three parameters defining
the configuration of the cache, we focused primarily on the
overall cache size and the size of the cachelines. However,
for the small CNN at least four different association ways
were tested in each parameter configuration. In total, the small
CNN runs with 88 different cache-configurations. Because
of runtime restrictions, we only used the best performing
configurations for the tests of the large CNN. In the end, we
conduct 110 runs to fully test the abilities of the cache and
suppress low performing configurations. Note that for each
parameter setting, the cacheline size is at most half the general
cache size, so at least two cachelines are always existing.

B. Results

The plot in Figure 2 visualizes the performance of our
cache. In order to reduce the complexity of the visualization
we only show the best performing configurations for each
cache size. Therefore, the size of the cachelines and the
number of cachelines is ignored. We consider these parameters
as of minor interest for our further evaluations because we
are mainly focusing on the general concept of caching. In the
graphic, each bar on the x-axis represents a cache of the shown
size while the y-axis distinguishes the CNNs. These results
lead to several observations. The first and most obvious one
includes the relation between the cache size and the hitrate.
Both entities are proportional to each other. A larger cache
increases the hitrate. In the case of the small CNN, the largest
cache covers ≈ 68.5% of the overall memory consumption.
This is a very high proportion and matches a high expected
hitrate of > 99%. However, the hitrate of the 16 KB cache is
in the same range while it covers only 4.3% of the memory
consumption for the small CNN. Additionally, the smallest
cache consists of 128 Bytes and leads to a hitrate over 75%.
Also, the hitrates of the smallest cache are higher for the large
CNN than for the small CNN. The rates up to 1 KB are slightly
lower than with the small CNN but in the same area. Looking
at the 16 KB cache for the large CNN, the hitrates are close



0

0.25

0.50

0.75

1

C
ac

he
H

itr
at

e

128 512 1024 16384 65536 262144

large
C

N
N

0

0.25

0.50

0.75

1

Cache Size

sm
allC

N
N

Fig. 2. Experimental results. The x-axis shows the hitrate of the cache in
relation to all related memory accesses. On the y-axis the explored cache
sizes are visible. The first row of bars is related to the large CNN with ≈ 4.5
MB of size while the second row shows the results of the small CNN with
≈ 300 KB.

TABLE III
OFFSETS BETWEEN ADJACENT MEMORY ACCESS INSIDE TFLM

CONVOLUTIONAL OPERATION OF THE SMALL CNN. THE SOURCE
COLUMN INDICATES IF THE ACCESSED VALUE BELONGED TO THE

LAYER’S INPUT OR THE KERNEL.

Source Offset Count

input

-255 2296
-127 25155

-63 13644
-31 26928
-15 17856

-7 34560
1 6073211∑

6193650

filter

-65535 8
-32767 8
-16383 175

-8191 35
-4095 143
-2047 143
-1023 575

-511 575
-127 2303

1 6189685∑
6193650

to perfect (> 99%) although the cache covers only 0.02% of
the required memory.

C. Interpretation

Our results suggest that caching the memory access for
TLFM inference works well. A small cache in front of
the slow storage- and execution memory can produce high
hitrates. Even a cache of 1 KB is able to hit the majority
of memory accesses for both networks. Moreover, the size
of the network is not a significant factor for the success of
the caching. This phenomenon can be explained by the basic
architecture of the CNNs. We used the same input dimensions

for both nets while the larger one is in fact deeper and
leverages more architectural features, e.g. skip connections.
Logically, the depth of a network does not affect the caching
performance because it only makes the list of operations
for execution deeper, but the operations itself are not more
complex. Another important fact is that all operations inside a
CNN are performed on multidimensional data fields. Those are
stored in tensors consisting of ongoing memory. The metadata
of an operation is previously loaded by TLFM in the main
memory and therefore not related to the cache performance.
Although different types of layers can have multiple input
operators, most of them can be reduced to a sequence of binary
operations. Hence, only three ongoing memory sequences are
required for each binary operation: one for the input, one for
the parameters, and one for the output. As a result, each of
them is caught by a separate cacheline. This leads to the
state where the majority of operands is always available by
cachelines previous to their access. In order to confirm this, we
logged the memory locations of all memory access regarding
the input and filter of each convolutional layer. Those two data
origins represent the majority of memory access because for
each simple convolutional layer of kernel-size WK×HK×CK

there are WK∗HK memory accesses for each output. Based on
these locations we computed offset in bytes between adjacent
memory access operations. This is visualized by Table III.
The first column indicates if the memory access belongs
to input data or filter data. The second column shows all
existing offsets in bytes between two adjacent memory access
operations. For each input and category of offset bytes, the
number of access is shown in the last column. We can observe,
that by far the most accesses are sequential (offset = 1). The
largest absolute offset to access the input feature maps of the
layer is 255. Therefore, a cacheline of 256 or larger can handle
all I/O for each input almost perfectly.

VI. DISCUSSION AND FUTURE WORK

Our experiments show that the usage of a dedicated cache
enhanced memory especially for the inference of CNNs can
be highly effective. Small caches in the category of 1 KB are
able to achieve very high hitrates and can balance the runtime
delays produced by cheaper and slower flash memory. This is
mainly due to the efficient memory planning of the TFLM.
Because the majority of relevant memory access related to
CNNs has an adjacent character, the overall performance is
boosted. In contrast to the work of [7], [9], [11], [14], [15] we
did not modify the architecture of our CNN to lower its mem-
ory footprint. However, the application of those specialized
architectures could further reduce the memory requirements
and therefore complement our work. Our approach is strongly
related to the work of [16]. Both approaches leveraged flash
memory to be able to deploy larger networks. Because of
emerging low-power embedded flash technologies the general
idea does not necessarily violate the definition of TinyML,
which restricts the energy consumption of such devices to 1
mW. Our research differs from [16] because we used reactive
hardware instead of software based swapping techniques. As
a consequence, our approach does not produce high level



runtime overhead, and moreover it is reactive. Given that our
system caches only data access of the inference of a CNN,
and that inference itself is a deterministic task, we suggest
to following ways to further improve our design in future
work. This should include the design of a dedicated hardware
component which is able to determine the required data of
future operations and can prefetch those data in an asyn-
chronous way. Furthermore, our approach to caching works
well because TFLM uses incremental memory access which
supports the performance of cachelines. Future research should
also focus on finding more effective ways to store the static
and runtime data of neural network layer to further improve
the I/O rates. We took advantage of the freedom, flexibility,
and system view of VPs for our design. Because of this, we
were able to confirm the effectiveness of our design without
much overhead in development. To further support knowledge
transfer to industrial applications we suggest more experiments
with real hardware prototypes, including an analysis of the
throughput of CNNs with and without cache enhancement.
Another important aspect to consider by future investigations
is that our design is not optimized for memory bus traffic.
In some cases, data is loaded from the flash/cache into CPU
registers and then into the main memory and back; this can
clearly be optimized. Another direction for follow-up research
could focus on the integration of our design in dedicated
hardware accelerators to further increase the throughput of the
network. In summary, we consider our work to be an important
first step, leading to more research in memory optimization
architectures for the inference of DL models on edge devices.

VII. CONCLUSION

We have shown that using a dedicated memory for the
inference of CNNs on tiny edge devices together with caches
can be highly effective. To achieve this, we have extended a
VP with all necessary components and run inference of two
different CNNs on it. We used caching as a proven technique
to increase I/O access of slower flash memory. Moreover,
we showed that the memory planning of TFLM supports
caching very effectively and can therefore be tightly coupled
with general purpose caches in the TinyML context. To the
best of our knowledge, dedicating both static and runtime
memory to a cache enhanced memory is a novel concept.
Our work has shown this is promising avenue for future
research. In particular, we plan to improve upon our work
by also considering accurate timing information and perform
an evaluation at the register-transfer level.

REFERENCES

[1] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes, M.-L.
Shyu, S.-C. Chen, and S. S. Iyengar, “A survey on deep learning:
Algorithms, techniques, and applications,” ACM Comput. Surv., vol. 51,
no. 5, sep 2018. [Online]. Available: https://doi.org/10.1145/3234150

[2] M. P. Véstias, R. P. Duarte, J. T. de Sousa, and H. C. Neto, “Moving
deep learning to the edge,” Algorithms, vol. 13, no. 5, 2020. [Online].
Available: https://www.mdpi.com/1999-4893/13/5/125

[3] C. R. Banbury, V. J. Reddi, M. Lam, W. Fu, A. Fazel, J. Holleman,
X. Huang, R. Hurtado, D. Kanter, A. Lokhmotov, D. A. Patterson,
D. Pau, J. Seo, J. Sieracki, U. Thakker, M. Verhelst, and P. Yadav,
“Benchmarking tinyml systems: Challenges and direction,” CoRR, vol.
abs/2003.04821, 2020. [Online]. Available: https://arxiv.org/abs/2003.
04821

[4] W. Banerjee, “Challenges and applications of emerging nonvolatile
memory devices,” Electronics, vol. 9, no. 6, 2020. [Online]. Available:
https://www.mdpi.com/2079-9292/9/6/1029

[5] H. Liu, D. Chen, H. Jin, X. Liao, B. He, K. Hu, and Y. Zhang,
“A survey of non-volatile main memory technologies: State-of-the-arts,
practices, and future directions,” CoRR, vol. abs/2010.04406, 2020.
[Online]. Available: https://arxiv.org/abs/2010.04406

[6] “RISC-V virtual prototype,” https://github.com/agra-uni-bremen/
riscv-vp, 2022.

[7] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <1mb model size,” CoRR, vol. abs/1602.07360, 2016.
[Online]. Available: http://arxiv.org/abs/1602.07360

[8] J. Pedoeem and R. Huang, “YOLO-LITE: A real-time object
detection algorithm optimized for non-gpu computers,” CoRR, vol.
abs/1811.05588, 2018. [Online]. Available: http://arxiv.org/abs/1811.
05588

[9] A. Kusupati, M. Singh, K. Bhatia, A. Kumar, P. Jain, and M. Varma,
“Fastgrnn: A fast, accurate, stable and tiny kilobyte sized gated recurrent
neural network,” p. 9031–9042, 2018.

[10] R. B. Girshick, “Fast R-CNN,” CoRR, vol. abs/1504.08083, 2015.
[Online]. Available: http://arxiv.org/abs/1504.08083

[11] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” International Conference on Learning Representations (ICLR),
2016.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, Eds., vol. 25. Curran Associates, Inc.,
2012. [Online]. Available: https://proceedings.neurips.cc/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[13] K. Simonyan and Z. Andrew, “Very Deep Convolutional Networks For
Large-Scale Image Recognition,” pp. 1–14, 2015.

[14] R. Krishnamoorthi, “Quantizing deep convolutional networks for effi-
cient inference : A whitepaper,” 2018.

[15] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low
precision weights and activations,” CoRR, vol. abs/1609.07061, 2016.
[Online]. Available: http://arxiv.org/abs/1609.07061

[16] H. Miao and F. X. Lin, “Enabling large nns on tiny mcus with
swapping,” CoRR, vol. abs/2101.08744, 2021. [Online]. Available:
https://arxiv.org/abs/2101.08744

[17] M. Xu, M. Zhu, Y. Liu, F. X. Lin, and X. Liu, “Deepcache: Principled
cache for mobile deep vision,” in Proceedings of the 24th Annual
International Conference on Mobile Computing and Networking, 2018,
p. 129–144.

[18] IEEE Standard SystemC Language Reference Manual, IEEE Std. 1666,
2011.

[19] T. De Schutter, Better Software. Faster!: Best Practices in Virtual
Prototyping. Synopsys Press, March 2014.

[20] R. David, J. Duke, A. Jain, V. J. Reddi, N. Jeffries, J. Li, N. Kreeger,
I. Nappier, M. Natraj, S. Regev, R. Rhodes, T. Wang, and P. Warden,
“TensorFlow Lite Micro: Embedded Machine Learning on TinyML
Systems,” 2020. [Online]. Available: http://arxiv.org/abs/2010.08678

[21] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition, 2009, pp. 248–255.

[22] C. R. Banbury, C. Zhou, I. Fedorov, R. M. Navarro, U. Thakker,
D. Gope, V. J. Reddi, M. Mattina, and P. N. Whatmough, “Micronets:
Neural network architectures for deploying tinyml applications on
commodity microcontrollers,” CoRR, vol. abs/2010.11267, 2020.
[Online]. Available: https://arxiv.org/abs/2010.11267

[23] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” CoRR, vol. abs/1704.04861,
2017. [Online]. Available: http://arxiv.org/abs/1704.04861

https://doi.org/10.1145/3234150
https://www.mdpi.com/1999-4893/13/5/125
https://arxiv.org/abs/2003.04821
https://arxiv.org/abs/2003.04821
https://www.mdpi.com/2079-9292/9/6/1029
https://arxiv.org/abs/2010.04406
https://github.com/agra-uni-bremen/riscv-vp
https://github.com/agra-uni-bremen/riscv-vp
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1811.05588
http://arxiv.org/abs/1811.05588
http://arxiv.org/abs/1504.08083
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
http://arxiv.org/abs/1609.07061
https://arxiv.org/abs/2101.08744
http://arxiv.org/abs/2010.08678
https://arxiv.org/abs/2010.11267
http://arxiv.org/abs/1704.04861

	Introduction
	Related Work
	Preliminaries
	Virtual Prototyping using SystemC
	Tensorflow Lite Micro (TFLM)

	Methodology
	Design Decisions
	Platform Overview
	Cache Behavior and Integration

	Evaluation
	Setup
	Results
	Interpretation

	Discussion and Future Work
	Conclusion
	References

