
Unified HW/SW Coverage:
A Novel Metric to Boost Coverage-guided Fuzzing
for Virtual Prototype based HW/SW Co-Verification

Niklas Bruns
Institute of Computer Science

University of Bremen
Bremen, Germany

nbruns@uni-bremen.de

Vladimir Herdt
Institute of Computer Science

University of Bremen
Cyber-Physical Systems

DFKI GmbH
Bremen, Germany

vherdt@uni-bremen.de

Rolf Drechsler
Institute of Computer Science

University of Bremen
Cyber-Physical Systems

DFKI GmbH
Bremen, Germany

drechsler@uni-bremen.de

Abstract—Coverage-guided Fuzzing (CGF) has been shown to
be a very effective verification technique in the Software (SW)
domain. However, the application of CGF in the embedded
system domain is much more limited so far. Beside the necessary
integration effort of the fuzzing engine, a main limiting factor is
the employed coverage metric to guide the CGF process. Since
embedded systems integrate Hardware (HW) and SW parts, the
coverage metric should reflect both parts instead of reasoning
exclusively about the SW execution in the CGF process.

Therefore, in this paper, we propose a novel unified HW/SW
coverage metric to boost state-of-the-art CGF for HW/SW co-
verification. Following the modern design flow for embedded
systems, we leverage a Virtual Prototype (VP) to represent the
HW part. We designed effective representations of the unified
HW/SW coverage to capture all relevant coverage information
at run time in the VP and tailored it for integration with a
modern CGF process. Our RISC-V experiments demonstrate the
practical applicability of our proposed approach. Our proposed
unified HW/SW coverage can be effectively managed at runtime
and enables to reach deeper bugs compared to existing state-of-
the-art CGF.

I. INTRODUCTION

The fast-growing Internet-of-Things (IoT) domain has unleashed
a high demand for scalable and customized computing cores with
rapidly changing requirements. As a reaction, Instruction Set Ar-
chitectures (ISAs) are moving into the focus of the attention in
the design flow. In particular, the modern free and open source
RISC-V [1], [2] ISA has experienced a significant boost, as RISC-
V is designed in a modular and extensible way in order to facilitate
building application-specific processors.

The usual starting point for defining an Instruction Set Ex-
tension (ISE) is profiling of the Software (SW) application. The
computationally most demanding segments, known as hot spots,
are identified in this step. These hot spots are then analyzed in
turn to identify instructions that should be optimized to boost the
execution performance or reduce the power consumption of the
overall system. The potential optimisations are evaluated using
Instruction-Set Simulators (ISSs) as part of an Virtual Prototype

(VP) in modern design flows [3], [4]. A VP is essentially an exe-
cutable abstract model of the entire Hardware (HW) platform and
often implemented using C++-based hardware description libraries.

However, not only rapid development methods are essential to
achieve a short time-to-market, but also highly efficient verifica-
tion approaches. Thanks to their scalability and user-friendliness,
simulation-based verification techniques are still popular in this
context. The verification approach named fuzzing enjoys extraor-
dinary popularity and tremendous success in various application
fields of the SW domain. The historic root of fuzzing goes back
to [5] as a randomized test generation technique. Nowadays, state-
of-the-art fuzzing techniques are guided by coverage and rely on
mutation-based algorithms to generate new inputs. There are two
common ways to measure coverage to guide fuzzers. One metric
is to count the execution of Basic Blocks (BBs), and the other one
is edge coverage, which counts the transitions between two BBs.
The two most prominent and successful Coverage-guided Fuzzers
(CGFs) are LLVM libFuzzer [6] and AFL [7]. In contrast to the
software area, the application of fuzzing in the hardware area is
still minimal. Moreover, embedded systems include HW and SW
components and thus it is important to integrate coverage metrics
into the fuzzing process that allow reasoning about the HW and SW
execution in combination.

Contribution: In this paper, we propose a novel unified
HW/SW coverage metric to enhance state-of-the-art CGF for
HW/SW co-verification. Following the modern design flow for
embedded systems, we leverage VPs to represent the HW part.
The SW part is then executed on the VP. Both VP and SW are in-
strumented accordingly to collect coverage information at runtime
which we combine into our proposed unified HW/SW coverage. We
designed effective representations of the unified HW/SW coverage
and tailored them for integration with a modern coverage-guided
fuzzing process. As a case study, we leveraged the AFL fuzzer [7]
as the underlying fuzzing engine and the open source RISC-V
VP [8] for SW execution. Our evaluation consists of two parts.
First, a performance evaluation of employing the unified HW/SW
coverage based on the modern Embench benchmark set, designed
specifically for embedded applications. Second, an assessment of
the verification quality of unified HW/SW coverage using a ver-
ification task with a practical HW/SW example application that978-1-6654-7332-3/22/$31.00 ©2022 IEEE

integrates an ISE at the VP-level in combination with CGF. Our
experiments show that our proposed unified HW/SW coverage can
be effectively managed at runtime and enables to reach deeper bugs
compared to normal state-of-the-art CGF. As such unified HW/SW
coverage is a practical metric to boost the HW/SW co-verification
process in a VP-based design flow.

II. RELATED WORK

Fuzzing can look back at a long and successful history in the SW
verification domain to the point that modern CGF-based approaches
are integrated on a large scale by industry [9], [10]. The ongoing
success story has sparked a strong interest in the research commu-
nity to further improve fuzzing-based approaches and broaden their
scope beyond verification of high-level application SW.

In the embedded SW domain several approaches to improve
state-of-the-art CGF based on AFL have been proposed. The fuzzer
AFL [7] itself supports the so-called QEMU mode that executes the
SW binary using the emulator QEMU. In contrast to our approach,
AFL with QEMU mode does not consider HW coverage and uses
traditional edge coverage that has a known hash collision issue.
This issue is resolved by CollAFL [11], which is an approach
to minimize the hash collision issue of AFL using multiple hash
functions that are selected based on how many precedents one
BB has. Another approach is PathAFL [12], which makes path
coverage usable for SW fuzzing. Unlike our approach, it does not
enhance the coverage granularity by considering the HW coverage
but reduces the granularity of SW path coverage. Unified HW/SW
Coverage is so accurate that it even considers information of every
executed instruction. Also, PathAFL uses a weak hashing function
for the paths, which inevitably leads to hashing collisions and
reduced coverage accuracy. Moreover, these approaches do not
integrate HW and SW coverage in a unified representation.

On the interface between HW and SW, fuzzing has also been
leveraged to verify instruction set simulators, i.e. abstract SW
models that emulate a CPU. [13] targets assembly test generation
for the RISC-V ISA, guided by coverage metrics embedded in the
ISS and mutations tailored for RISC-V instruction sequences. [14]
employ fuzzing to generate test cases for a wide range of different
simulators by relying on generic randomized techniques. However,
these verification approaches target a different abstraction level
than ours and only utilize the coverage of the SW model of the
ISS.

Looking beyond the SW level, designated fuzzing approaches
have been designed for verification at the HW level, e.g. [15], [16]
targeting the register-transfer level, but pure HW verification is not
the focus of our approach.

Finally, [17] proposed a CGF-based verification approach that
leverages HW and SW coverage based on LLVM libFuzzer. How-
ever, the approach considers the HW and SW coverage in isolation
instead of using a unified representation.

III. UNIFIED HW/SW COVERAGE-BASED VERIFICATION

In this section, we present our proposed unified HW/SW cover-
age and how it can be used for early SW verification in a HW/SW
co-design flow. The key idea of our unified HW/SW coverage is to
improve coverage measurement granularity through the enrichment
of the SW coverage with the coverage of a VP that represents the
HW and acts as an executable model for the SW. The enhanced
coverage granularity has the goal of improving the guidance for the
test generation through the fuzzer.

Our key idea resembles the target enlargement technique named
virtual coverage [18] that has the goal of enhancing coverage-
guided verification performance by improving the coverage gran-
ularity through inserting synthetic coverage points. However, the
difference is that in opposite to virtual coverage, unified HW/SW
coverage does not use synthetic coverage points but real coverage
points of the VP that is used to execute the SW.

As a running example we use a RISC-V ISE. In particular, the
32bit DIVision (DIV) instruction which is specified in the RISC-
V multiplication/division standard ISE [1]. The DIV instruction
performs a 32 by 32 bits signed division of the two source registers,
rounding towards zero, and storing the result in a destination
register. The semantics for the special cases of division by zero and
division overflow are summarized in Table I.

A coverage metric that is only based on SW coverage like typical
edge coverage does not differentiate between different cases of an
instruction. In the case of the instruction DIV, a coverage metric
would not differentiate if a normal division, division by zero, or a
division overflow was executed, i.e.: edge coverage is purley based
on branches in the SW and does not differentiate different HW
execution cases of instructions.

TABLE I
SEMANTICS FOR RISC-V DIVISION BY ZERO AND DIVISION OVERFLOW.
Condition Dividend Divisor DIV
Division by zero x 0 −1
Overflow (signed only) −2L−1 −1 −2L−1

In the following, we give an overview of our verification ap-
proach that is using unified HW/SW coverage.

A. Overview
An overview of our approach is shown in Fig. 1. Our approach

starts with the C/C++ program source code of the to be verified SW,
which is compiled with the aid of the LLVM-Toolchain and C/C++
libraries into LLVM-Bytecode (top of Fig. 1). The LLVM-Bytecode
is instrumented using our designated custom instrumentation pass
to collect the coverage information (top right of Fig. 1). At every
start of a Basic Block (BB), our instrumentation pass adds a write
instruction. The write instruction writes the BB ID to a special
memory address mapped to a designated Coverage Observer pe-
ripheral. The instrumented LLVM-Bytecode is compiled and linked
into an executable RISC-V ELF file. The ELF file is loaded into the
memory of the VP in order to execute it. The VP is instrumented
like the SW. The difference is that the BB IDs are not written to
a special memory address but are directly passed by calling the
Coverage Observer peripheral coverage functionality. Additionally
to the ELF file, a test vector is loaded into the memory of the
VP. This test vector is generated by a coverage-guided Fuzzer
using Mutations (bottom of Fig. 1). The SW and HW coverage
points are collected in the Coverage Observer during the execution.
The injected SW coverage code is interpreted in the CPU Core
(implemented as an instruction set simulator) that executes the
write instructions using the given memory interface. The write
operation triggers a TLM 2.0 write transaction that is routed by the
instrumented TLM 2.0 Bus to the Coverage Observer peripheral. To
prevent huge performance differences and potential endless loops,
the HW coverage instrumentation calls the Coverage Observer di-
rectly. If the HW coverage instrumentation used write-transactions,
HW coverage points would trigger HW coverage points in the
bus by themselves. All components of the VP are instrumented to
allow the measurement of the whole functionality of the VP. The

C/C++
Programm

C/C++ Library Compile to Bytecode LLVM-Bytecode

LLVM-Toolchain

Custom Instrumentation Pass

Instrumentation &
Compile & Link

Executable
RISC-V ELF File

Virtual Prototype
Architecture

(Main)
Memory

Load into
MemoryInstrumented

RV32IM CPU-Core

Instrumented TLM 2.0
Bus

Memory-Interface

Test Vector

Seeds Fuzzer Mutations

Coverage
Observer

Other Instrumented
Peripherals / Controllers

HW-Cov

Unified-Cov

HW-Cov
TLM 2.0
Transactions

Load into
Memory

Legend: TLM 2.0 Transaction Hardware Coverage

Testset

Fig. 1. Overview: Unified HW/SW Coverage-based Verification Flow

Coverage Observer peripheral combines the coverage of the VP and
SW into a new fine-grained unified HW/SW coverage metric, which
is used to guide the test generation process in the fuzzer (bottom of
Fig. 1). Beside the coverage feedback, the fuzzer is initialized with
a seed of initial test vectors in the beginning and produces a test set
that maximizes the unified HW/SW coverage as the final result.

In the following Section III-B we describe the structure of our
new unified HW/SW coverage metric. Afterwards, we explain in
Section III-C how unified HW/SW coverage is measured dynami-
cally. Last but not least, Section III-D describes how the fuzzer uses
unified HW/SW coverage to guide the test generation.

B. Unified HW/SW Coverage

In this section we describe our novel unified HW/SW coverage
metric. We illustrate the structure and properties of the metric
through a step-by-step transformation of the coverage trace of our
running example into a unified HW/SW coverage representation.
The source code of the SW part for our running example is shown
in Fig. 2 and Fig. 3 shows the corresponding SW coverage point
trace. The source code uses a loop that iterates over the values
−1, 0, 1, 2. The values are used to call the previously introduced
DIV instruction (see: Table I). Hence, the loop calls the Division by
zero case, the Overflow case and two times the normal case of the
instruction (four times SW1). In the following, we present our idea
in 3 steps.

1 i n t r e s u l t = 0 ; / /SW0
2 f o r (i n t i = −1; i < 3;++ i) {
3 r e s u l t += INT32 MIN / i ; / /SW1
4 }
5 r e t u r n r e s u l t ; / /SW2

Fig. 2. DIV example SW part

SW0start SW1 SW1 SW1 SW1 SW2

Fig. 3. Generated SW coverage point trace by the DIV example SW

Step 1: Coverage Trace Splitting: Fig. 4 shows firstly the path
coverage trace and a trace that was transformed into a correspond-
ing edge coverage.

Every coverage trace begins with a sequence of HW coverage
points related to the initialization of the VP, the loading of the SW
binary, and the parsing of the first instruction (see: HW0). The first
SW coverage point represents the first executed BB of the SW
(see: SW0). This SW coverage point is followed by a sequence
of HW coverage points that belong to the executed instructions
of the BB (see: HW... that represents multiple HW nodes). This
sequence is terminated by the next SW coverage point representing
the beginning of the following BB (see: SW1). This structure is
repeated until the trace ends with a sequence of HW coverage
points that represent the last executed BB and the termination of
the simulation.

Directly under the unprocessed coverage trace, the diagram in
Fig. 4 shows the coverage trace split using the SW coverage
points as delimiters and with added frequency counters. The added
counters measure, how often the edges between coverage points
were traversed. It is sufficient to add the counter to the last edge of
a split coverage trace because all other edges of this linear trace are
executed just as frequently as the last edge. The splitting prevents
scalability issues, because it reduces the coverage data size by a
big magnitude. As result of the splitting, the coverage traces only
represent how often a path between two SW coverage points was
executed, and not the exact execution order of all SW coverage
points. This coverage trace resembles the traditional edge coverage
with the substantial difference, that it contains HW coverage points
that were ignored until now.

Now we zoom into the HW coverage points, that were put

HW0start HW... SW0 HW... SW1 HW... SW1 HW... SW1 HW... SW1 HW... SW2 HW... HWN

HW0start HW... SW0 SW0 HW... SW1 SW1 HW... SW1 SW1 HW... SW2 SW2 HW... HWN
Counter Counter Counter Counter Counter

Fig. 4. HW/SW path coverage trace and the corresponding edge coverage

1 vo id ISS : : exec step () {
2 . . . / /HW21
3 swi tch (op) {
4 . . .
5 case Opcode : : DIV : {
6 / /HW42
7 REQUIRE ISA(M ISA EXT) ;
8 auto a = regs [i n s t r . rs1 ()] ;
9 auto b = regs [i n s t r . rs2 ()] ;

10 i f (b == 0) {
11 / /HW43
12 regs [i n s t r . rd ()] = −1;
13 } else i f (a == REG MIN && b == −1) {
14 / /HW44
15 regs [i n s t r . rd ()] = a ;
16 } else {
17 / /HW45
18 regs [i n s t r . rd ()] = a / b ;
19 }
20 / /HW46
21 } break ;
22 . . .
23 }
24 . . .
25 }

Fig. 5. DIV Instruction Source: rv32/iss.cpp [8]

aside until now. Fig. 5 shows the HW implementation of the DIV
instruction of our running example and Fig. 8 presents the path
coverage trace between the coverage points SW0 and SW1. The
function exec step of the VP, which has the purpose to execute the
instructions of the SW, begins with a HW coverage point called
HW21. This function contains a huge switch with cases for every
supported instruction. The case for the DIV instruction begins with
HW42. Each division case begins with a different HW coverage
point:

• Division by zero: HW43
• Overflow: HW44
• Normal division: HW45

After the division, the instruction ends with HW46.
The execution of the coverage trace between SW0 and SW1

begins with the parsing of the first instruction of the BB with the
SW coverage point SW0 and is followed by the call of the function
exec step. This function is called for every instruction. The exe-
cution of the division instruction starts with HW42, followed by
HW44 for the Overflow case and ends with HW46. As you can
see easily, i.e. the SW21 is repeated very regularly and makes the
coverage trace very long. Later in the performance evaluation (see:
Section IV-A), we show, why it is not reasonable to use this path-
based coverage for CGF. In the next step, we optimize the coverage
trace for scalilibity.

SW0start HW... HW21 HW... HW42 HW44 HW46 HW... SW1

Counter
Counter

Counter

Fig. 6. SW0-SW1 Repeating Node Removal

Step 2: Removing Repeated HW Coverage Points: Fig. 6 shows
the coverage trace without repeating HW coverage points. The
repeated HW coverage points are removed, and a back edge is
inserted. The objective of this step is to compress the coverage
trace. The insertion of the back edges leads to an exception to the
conjecture that only one counter per trace is needed because they
lead to deviated edge transition frequencies. In order to handle this,
we added additional counters at the back edges. The removal of
repeating coverage points and the insertion of back edges reduce
the execution order accuracy of the HW coverage points. Later in
the performance evaluation (see: Section IV-A), we show, why we
can not omit this step.

SW1start HW... HW21 HW... HW42 HW43

HW45

HW46 HW... SW1

SW2

Counter

Counter

Counter

Counter

Counter

Fig. 7. SW1 to SW1 and SW2

Step 3: Merging of the Coverage Traces: Fig. 7 shows the merged
coverage traces between SW1 and SW1 and between SW1 and
SW2.

The difference between the two SW1-SW1 traces is, that one
case is executed with the value 0 as divisor (Divison by Zero) and
the other with 1 (Normal Case). As a consequence, these two traces
have only the difference, that one includes HW43 (Division by
Zero) and the other HW45 (Normal Case). To merge these two
traces, we insertHW45. Because the child (46) of this node already
exists in this trace, we insert a back edge as explained in step 2
Repeating Node Removal. Now we have merged these two traces.
So the only thing missing is the trace SW1-SW2. This edge contains
a normal case division that is already in the merged trace. Thus, to
merge this trace into the already merged traces, we only need to
add SW2 as leaf. In order to merge all coverage traces and not only
traces with the same starting coverage point, we introduce a root
node in order to create a unified graph structure. To this root node,
we attach all generated traces like the traces in Fig. 7 and Fig. 6.
As a result, the graph has a tree like structure with additional back
edges. In the following, we label the direct child nodes of the root
node as progenitors. The indirect childs of the progenitors are called
descendants. The terminating childs of the tree like graph are called
leafs. The leafs are the delimiting coverage points which mark the
end of the coverage traces.

The transformations until now, described how a full coverage
trace was transformed into unified HW/SW coverage. The advan-
tage of this new metric in opposite to edge coverage is, that it
is much more fine-grained through the enrichment with partial
execution order informations and execution frequencies of the VP.
In the practical usage of unified HW/SW coverage, the graph
structure is not built on the base of a whole execution trace but
dynamically during the run time. In the following, we describe the
functionality of the Coverage Observer peripheral and, especially,
how to build the unified HW/SW coverage graph dynamically.

SW0start HW... HW21 HW... HW21 HW... HW42 HW44 HW46 HW... HW21 HW... SW1
Counter

Fig. 8. DIV Instruction path coverage trace between SW0 and SW1:

C. Coverage Observer
In the following, we describe the functionality of our Coverage

Observer. Algorithm 1 describes how the coverage is measured in

Algorithm 1 covHW
1: procedure COVHW(id)
2: if node = root then
3: node← getOrCreateChild(node, id)
4: progenitor ← node
5: else
6: if isChildOf(node, id) then
7: node← getChild(id)
8: else
9: if isDescendantOf(node, id) then

10: decendant← getDescendant(id)
11: backedge← AddEdge(node, decendant)
12: saveBackEdge(progenitor, backedge)
13: node← decendant
14: else
15: node← getOrCreateChild(node, id,HW)
16: saveDescendant(progenitor, node)
17: end if
18: end if
19: end if
20: end procedure

the case a HW coverage point is hit. At the start of the simulation,
the variable node is initialized with the auxiliary root node. If a
HW coverage point was hit, the function covHW is called. First,
the function checks if the current node is the root node. In this
case, the hit HW coverage point is the first coverage point of
the overall coverage trace (cf.: Fig. 4). Thereupon, a new node is
created using the function getOrCreateChild, and the associated
coverage point frequency counter is set to value one. Additionally,
the new node is set as the current progenitor node. A progenitor
node is the first coverage point node of every split coverage trace.
The additional auxiliary duty of the progenitor node is to keep
record of subsequently created nodes (descendants) and back edges.
If the current node is not the root node, the algorithm checks if
the new hit coverage point is already a known child node of the
current node. If so, the next node is received from the current node
using the function getChild. If the newly hit HW coverage point
is not a known child of the current node, the algorithm checks if
it is a known descendant of the current progenitor node. In this
case, a new back edge is inserted between the current node and the
descendant, and the newly created edge is saved in the progenitor
node. Consequently, the current node is set to the descendant node.
This just described functionality of back edge creation serves the
purpose of realizing the repeating HW coverage point removal (cf.:
Fig. 6). If the hit HW coverage point is neither a known child nor
descendant, then a new node will be created using the function
getOrCreateChild, set as current node, and saved as a descendant
of the progenitor node. In the following, we describe how to handle
SW coverage points.

Algorithm 2 describes how the coverage is measured in the case
an SW coverage point is hit. If an SW coverage point is hit, the
algorithm gets or creates a SW node using getOrCreateChild.
Additionally, this function increases the associated coverage point

Algorithm 2 covSW
1: procedure COVSW(id)
2: node← getOrCreateChild(node, id, SW)
3: terminate()
4: node← getOrCreateChild(node, id, SW)
5: progenitor ← node
6: end procedure

frequency or sets it to value one. Next, the coverage trace is
terminated using the algorithm, that is shown in Algorithm 3. The
current node was set to the root node in the terminate function.
It follows the repeated call of getOrCreateChild to get or create
the next progenitor node. Thus, the covSW algorithm realizes
the splitting of the coverage trace using SW coverage points as
delimiters. In contrast to Algorithm 1, it is not necessary to check
if a node is the root node because the first hit coverage point of a
whole simulation is never a SW coverage point (cf.: Fig. 4). In the
following, we describe the terminate function.

Algorithm 3 terminate
1: procedure TERMINATE(node)
2: for be ∈ progenitor.backedges do
3: if be.count 6= 0 then
4: beResults← beResults ∪ {(be.id, be.count)}
5: be.count← 0
6: end if
7: end for
8: result← (node.counter, beResults)
9: node.counter ← 0

10: if result ∈ node.resultMap then
11: result.counter ← result.counter + 1
12: else
13: result.counter ← 1
14: node.resultMap← node.resultMap ∪ result
15: end if
16: if node 6∈ terminals then
17: terminals← terminals ∪ node
18: node← root
19: progenitor ← ε
20: end if
21: end procedure

The Algorithm 3 function describes how a coverage trace is
terminated, and coverage point hit frequencies are saved. First, this
function iterates over every back edge of the progenitor node and
checks if any was hit. The edge id and counter are concatenated to
the beResult list if a back edge was hit. Next, the node frequency
counter and the beResult are united to the variable result. After-
ward, it is checked if result is already in the resultMap of the last
node of the coverage trace. In this case, the corresponding counter
is increased. Otherwise, the counter is set to one, and the result
will be saved in the resultMap. Last but not least, the algorithm
checks if the set terminals contains the last node of the trace and
otherwise inserts the node to the set. The set terminals is essential
because the total coverage is collected through the iteration over
the terminal nodes at the end of a simulation run. At the end of the
simulation, this function is called one more time because the overall
coverage trace ends with a HW coverage point (cf.: Fig. 4).

D. Fuzzer
In the following, we describe how a fuzzer can use our unified

HW/SW coverage metric to generate test vectors. First, the fuzzer
connects to the VP through a network connection. The fuzzer writes
the to be evaluated test vector in a file and sends the command
to start the VP simulation. Thereupon, the VP forks the process
and starts the simulation. After the simulation ends, the VP col-
lects the coverage and sends it back to the fuzzer. The coverage
data consists of the hit frequency information and the structure
of the newly found coverage paths. Next, the fuzzer processes
the coverage data using the ResultEvaluator. The ResultEvaluator
checks whether new paths were created or known paths have
unknown hit frequencies. Internally, the ResultEvaluator manages
the hit frequency of the coverage paths using a tree structure.
According to the execution result of the executed test vector, the
ResultEvaluator uses a dedicated tree. Traditionally, the execution
results are grouped in Queue, Crash, and Timeout. Queue describes
a normal execution resulting in the return value 0 and Crash is
characterized with return value 6= 0. The group timeout contains
test vectors whose execution run time overshoot a defined run
time limit. In order to keep the coverage structure consistent, the
fuzzer initializes the VP coverage structure with an increment if
new paths are detected. The new path coverage structure is helpful
for prioritizing test vectors that disclose new coverage paths. In
addition, the incremental initialization saves runtime because the
whole coverage graph does not have to be created repeatedly.

IV. EVALUATION

In this paper, we propose a unified HW/SW coverage metric
to enhance state-of-the-art CGF verification performance in the
context of HW-SW co-design to verify whole product prototypes
including the Device Under Test (DUT) and Software Under Test
(SUT).

In the following, we present our evaluation. The evaluation is
divided into two parts. The first part is a case study with the goal
of benchmarking the performance of employing unified HW/SW
coverage. This case study was realized using the modern embedded
benchmark suite named Embench [19]. The second part is a verifi-
cation case study based on the fuzzer AFL [7], in version 2.52b, in
combination with our unified HW/SW coverage.

Since AFL suffers from a known hash collision issue where two
different edges could have the same hash1, we modified it using
a growing data structure (c.f.: CollAFL [11]). We conduct our
case study, based on this repaired version of AFL, and compare
AFL using unified HW/SW coverage against AFL that uses edge
coverage. The implementations of both case studies are based on
the open source RISC-V VP which is available at GitHub [20]. All
Experiments are conducted on a Linux laptop with an AMD Ryzen
7 PRO 4750U CPU and 32GB RAM.

A. Coverage Metric Benchmark
Fig. 9 shows the run time and Fig. 10 the memory results of

our Embench runs. In these diagrams, we compare the execution
of the original SW (original), edge coverage (edge), path-based
HW/SW coverage (path, see: Fig. 8 Step 2) and our unified HW/SW
coverage (HW/SW) with each other.

The average run time of the path-based coverage metric com-
pared to unified HW/SW coverage is higher by a factor of 1.58. The

1This is problematic because the fuzzer can not differentiate these edges,
which leads to coverage inaccuracy and restrict the verification capacity of
AFL.

Fig. 9. Embench Time Results

Fig. 10. Embench Memory Results

TABLE II
COVERAGE METRIC EVALUATION BASED ON Embench

Benchmark Original. Edge Coverage unified HW/SW coverage Result
Time(s) Memory(kb) Time(s) Fac. Memory(kb) Fac. #Cov.Traces Time(s) Fac. Fac2. Memory(kb) Fac. Fac2. #Cov.Traces

aha-mont64 3.58 39584.0 10.48 2.93 39784.0 1.01 45.0 17.7 4.94 1.69 43412.0 1.1 1.09 47.0 Match
crc32 2.07 39680.0 7.44 3.59 39692.0 1.0 22.0 12.44 6.01 1.67 41644.0 1.05 1.05 24.0 Match

cubic 2.37 39672.0 3.57 1.51 39928.0 1.01 47.0 5.97 2.52 1.67 47608.0 1.2 1.19 89.0 Mismatch
edn 3.29 39660.0 11.71 3.56 39968.0 1.01 91.0 19.81 6.02 1.69 48212.0 1.22 1.21 93.0 Match
huffbench 2.52 39772.0 10.63 4.22 40120.0 1.01 151.0 18.0 7.14 1.69 53012.0 1.33 1.32 153.0 Match
matmult-int 3.31 39732.0 12.4 3.75 39892.0 1.0 54.0 20.78 6.28 1.68 44520.0 1.12 1.12 56.0 Match
minver 1.87 39780.0 4.52 2.42 40084.0 1.01 125.0 7.81 4.18 1.73 53044.0 1.33 1.32 156.0 Mismatch
nbody 1.17 39784.0 2.02 1.73 39896.0 1.0 48.0 3.41 2.91 1.69 46084.0 1.16 1.16 87.0 Mismatch
nettle-aes 1.66 39772.0 3.9 2.35 40048.0 1.01 115.0 6.5 3.92 1.67 50512.0 1.27 1.26 117.0 Match
nettle-sha256 1.39 39624.0 3.34 2.4 40140.0 1.01 113.0 5.89 4.24 1.76 51480.0 1.3 1.28 115.0 Match
nsichneu 1.31 39676.0 7.65 5.84 42704.0 1.08 789.0 17.25 13.17 2.25 117276.0 2.96 2.75 791.0 Match
picojpeg 3.05 39580.0 11.93 3.91 41220.0 1.04 464.0 20.44 6.7 1.71 80028.0 2.02 1.94 484.0 Mismatch
qrduino 2.13 39728.0 9.46 4.44 41932.0 1.06 593.0 16.42 7.71 1.74 90600.0 2.28 2.16 606.0 Mismatch
sglib-combined 2.26 39788.0 12.46 5.51 41332.0 1.04 461.0 21.82 9.65 1.75 77080.0 1.94 1.86 464.0 Mismatch
slre 2.13 39840.0 10.74 5.04 40372.0 1.01 220.0 18.96 8.9 1.77 58668.0 1.47 1.45 225.0 Mismatch
st 1.2 39748.0 2.08 1.73 39760.0 1.0 47.0 3.54 2.95 1.7 48364.0 1.22 1.22 153.0 Mismatch
statemate 0.76 39804.0 2.02 2.66 39932.0 1.0 87.0 3.4 4.47 1.68 48248.0 1.21 1.21 89.0 Match
ud 2.45 39724.0 9.98 4.07 40056.0 1.01 78.0 16.89 6.89 1.69 46780.0 1.18 1.17 80.0 Match
wikisort 1.2 39772.0 3.87 3.22 40204.0 1.01 147.0 6.43 5.36 1.66 52440.0 1.32 1.3 185.0 Mismatch
sum 39.72 754720.0 140.2 64.88 767064.0 19.32 3697.0 243.46 113.96 32.89 1099012.0 27.68 27.06 4014.0
mean 2.09 39722.11 7.38 3.41 40371.79 1.02 194.58 12.81 6.0 1.73 57842.74 1.46 1.42 211.26
median 2.13 39732.0 7.65 3.56 40056.0 1.01 113.0 16.42 6.01 1.69 50512.0 1.27 1.26 117.0

average memory consumption of the path-based coverage metric
compared to our unified HW/SW coverage metric is higher by a
factor of 1.75. Particularly striking are the results of the benchmark
cubic because the memory consumption of the path-based coverage
metric is so high that execution crashes because no additional
memory can be allocated. Thus, we come to the conclusion that
path-based coverage metrics (i.e. used by PathAFL [12]) are not
usable for test generation that considers SW and HW coverage in a
unified representation.

Table II shows the full results of original SW, collision free edge
coverage and unified HW/SW coverage runs. For clarification, the
values in the column factor (Fac.) behind a memory or time column
are the factors of the difference between the last time or memory
value and the corresponding value of the original SW. The column
factor2 (Fac2.) is the difference between the last time or memory
value and the corresponding collision free edge coverage value.
The column #CovTraces contains number of unique coverage traces
(see: Fig. 6). The last column named Results, contains whether the
number of the unique coverage traces (#CovTraces) are matching.
Traditional edge coverage does not cover the initialization and the
final coverage trace of the HW. For this reason, the formula is as
follows:: match := covtraces(EDGE) + 2 == covtraces(V P).
Edge Coverage has an average run time overhead of the factor 3.41
and a memory overhead of the factor 1.02. In sum, edge coverage
finds 3697 unique coverage traces overall 19 benchmarks. Unified
HW/SW Coverage has a time overhead of the factor 6.0 in com-
parison to the normal SW and of the factor 1.73 in comparison to
edge coverage. The average memory usage of the unified HW/SW
coverage compared to the normal SW is higher by a factor of 1.46
and 1.42 compared to edge coverage. Overall, unified HW/SW
coverage finds 4014.0 unique coverage traces. In 9 benchmarks,
unified HW/SW coverage finds more unique coverage traces than
edge coverage (see column: Result). Thus, we have shown that uni-
fied HW/SW coverage is a more granular coverage metric, on the
widespread Embench benchmark set. It finds more coverage traces
in 9/19 cases using the standard multiplication/division extension
[1]. Additionally, we showed that our coverage metric has a low
overhead and is consequently very suitable for coverage-guided
verification.

B. Verification Benchmark

For our verification case study, especially in the context of
HW/SW co-design using VPs, we designed a new verification
benchmark inspired by typical fuzzing benchmarks. The bench-
mark considers the exceptional strength of fuzzers to verify branch-
based targets. The benchmark consists of SW that interacts with
a newly designed RISC-V Instruction Set Extension (ISE). The
SW reads a 64bit long test vector into variables. The HW im-
plementation of the ISE evaluates 32bit of the data. The result
of the ISE and the other 32bit of the test vector are used in the
SW. Because fuzzing is based on random mutations, a convincing
fuzzing case study needs multiple runs and a statistical evaluation.
Our case study uses seven fuzzing runs and the Mann-Whitney U
statistical test. Mann-Whitney U is a non-parametrical statistical
test suitable for small sample sizes because it does not assume
a normal distribution [21]. To make the case study realistic, the
fuzzing runs have a run time limit of 24 hours and use random
seeds. As a corpus, we considered the 64bit long value 0x00000000.

Fig. 11 illustrates the fuzzer execution results of our case study.
It allows comparisons between the executions of the state-of-the-art
fuzzer AFL using collision free edge coverage (edge0-6) and AFL
using our unified HW/SW coverage (HW/SW0-6). The diagram on
the left shows how many test vectors, which increase the coverage,
were generated over time (logarithm scale). The table on the right
shows the final results of the runs. For clarification, the values in the
column Count are the number of the test vectors that increase the
coverage. Moreover, the column time contains the runtime needed
to find the error. The rows of the runs edge0-6 show that every edge
coverage-based verification run generates four test vectors. This
can be attributed to the low granularity of edge coverage. This low
granularity also leads to the fact that not one of the runs could find
the error within the run time limit. The corresponding lines in the
diagram on the left show a high variance in how fast the few test
vectors could be found. The runs HW/SW0-6, generated between
91 and 105 test vectors before every run has found the error. The
U-value for the generated test vectors is 0. The critical value of U
at p < 0.01 is 6. Therefore, the result is significant at p < 0.01. The
z-score is 3.06661. The p-value is 0.00107. Therefore, the result is
significant at p < 0.01. The fuzzer needed between 1.43 hours and
4.4 hours to find the error. For the run time, the U-value is 0, the z-
score is −3.06661 and the p-value is 0.00107. Therefore, the result

Run Count Time (ms)
edge0 4 Timeout
edge1 4 Timeout
edge2 4 Timeout
edge3 4 Timeout
edge4 4 Timeout
edge5 4 Timeout
edge6 4 Timeout
HW/SW0 101 12207030.0
HW/SW1 105 6423712.0
HW/SW2 96 5158201.0
HW/SW3 104 15822805.0
HW/SW4 91 8742939.0
HW/SW5 100 7832289.0
HW/SW6 102 10251573.0

Fig. 11. Verification Results

is significant at p < 0.01. Thus, it can be seen that the results of
our verification case study are statistically highly significant. The
fact that every fuzzer run that uses unified HW/SW coverage finds
the error demonstrates that our fine-grained coverage metric is, in
comparison to edge coverage, much more suitable to guide fuzzing
to perform a deeper state space exploration.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel unified HW/SW cov-
erage metric that enhances the verification performance of CGF
significantly.

In the performance benchmark experiments based on embench,
we have been able to show that 1) path-based coverage is not
suitable for HW/SW verification, and 2) that unified HW/SW
coverage has a low-performance overhead and is more fine-grained
than edge coverage. As a verification case study, we considered
a practical example combination of SW and an ISE of the RISC-
V RV32I ISA that is especially tailed for the characteristics of
coverage-guided test generation. Our results show that a state-of-
the-art fuzzer reaches deeper bugs with unified HW/SW coverage
than with existing edge coverage.

In addition, we envision three extensions to improve CGF with
our unified HW/SW coverage further, by boosting coverage maxi-
mization in the CGF process:

1) Initialize the unified HW/SW coverage graph using structural
information that are obtained using static analysis during the
instrumentation.

2) Optimize the seed selection and mutation heuristics-based on
the unified HW/SW coverage.

3) Integrate with other test generation methods and bootstrap-
ping of the fuzzer for ISE-based verification targets using test
vectors obtained from perliminary tests of the unextended
ISA.

ACKNOWLEDGMENTS

This work was supported in part by the German Federal Ministry
of Education and Research (BMBF) within the project Scale4Edge
under contract no. 16ME0127 and within the project VerSys under
contract no. 01IW1900 and within the project ECXL.

REFERENCES

[1] A. Waterman and K. Asanović, Eds., The RISC-V Instruction Set Manual;
Volume I: Unprivileged ISA, 2019.

[2] ——, The RISC-V Instruction Set Manual; Volume II: Privileged Archi-
tecture, 2019.

[3] T. De Schutter, Better Software. Faster!: Best Practices in Virtual
Prototyping. Synopsys Press, March 2014.

[4] L. Moore, D. Graham, S. Davidmann, and F. Rosa, “Cycle approximate
simulation of RISC-V processors,” in Embedded World Conference,
2018.

[5] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of unix utilities,” Commun. ACM, pp. 32–44, 1990.

[6] “libFuzzer - a library for coverage-guided fuzz testing,” https://llvm.org/
docs/LibFuzzer.html, 2018.

[7] “american fuzzy lop,” http://lcamtuf.coredump.cx/afl/, 2018.
[8] V. Herdt, D. Große, H. M. Le, and R. Drechsler, “Extensible and

configurable RISC-V based virtual prototype,” in FDL, 2018.
[9] “Oss-fuzz - continuous fuzzing for open source software,” https://github.

com/google/oss-fuzz, 2018.
[10] “Microsoft security development lifecycle,” https://www.microsoft.com/

en-us/sdl/process/verification.aspx, 2018.
[11] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “Collafl:

Path sensitive fuzzing,” in IEEE SP, 2018, pp. 679–696.
[12] S. Yan, C. Wu, H. Li, W. Shao, and C. Jia, “Pathafl: Path-coverage

assisted fuzzing,” in ASIA-CCS, 2020, pp. 598–609.
[13] V. Herdt, D. Große, H. M. Le, and R. Drechsler, “Verifying instruction

set simulators using coverage-guided fuzzing,” in DATE, 2019, pp. 360–
365.

[14] L. Martignoni, R. Paleari, G. F. Roglia, and D. Bruschi, “Testing CPU
emulators,” in ISSTA, 2009, pp. 261–272.

[15] K. Laeufer, J. Koenig, D. Kim, J. Bachrach, and K. Sen, “Rfuzz:
Coverage-directed fuzz testing of rtl on fpgas,” in ICCAD, 2018, pp.
1–8.

[16] S. Canakci, L. Delshadtehrani, F. Eris, M. B. Taylor, M. Egele, and
A. Joshi, “Directfuzz: Automated test generation for rtl designs using
directed graybox fuzzing,” in DAC, 2021, pp. 529–534.

[17] V. Herdt, D. Große, J. Wloka, T. Güneysu, and R. Drechsler, “Verification
of embedded binaries using coverage-guided fuzzing with systemc-based
virtual prototypes,” in GLSVLSI, ser. GLSVLSI ’20, 2020, p. 101–106.

[18] L. Fournier and A. Ziv, “Using virtual coverage to hit hard-to-reach
events,” in Hardware and Software: Verification and Testing. Springer
Berlin Heidelberg, 2008, pp. 104–119.

[19] D. Patterson, J. Bennett, C. G. P. Dabbelt, G. Madhusudan, and T. Mudge,
“Embench™: A modern embedded benchmark suite,” 2020.

[20] “Risc-v based virtual prototype (vp),” https://github.com/
agra-uni-bremen/riscv-vp/, 2018.

[21] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating fuzz
testing,” in SIGSAC, 2018, pp. 2123–2138.

https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
http://lcamtuf.coredump.cx/afl/
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://www.microsoft.com/en-us/sdl/process/verification.aspx
https://www.microsoft.com/en-us/sdl/process/verification.aspx
https://github.com/agra-uni-bremen/riscv-vp/
https://github.com/agra-uni-bremen/riscv-vp/

	Introduction
	Related Work
	Unified HW/SW Coverage-based Verification
	Overview
	Unified HW/SW Coverage
	Coverage Observer
	Fuzzer

	Evaluation
	Coverage Metric Benchmark
	Verification Benchmark

	Conclusion and Future Work
	References

