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Abstract—The development process for new embedded systems
relies increasingly on simulation, e.g. to develop hardware and
software components in parallel using virtual prototyping. The
central component of a virtual prototype is the instruction set
simulator (ISS) which implements instruction execution for a
specific instruction set architecture (ISA). To avoid erroneous
behavior during software simulation, it is paramount to ensure
that the provided ISS implements the ISA exactly as specified,
i.e. that there are no discrepancies between the hardware and the
VP. In order to increase confidence in the correctness of the VP’s
ISS, it is advantageous to generate it automatically from a formal
model of the ISA instead of implementing it manually. While a
variety of formal ISA models have been proposed in prior work,
they are presently not widely used in the VP domain. We attempt
to ease employment of formal models for ISS generation in this
domain. To this end, we reduce the integration effort through a
simulator-agnostic ISS generation approach that integrates well
with existing simulators and existing vendor-supplied VP com-
ponents. Our approach leverages a formal RISC-V ISA model
which exclusively describes instruction semantics and abstracts
interactions with hardware components through an interface
model, thus encapsulating interactions with simulator-specific
code. As part of our experiments, we were able to generate an
ISS for the popular RISC-V implementations Spike and RISC-V
VP, thereby replacing their manually written implementations.
Performed benchmarks indicate that the generated ISS offers the
same simulation performance as a manually written one, while
still passing the official RISC-V tests.

Index Terms—Embedded Systems, Formal ISA Models, Sim-
ulation, RISC-V, Virtual Prototyping

I. INTRODUCTION

As embedded systems consist of both hardware and soft-
ware components, it is vital to be able to begin software
development before the hardware is available to reduce the
time-to-market. In order to do so, a simulator for the hardware
is required. Nowadays, hardware and software components
are typically developed in parallel using virtual prototypes [1,
Sect. 1.3]. A virtual prototype (VP) provides a simulator for
an entire hardware platform. A central component of a VP
is the instruction set simulator (ISS) which is responsible for
simulating instruction execution for a chosen instruction set
architecture (ISA). For a VP-based development flow, it is
paramount to ensure that the VP implements the ISA exactly
as specified. Otherwise, the software may exhibit erroneous
behavior when executed on the physical hardware, thereby
negatively impacting the time-to-market of an embedded sys-
tem. In order to increase confidence in the correctness of the
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VP, it is advantageous to derive its central part—the ISS—
from a formal model of the ISA rather than implement it
manually. A formal model describes ISA semantics using a
well-defined formal language, instead of relying on natural
language, thus achieving exactness and avoiding ambiguities
in the specification. Instead of manually implementing an
ISS from a specification in natural language, it is possible
to automatically generate it from such a formal model, thus
reducing the margin for errors.

While several formal ISA models have been presented in
prior work [2, 3, 4, 5, 6], they are presently not utilized
in the VP domain. We attribute this to the fact that VPs
are tightly integrated with vendor-supplied components (e.g.
memory implementations, bus systems, or models of hard-
ware peripherals). These components are often modeled in
SystemC, a C++ library for hardware modeling [7]. When
generating an ISS for a VP from a formal model, it must
be ensured that the generated ISS integrates well with these
vendor-supplied SystemC components and does not require
replacing or changing them. For this reason, we propose a
novel approach for generating an ISS from a formal model
which—contrary to prior work—is designed to be minimally
invasive (i.e. allows re-using existing vendor-supplied com-
ponents). This is achieved by leveraging a minimal formal
model which focuses exclusively on formally describing the
instruction semantics and by abstracting interactions with
hardware components through a generic interface model. That
is, we only generate the code implementing the instruction
semantics, which is where prior work has found most bugs [8],
leaving other components (e.g. those modeling the memory)
as-is to ease the integration. While our proposed approach
is applicable to different ISAs, we focus on the modular
RISC-V [9, 10] architecture in this publication. Due to an
ever-growing set of ISA extensions, simulators for this ISA
benefit significantly from formal models as the specification
is constantly expanding, requiring simulators to “catch up” by
implementing new extensions, which is a laborious error-prone
process.

The goal of our work is therefore to reduce the effort
required to integrate existing RISC-V simulators with formal
ISA models. Our contributions towards this goal are: (1) An
enhanced version of an existing formal model for the RISC-V
ISA, (2) a new simulator-agnostic C/C++ code generator for
this formal model, and (3) a modified version of the popular
Spike [11] and RISC-V VP [12] simulators which use a



generated ISS (instead of a manually written one). To the best
of our knowledge, the ISS generation approach presented here
is the first which is easily applicable to a variety of existing
RISC-V simulators. The experiments we have conducted with
Spike and RISC-V VP confirm the feasibility of our approach
for this purpose. Furthermore, performed benchmarks indicate
that an ISS generated using our tooling achieves similar
simulation speed compared to a manually written one while
still passing the official RISC-V ISA tests.

II. PRELIMINARIES

In the following, we provide background information on
formal ISA models and VPs as prerequisites for our research.

A. Formal ISA Model

The ISA is the interface between the hardware and the
software of a system; it is therefore of central importance
to the system architecture. An ISA description has many
aspects: instruction semantics, memory and register behavior,
interrupts, decoding, et cetera. In this publication, we are
focusing exclusively on instruction semantics. These semantics
have traditionally been specified in natural language. However,
natural language specifications can be ambiguous, incomplete,
and are not easy to work with. For this reason, we base our
work on a formal ISA model: one which has unambiguous
semantics and can be processed by electronic means (e.g. for
the purpose of code generation).

Formal models come in a variety of languages (and we give
a more comprehensive overview in Sect. V), but for our work
we leverage an existing formal model in the general-purpose
functional programming language Haskell. This model is
called LIBRISCV [6] and provides formal semantics for the
32-bit base instruction set of the RISC-V architecture [10,
Sect. 2]. Contrary to prior work (e.g. Sail [3]), LIBRISCV
focuses exclusively on describing the user-level instruction
semantics in isolation, e.g. without formally describing other
aspects (such as the memory). Furthermore, LIBRISCV does
not capture microarchitecture details such as pipelining or
timing. This property makes LIBRISCV well suited for our
approach as it eases the integration with existing simulators
by allowing re-use of existing (vendor-supplied) components
such as memory implementations, instead of also generating
these components from the formal model.

The semantics of an individual RISC-V instruction are de-
scribed formally in LIBRISCV through an embedded domain-
specific language (EDSL) in Haskell. Conceptually, the EDSL
consists of two components: (1) primitives for describing inter-
actions with architectural state components (e.g. the memory)
and (2) an expression language for performing operations
on memory/register values. Using these components (i.e. the
EDSL), LIBRISCV provides a formal description for each
RISC-V instruction (analog to the natural language specifi-
cation in the RISC-V standard). For example, the ADD in-
struction is described through the primitive readRegister
(to obtain the register operands), the addition operation of
the expression language, and the writeRegister primitive
(for storing the result). Similar primitives are available for
other operations (e.g. interactions with the memory or the

program counter). In total, the LIBRISCV EDSL consists of
26 primitives for formally describing instruction semantics.
Formal descriptions using this EDSL can be further processed
in Haskell, e.g. for the purpose of code generation by mapping
the 26 primitives and the expression language to C/C++ code
(see Subsect. III-D). Internally, the LIBRISCV EDSL is
implemented in Haskell using free monads [13]. More details
regarding the utilization of free monads and LIBRISCV itself
are provided in an existing publication by Tempel et al. [6].

B. Virtual Prototypes

VPs provide an executable model of an entire hardware
platform, including peripherals provided by this platform.
They are a popular tool for the development of embedded
systems as the early creation of VPs enables developing
both—hardware and software components—for an embedded
system in parallel, thereby reducing the time-to-market [1,
Sect. 1.3]. This is achieved by utilizing the VP to simulate
the behavior of the targeted hardware platform, thus allowing
software development to begin before the physical hardware
is available. For software simulation, a VP therefore provides
an ISS for the architecture used by the targeted hardware
platform. Our work is concerned with the generation of this
component from a formal ISA model. Apart from an ISS, a VP
also provides models for peripherals provided by the hardware
platform. Hardware peripherals are commonly modeled using
SystemC [7], a C++ class library for describing hardware
components. More specifically, VPs often utilize SystemC
TLM [7, Sect. 9], where hardware behavior is described
based on a high-level bus abstraction. Our ISS generation
approach is specifically designed to integrate well with existing
SystemC components. In order to evaluate our approach, we
use RISC-V VP, an existing open source SystemC-based VP
for the RISC-V architecture [14].

III. APPROACH

In the following, we present our approach for minimally
invasive generation of instruction set simulators from formal
ISA models.

A. Overview

Fig. 1 provides an overview of our approach and includes
an illustration of the software architecture of an ISS with
some VP-specific components (e.g. a SystemC TLM bus).
Components added for the application of our approach are
highlighted using a dashed box. The ISS in Fig. 1 consists of
different internal components and is responsible for executing
a firmware image as faithful to a real processor as possible. Re-
garding the internal ISS components, we differentiate between
the instruction execution unit (which is responsible for the exe-
cution part of the fetch-decode-execute cycle) and architectural
state components (e.g. the register file) which are required for
instruction execution but conceptually separate components.
As motivated in Sect. I, architectural state components are
commonly supplied by hardware vendors and therefore often
modeled using the SystemC standard. For example, in Fig. 1
the memory component is modeled using SystemC TLM and
therefore attached to a TLM bus which is accessed by the
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Fig. 1. Overview of our minimally invasive ISS generation approach.

execution unit over a memory interface (MemIf). Our proposed
ISS generation approach is specifically designed to integrate
well with existing vendor-supplied components. Therefore, we
focus on generating the execution unit of an ISS from a formal
ISA model. The execution unit implements the instruction
semantics and is the component in which prior work on
automated testing has found the most implementation errors in
existing simulators [8]. In order to generate this component,
the code generation tool needs to be able to emit code that
interacts with the architectural state components to generate
code which implements the instruction semantics (e.g. to write
a register). Since the API of these components is highly
simulator- and vendor-specific, we leverage a custom inter-
face model for our approach. This interface model provides
a generic API for common operations (e.g. writing/reading
registers or accessing memory). The generic API itself is
a set of C function prototypes which define a simulator-
agnostic interface for performing these common operations
(see Subsect. III-C). These functions need to be implemented
on a per-simulator basis by mapping them to the internal
interfaces provided by the simulator. Since simulator-specific
code is abstracted through the generic API, the code generation
tool is itself applicable to different RISC-V simulators (see
Subsect. IV-A). While we believe the outlined approach to
be practical for different ISAs, we focus on the RISC-V
architecture in this publication as it is highly modular and
therefore well suited for an application of our approach. In the
next subsection, we therefore present a significantly enhanced
version of an existing formal RISC-V ISA model which has
been tailored to our use case.

1 semantics LBInst{rd=dest, rs1=reg, imm=off} = do
2 base <- readRegister reg
3 byte <- loadByte (base ‘Add‘ off)
4 writeRegister dest (SExtByte byte)

Fig. 2. Simplified description of LB instruction semantics in LIBRISCV.

B. ISA Model

As discussed in Subsect. II-A, we are using the existing
LIBRISCV formal ISA model for our approach [6]. We
choose this model because—in contrast to prior work—it
describes instructions semantics in isolation without providing
a formal description of other ISA aspects such as memory
behavior or decoding. This allows us to only generate the
code implementing instruction semantics (the instruction ex-
ecution unit) from the formal specification while retaining
other parts as-is, thereby making our approach minimally
invasive and easing the integration with existing simulators.
As per Subsect. II-A, LIBRISCV leverages a Haskell EDSL
for the formal description of RISC-V instruction semantics.
This EDSL consists of two components: (1) primitives for de-
scribing interactions with architectural state components (e.g.
the memory) and (2) an expression language for performing
operations on memory/register values. As an example, the
formal description of the RISC-V LB instruction in this EDSL
is provided in Fig. 2. The semantics of this instruction are de-
scribed in terms of the readRegister (Line 2), loadByte
(Line 3), and writeRegister (Line 4) primitives which
correspond to changes of the architectural state. Furthermore,
operations on retrieved register/memory values are modeled
using the aforementioned expression language, i.e. the Add
and SExtByte constructors in Fig. 2. For the purpose of code
generation, we need to map constructors of the LIBRISCV
expression language to C/C++ expressions. Additionally, we
need to map the readRegister, writeRegister, etc.
primitives to functions provided by our interface model.

In order to do so, we further enhanced the existing ISA
model for code generation purposes. The original version of
LIBRISCV as presented by Tempel et al. [6] was intended
for building custom ISA interpreters directly in Haskell. For
this reason, it separates instruction decoding from instruction
execution (i.e. the decoding is not part of the formal model).
This can be illustrated by considering the formal semantics
for the LB instruction in Fig. 2 again. The semantics of
this instruction are defined over a record type constructor
(LBInst) in Line 1 which represents a decoded LB instruc-
tion. The different members of this record type are assigned
to variables; the values of these variables correspond directly
to integer values (e.g. 15 for accessing register x15) and are
hence not captured by the formal description. To overcome
this limitation, we added additional primitives to LIBRISCV
to express decoding operations as part of the instruction
semantics descriptions. The resulting, enhanced description
of the LB instruction is shown in Fig. 3. Contrary to the
description from Fig. 2, this version is only parameterized
over the instruction opcode (LBOpcode) and then uses the
new primitives decodeRD, decodeRS1, and decodeImmI
to obtain additional information about the current instruction



1 semantics LBOpcode = do
2 dest <- decodeRD
3 base <- decodeRS1 >>= readRegister
4 off <- decodeImmI
5

6 byte <- loadByte (base ‘Add‘ off)
7 writeRegister dest (SExtByte byte)

Fig. 3. Description of the LB instruction with our LIBRISCV changes.

1 semantics LBOpcode = do
2 (dest, base, off) <- decodeAndReadIType
3 byte <- loadByte (base ‘Add‘ off)
4 writeRegister dest (SExtByte byte)

Fig. 4. Final refinement of LB instruction semantics in LIBRISCV.

(Line 2 - 4). Since the description is now more verbose,
we added an abstraction to define the instruction type, as
mandated by the RISC-V specification [9, Sect. 2.2], as part
of the formal description. The actual description of the LB
instruction—using our enhanced version of LIBRISCV—is
therefore less verbose and depicted in Fig. 4. Notably, it has
the same length as the original description.

The new instruction decoding primitives that we have added
to the existing LIBRISCV ISA model allow us to map these
to decoding functions provided by RISC-V simulators using
our interface model. More details on interface modeling will
be provided in the next subsection.

C. Interface Model
The interface model is the central perquisite for generating

a simulator-agnostic ISS as the generated implementation
of instruction semantics will need to interface with existing
components of a simulator (e.g. the register file). Since the
C/C++ code—emitted by our code generation tool—should be
simulator-agnostic, we introduce the interface model as an
additional abstraction layer within the simulator. The inter-
face model provides a generic C/C++ API for accessing the
aforementioned components, this API is used by the code
generator tool and needs to be implemented manually once
for each targeted simulator. An excerpt of the generic API
is shown in Fig. 5, the full API description is available
separately.1 As illustrated in this figure, the API consists of
a set of C functions which are parameterized over a void
pointer. These void pointers are converted to simulator-specific
types internally in the implementation of these functions. We
decided against utilizing C++ abstractions (such as abstract
classes) for this purpose to also support RISC-V simulators
that are purely written in C. Presently, the generic API consists
of 19 C functions and provides an interface for the register
file, the program counter, the memory, and the decoder of a
RISC-V simulator. Relying solely on a functional abstraction
eases implementing this generic API as an implementation
is essentially a mapping of the defined generic functions to
simulator-specific ones. Therefore, these functions will be
inlined by the C/C++ compiler in the common case and hence
the additional interface model abstraction has minimal to no
impact on simulation performance (see Subsect. IV-C). We

1https://github.com/agra-uni-bremen/formal-iss/tree/fdl-2023#readme

1 /* Register file */
2 uint32_t read_register(void *core, unsigned idx);
3 void write_register(void *core,
4 unsigned idx,
5 uint32_t value);
6

7 /* Byte-addressable memory */
8 uint8_t load_byte(void *core, uint32_t addr);
9 uint16_t load_half(void *core, uint32_t addr);

10 uint32_t load_word(void *core, uint32_t addr);
11 /* ... */

Fig. 5. Excerpt of the generic API provided by the interface model.

will further discuss the interface model implementation for
Spike and RISC-V VP in Subsect. IV-A. In the following, we
will introduce our simulator-agnostic code generation tool and
illustrate how this tool interacts with the interface model.

D. Code Generation

We use the previously described ISA and interface models
to implement a simulator-agnostic code generation tool. As
depicted in Fig. 1, the tool generates a simulator-agnostic
instruction execution unit, i.e. the code implementing the
RISC-V instruction semantics. For this purpose, we build
on the formal description of these semantics provided by
LIBRISCV. As discussed in Subsect. II-A, the formal ISA
model consists conceptually of two components: primitives for
describing interactions with the architectural state components
and an expression language for describing operations on
register/memory values which were obtained through these
primitives. All instruction semantics are formally described
using these components. In order to automatically generate
code from this formal description, we need to build a code
generator in Haskell which receives these EDSL components
as inputs. As discussed in the original LIBRISCV paper,
the code generator then acts as an interpreter for the EDSL
transforming its components into the desired representation [6,
Sect. 4.3]. As part of this transformation, we generate C/C++

code for all 26 primitives of the EDSL, e.g. mapping the
readRegister primitive to C/C++ code retrieving a register
value through the interface model. Therefore, the desired
representation is a C/C++ abstract syntax tree (AST) in our
case. The creation of this AST from the formal ISA model is
illustrated in Fig. 6.

As depicted in Fig. 6, C/C++ code implementing instruction
semantics is created from this generated AST using an un-
parser (also called a pretty printer). Conceptually, an unparser
is the opposite of a parser, as shown in Fig. 6: it serializes a
given AST to a chosen output format, C/C++ source code in
our case [15, 16, 17]. By employing an unparser we can ensure
the syntactic correctness of the generated code, compared
to—for example—generating the code directly through string
concatenation. This enables straightforward adjustments of the
generated code and eases the application of our approach
to simulators written in other programming languages. The
implementation of the unparser (i.e. the translation from the
AST to the C code) makes use of the existing language-c2

2https://hackage.haskell.org/package/language-c

https://github.com/agra-uni-bremen/formal-iss/tree/fdl-2023#readme
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Fig. 6. Interaction between the code generator and the LIBRISCV ISA model.

Haskell library. As shown in Fig. 6, our code generation tool is
in this context responsible for generating an AST that is passed
to the unparser provided by language-c. The generation of
this AST is based on the formal instruction semantics obtained
from LIBRISCV.

As part of the AST generation, we create one C function
for each formally described RISC-V instruction. As an ex-
ample, the C function which implements the LB instruction
is shown in Fig. 7. Each generated function receives a void
pointer to a simulator-specific processor abstraction (core),
the program counter of the current instruction (instrPC), and
a void pointer to a simulator-specific instruction abstraction
(instr) as function arguments. Naturally, since the code is
automatically generated, it heavily nests function calls and
is not optimized for human readability. Nonetheless, it is
possible to illustrate the interaction with the aforementioned
generic API of the interface model using this example. The
function body shown in Line 5 - 8 of Fig. 7 uses the
write_register, read_register, and load_byte
functions from the generic API (see Fig. 5) to interact with
the register file and memory implementation. These functions
receive the processor abstraction (core) as a void pointer
function argument and cast this pointer to a simulation-specific
type internally to implement the operation.3 Furthermore, the
generated code in Fig. 7 also obtains information about the
instruction (register and immediate) using the instr_rs1
and instr_immI functions of the interface model. Arith-
metic operations are performed on these values by mapping the
Add operation from LIBRISCV’s expression language (see
Fig. 4) to the + operator provided by C/C++. Similarly, the
sign-extension from Fig. 4 (SExtByte) is implemented in
Fig. 7 using integer type casts.

By leveraging the interface model, the code generation
tool itself remains entirely simulator-agnostic. The tool is a

3Refer to Subsect. IV-A for more information on the simulator-specific
implementation of the interface model for Spike and RISC-V VP.

1 static inline void exec_lb(void * core,
2 uint32_t instrPC,
3 void * instr)
4 {
5 write_register(core, instr_rd(instr),
6 (int32_t)(int8_t)load_byte(core,
7 read_register(core,
8 instr_rs1(instr))+instr_immI(instr)));
9 }

Fig. 7. Automatically generated C/C++ code for the LB instruction.

standalone Haskell binary written in roughly 750 LOC which
depends on the LIBRISCV Haskell library (for the formal
RISC-V model) and the language-c library (for C/C++

unparsing). In the next section, we illustrate that we can
easily employ this tool—and our general approach—for au-
tomatically generating an execution unit for different existing
RISC-V simulators, thereby demonstrating that a minimally
invasive ISS generation is feasible.

IV. EVALUATION

In the following, we evaluate our approach in terms of
generalizability, conformance, and simulation performance. In
this regard, we have concerned ourselves with the following
research questions:

RQ1 Is the approach generalizable in the sense that it can
be applied to different RISC-V simulators?

RQ2 Does the generated ISS conform to the instruction
semantics mandated by the RISC-V specification?

RQ3 Does the original, manually written, ISS have better
simulation performance than the generated one?

A. Generalizability
Our proposed ISS generation approach is specifically de-

signed to be easily applicable to a variety of different RISC-V
simulators. In order to evaluate the suitability of our approach
for this purpose, we have employed it to generate a new ISS
for the popular Spike [11] and RISC-V VP [12] simulators.
The existing ISS of these simulators was manually written by
the developers in C++ and was not generated from a formal
specification. In the following, we provide more background
information on these two simulators and describe the changes
that were necessary in order to integrate them with our ISS
generation approach.

Spike was one of the first simulators for the RISC-V
architecture and was initially developed by the University of
California. Similar to RISC-V VP, it simulates the execution
of RISC-V machine code on a host system. In this regard,
it focuses on achieving a high simulation speed at the cost
of simulation accuracy. For this reason, it does not use a
hardware modeling language like SystemC and therefore only
has limited support for additional hardware peripherals. Con-
trary to Spike, RISC-V VP provides a full virtual prototype of
common RISC-V hardware platforms, e.g. the SiFive HiFive14

or the SiFive HiFive Unleashed5. As such, RISC-V VP focuses
on simulation accuracy and therefore also uses the SystemC

4https://www.sifive.com/boards/hifive1
5https://www.sifive.com/boards/hifive-unleashed

https://www.sifive.com/boards/hifive1
https://www.sifive.com/boards/hifive-unleashed


1 // ...
2

3 static inline uint32_t
4 read_register(void *c, unsigned idx)
5 {
6 return ((struct rv32::ISS*)c)->regs[idx];
7 }
8

9 static inline void
10 write_register(void *c, unsigned idx, uint32_t v)
11 {
12 ((struct rv32::ISS*)c)->regs[idx] = v;
13 }
14

15 static inline uint8_t
16 load_byte(void *c, uint32_t addr)
17 {
18 auto mem = ((struct rv32::ISS*)c)->mem;
19 return mem->load_byte(addr);
20 }
21

22 // ...

Fig. 8. Excerpt of the interface model implementation for RISC-V VP.

hardware modeling language. The entire execution of RISC-V
machine code is performed within a SystemC simulation,
which eases reasoning about low-level details (e.g. timing).
RISC-V VP is further described in a publication by Herdt et
al. [12]. We choose Spike and RISC-V VP for our experi-
ments, because they represent two ends of a spectrum (Spike
focuses on simulation performance while RISC-V VP focuses
on simulation accuracy) and their implementations therefore
differ significantly. This demonstrates that our approach is
applicable to a variety of existing simulators, from full VPs
to performance-oriented simulators like Spike.

In order to employ our ISS generation approach for these
simulators, we first had to manually implement an interface
model for each simulator (see Subsect. III-C). As part of this
implementation, we need to map the simulator-agnostic API
for interacting with simulator components (e.g. the register
file) to the internal simulator-specific API. An excerpt of the
interface model implementation for RISC-V VP is shown
in Fig. 8. As illustrated in this figure, the interface model
casts a provided void pointer to a simulator-specific type
for representing a RISC-V processor (struct rv32::ISS)
and afterward calls methods of this type to implement the se-
mantics of the interface model. The implementation presented
in Fig. 8 is specific to RISC-V but the Spike interface model
has a similar complexity. The complete implementation of both
interface models is available as part of the publication artifacts.
Apart from the interface model, we also had to connect
the generated functions which implement the semantics of
RISC-V instructions (see Fig. 7) with the existing fetch-
decode-execute cycle implementation of Spike and RISC-V
VP. Spike already generates functions for the implementation
of RISC-V instruction using several scripts, which we have
adjusted accordingly. RISC-V VP uses a switch/case statement
to execute decoded instructions, which—similar to Spike—we
now generate using a script. In total, we modified roughly
150 lines in RISC-V VP to implement the interface model
and the build system changes. In Spike, we modified 200

lines for the same purpose.6 The integration process took a
programmer with domain knowledge less than a day. As such,
the experiments demonstrate that minimal effort is required to
apply our approach to different RISC-V simulators, thereby
illustrating its generalizability.

B. Conformance
With the modifications outlined in the previous section, our

enhanced versions of Spike and RISC-V VP use an ISS that
has been automatically generated from the formal LIBRISCV
ISA model, instead of a manually written one. Naturally, it
is possible that the ISA model does not correctly capture the
RISC-V instruction semantics or that our code generation tool
or interface model implementations contain bugs. Therefore,
it is paramount to ensure that the generated ISS still conforms
to the RISC-V specification. In order to test conformance to
the specification, we utilize the official RISC-V ISA tests for
the 32-bit base instruction set.7 These tests include several test
programs (one per instruction) which validate the behavior of
RISC-V instruction implementations using manually written
test cases. Both our modified version of Spike and RISC-V
VP pass the RISC-V ISA tests for rv32i. This indicates
that our enhanced version of the LIBRISCV ISA model still
conforms to the RISC-V ISA tests and that our code generator
and interface model do not introduce any severe bugs. In
future work, we would like to expand our conformance tests
by showing equivalence between the generated ISS and the
manually written one.

C. Performance
Since our approach replaces a manually written ISS with

an automatically generated one, there is the possibility that
the code generation tool does not account for optimizations
included in the manually written code. Simulation speed is
of importance for RISC-V simulators in order to be able to
execute and test complex RISC-V software in a reasonable
time span. In order to evaluate the impact of our approach
on simulation speed, we use our modified version of RISC-V
VP (see Subsect. IV-A) and perform a simulation speed com-
parison with the original unmodified version of this simulator
(referred to as the baseline version in the following). In prior
work, performance benchmarks for RISC-V VP have been
conducted using the Embench benchmark suite [14]; therefore
we also use Embench for our experiments. Embench is an open
source benchmark suite which is specifically tailored to the
embedded domain, it consists of several benchmark programs
which perform computation intensive tasks (such as checksum
calculation) [18]. We conduct our experiments with Embench
1.0 on a Linux system with an Intel i7-8565U processor.

Since benchmark results for a simulator can differ depend-
ing on the workload of the host system, we executed each
benchmark application 25 times with both variants of RISC-V
VP. Benchmark results are presented as a grouped bar chart in
Fig. 9. The absolute execution time in seconds is given on the
y-axis of Fig. 9 while the x-axis lists the benchmark programs

6Naturally, automatically generated lines are not included in this metric,
since they do not correspond to any manual integration effort.

7https://github.com/riscv/riscv-tests

https://github.com/riscv/riscv-tests
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Fig. 9. Execution time benchmarks performed for an unmodified version of RISC-V VP and a version generated using our approach. Each benchmark
application has been executed 25 times. The bars represent the arithmetic mean over all executions (lower is better); error bars indicate the standard derivation.

of the Embench suite. For each benchmark program, two bar
charts are presented: the left bar chart (blue) represents the
results for the baseline version, the right bar chart (orange)
represents our modified version of RISC-V VP (i.e. uses an
ISS generated using our approach). Both bar charts specify the
arithmetic mean for the execution time of a given benchmark
application over 25 executions. The error bars in Fig. 9 specify
the standard derivation.

In total, 19 benchmark applications have been tested with
both variants of RISC-V VP. Comparing the results for
each benchmark application, execution time for the generated
RISC-V VP variant is either sightly lower or the same as
the execution time of the baseline version. This indicates that
an ISS generated using our approach does not have worse
simulation performance than a manually written one. Since the
generated instruction semantics are the same for both Spike
and RISC-V VP and only the interface model differs, we do
not provide a comparison of Spike variants in this publication.

V. RELATED WORK

Due to their numerous advantages, formal ISA models
have been subject of intense research for a while now. ARM
technologies introduced a custom domain-specific language
(DSL) with a formal semantics, to describe the ISA of their at
that time new ARM-v8 architecture [2]. The formal language
allowed deriving test suites and Verilog code, for example.
Following on from this, the Sail language was developed, a
DSL designed to describe ISA semantics [19]. From the Sail
model of an ISA, formal descriptions in different programming
and theorem proving languages can be generated (such as C,
OCaml, Coq, Isabelle, or HOL4). Sail has been used in prior
work to model the RISC-V, ARM-v8 and MIPS ISAs, amongst
others [3]. However, such versatility comes at a price: the
generated models are not as concise or convenient to work with
as native ones. Moreover, Sail focuses on completeness and
therefore goes beyond the description of instruction semantics
and also includes formalization of additional ISA details such
as address translation algorithms or instruction decoding. This
contributes to the complexity of Sail and makes it difficult to
integrate it into an existing RISC-V simulator. Therefore, Sail
instead generates a new standalone ISA simulator [3, Sect. 5].

Specifically for RISC-V, a variety of formal ISA models
exist [20]. The definitive formal model—approved by the

RISC-V board—is provided in Sail [3], but models in the Coq
theorem prover or the Haskell programming language exist
as well. The Coq model uses the embedded Kami DSL [21]
and allows reasoning about correctness—in particular, about
correctness of microarchitecture implementations of the ISA,
or about software running on the ISA—but as Coq is an in-
teractive theorem prover rather than a programming platform,
it is less convenient to work with in aspects other than proof
(e.g. code generation). Apart from the LIBRISCV model used
in this publication, additional RISC-V models in Haskell are
GRIFT [4] and Forvis [5]. All of these have different design
goals. While Forvis was meant as an executable formal model
implemented in a deliberately restricted subset of Haskell,
GRIFT attempted to capture the ISA as precise as possible
in Haskell’s type system, and LIBRISCV was designed with
a focus on instruction semantics to ease building custom ISA
interpreters. From these, the design goals of LIBRISCV best
aligned with ours as it enabled us to focus on generating the
code implementing instruction semantics while retaining other
parts, thereby easing the integration with existing simulators.

Related work in the electronic design automation domain
leverages architecture description languages (ADLs) for pro-
cessor descriptions [22, 23, 24]. Compared to formal ISA
models, these ADLs focus more on microarchitectural details
(such as pipelining or caching). For this reason, it is chal-
lenging to integrate them with existing simulators and vendor-
supplied components. Therefore, these languages are primarily
used to generate new simulators instead of aiming for an
integration with existing ones. To the best of our knowledge,
the generation approach presented here is the first which is
easily applicable to a variety of existing simulators, from full
VPs like RISC-V VP to performance-focused simulators like
Spike.

VI. DISCUSSION & FUTURE WORK

In this publication, we focused on a minimally invasive
integration of formal ISA models with existing RISC-V sim-
ulators. Especially in the VP domain, formal models have not
yet been used to their full potential. In order to ease usage of
formal ISA models for VP generation, we focused on mini-
mizing the integration effort. Therefore, we only employed a
formal model for the 32-bit RISC-V base instruction set [10,



Sect. 2]. In future work, it would be possible to focus more
on modeling aspects and expand the underlying LIBRISCV
ISA model to cover additional RISC-V extensions and RISC-V
variants (e.g. 64-bit RISC-V). In this context, it would be
especially interesting to also support parts of the RISC-V
privileged architecture specification [10], instead of focusing
on the user-level ISA [9]. Such modeling aspects are also
discussed in the original LIBRISCV paper [6], extending the
formal model to cover more parts of the ISA (e.g. decod-
ing) would allow our code generation approach to be more
comprehensive. However, in this regard, there is a trade-off
between comprehensiveness of the formal model and the effort
required to integrate it with existing simulators. The premise
of our work is that by focusing on code implementing the
actual instruction semantics—where in accordance with prior
work we assume most bugs to occur [8]—we can more easily
integrate the formal model with existing simulators. If we were
to capture additional parts of an ISA (e.g. memory behavior) in
the formal model as well, it would complicate the integration
with existing simulators. In terms of comprehensiveness, it
is possible to cover the semantics of additional RISC-V
extensions using our approach in future work [6, Sect. 7].

VII. CONCLUSION

In this paper, we have presented a novel approach for
generating the ISS of RISC-V simulators from a formal ISA
model. Contrary to prior work, our approach is designed to
be as minimally invasive as possible through a simulator-
agnostic interface model (Subsect. III-C), a self-contained
formal ISA model (Subsect. III-B), and a code generator for
this model (Subsect. III-D). By focusing exclusively on the
code implementing the actual instruction semantics, we ease
the integration with existing vendor-supplied components and
increases the confidence in the correctness of the utilized ISS.
Conducted experiments confirm that our approach is applica-
ble to different RISC-V simulators (Spike and RISC-V VP)
with minimal effort (Subsect. IV-A). Furthermore, we were
able to show that an ISS—generated using our approach—
still passes the RISC-V ISA tests (Subsect. IV-B) and offers
similar simulation speed performance as a manually written
one (Subsect. IV-C). In future work, we want to investigate
correctness proofs (for both the formal model and the gener-
ated ISS), expand our ISA model to support additional RISC-V
extensions, and consider its application to VP-based software
analysis tasks. To stimulate further research in this direction,
we have released our code generation tool8 as well as our
modified versions of Spike9 and RISC-V VP10 as open source
software.
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