
ForMAt: Formal Verification of Scalable Multiply
and Accumulate Units

Lennart Weingarten, Kamalika Datta, Rolf Drechsler
University of Bremen, Department of Computer Science

{len wei, kdatta, drechsler}@uni-bremen.de

Abstract—With the increasing popularity of compute intensive
applications like AI, processors with complex functionalities are
designed. Multiply and Accumulate (MAC) is one of the essential
operations in modern Neural Processor Units (NPUs), but no
sound formal verification technique exists that can efficiently
ensure correctness. In this paper we analyze almost 200 config-
urations of MAC instances for various bit-widths starting from
8 up to several hundred bits. On top of the classical area-delay
trade-off, we study verifiability as an additional parameter. It
is shown that surprisingly the fastest and smallest instances are
not the ones that are the hardest to verify. Exploiting Symbolic
Computer Algebra (SCA) we provide a technique that allows
scalable verification for large bit-width and classifies the set of
MAC units.

Index Terms—Multiply and Accumulate (MAC), Symbolic
Computer Algebra (SCA), Scalability, Formal Verification

I. INTRODUCTION

With the enormous growth of AI during the last few years,
Neural Processing Units (NPUs) have become increasingly
popular and widespread. The fundamental blocks in such
NPUs are the Multiply and Accumulate (MAC) units. As
processors are built with complex functionalities to cater
the needs of the AI era, it is of paramount importance to
tackle the verification challenges to avoid costly errors. While
approaches based on simulation and emulation do not scale
for larger designs, only approaches based on formal proof
techniques can ensure 100% correctness. While there exist
several design approaches for MAC units (see e.g. [1], [2]),
none of them provides a sound verification methodology.
Recently, in [3] an approach has been presented to formally
verify the Dot Product Accumulate Systolic Unit (DPA). They
use equivalence checking to verify the RTL level code against
a golden reference model, that has also to be proven to be
complete.

In the following, an approach is presented that does not
need a complex reference model, but directly compares the
circuit with a high-level specification given in form of a
Specification Polynomial (SP). Previous studies on verification
of arithmetic circuits showed that all techniques based on bit-
level representations, like Binary Decision Diagram (BDD) [4]
or Boolean Satisfiability Solvers (SAT) [5] fail for multipliers.
This also holds for techniques based on structural hashing,
if the descriptions of the multipliers do not have many simi-
larities. Since the MAC unit also includes a multiplier, these
findings directly transfer.

The most powerful proof technique for formal verification
of multipliers are approaches based on Symbolic Computer
Algebra (SCA) (see [6]–[14]). Recent studies have also ex-
plored verification of MAC and Dot-product operations using
SCA [15], [16]. While there are several studies for multipliers,
so far the formal verification of MAC units has not been
extensively studied. Since the MAC architecture also consists
of a multiplier and SCA is well-suited, in this work we perform
formal verification of scalable MAC architectures exploiting
SCA.

In this paper we present the framework ForMAt for formal
verification of scalable MAC units. ForMAt consists of two
main components:

1) MAC-Gen allows to generate scalable MAC units.
2) MAC-Verifier formally verifies MAC instances based

on SCA and gives a prediction based on indicators about
the verifiability of scaled designs for larger bit-width.

Thus, the main contributions of the paper are as follows:
1) Automated generation of MAC architectures
2) Extending SCA-based verification to MAC units
3) Detailed analysis and classification of MAC architectures

with respect to verifiability
4) Definition of scalability indicators
5) Adding verifiability as a design parameter

Extensive experimental studies for almost 200 MAC config-
urations are carried out. It is shown that the indicators for
small bit-width (of 8 or 16-bit) allow a precise forecast of
which MAC units can be successfully verified when scaled up
to several hundred bits. Surprisingly, it can be observed that
the circuits with a very good area-delay trade-off can also be
fully proven correct using SCA. This is shown for instances
with up to 512-bits in our experiments.

The paper is organized as follows, Section II provides the
necessary background about the MAC operation and SCA-
based verification. Section III describes the MAC generation
process using MAC-Gen. In Section IV the MAC-Verifier
is presented along with the definition of the scalability indica-
tors. First experiments show a classification of the MAC units.
In-depth studies in Section V present the scalability analysis
for MAC architectures, and finally the results are summarized
in Section VI.

(a) Half-Adder Verilog Representation

(b) AIG representation of the Half-Adder

Fig. 1: Half-Adder Example

II. BACKGROUND

To make the paper self-contained, we first briefly give
the description of the MAC operation as it is used in the
paper. Then we briefly review the core concept of SCA-based
verification (for more details see [7], [8], [11]–[14]).

A. MAC Operation

The Multiply and Accumulate (MAC) unit is a complex
arithmetic circuit comprising of a multiplier and adder (accu-
mulator) component. The word-level description of the MAC-
operation is defined as:

R = (A×B) + S (1)

A and B are the inputs of the multiplier and S is the
accumulator input, finally the result is stored in R.

B. SCA-based verification

SCA-based verification is the most well suited verification
engine for multipliers. It uses algebraic techniques to prove the
correctness of a design using its polynomial representation. In
SCA-based verification first a Specification Polynomial (SP)
has to be defined. An SP is a mathematical description of
the circuit representing it only in terms of its inputs and
outputs. The verification is performed by iterating over the
circuit in reverse topological order and substituting each gate
in the SP with its corresponding Gate Polynomial (GP). This
iterative step is called backwards rewriting. The initial SP size
is denoted as SPinit and the SP size at time step i as SPi

during the computation. After each gate is processed the final
SP is evaluated. If it reduces to a zero polynomial, the circuit
is bug free, otherwise the circuit is faulty.

Example 1: Consider the Verilog code of the half adder
shown and its representation as an

And-Inverter Graph (AIG) [17] in Fig. 1a and Fig. 1b,
respectively. For each of the AIG nodes the GP rules are shown
in Fig. 2, i.e. for a buffer, a negated output, and for an AND-
gate with various complemented or un-complemented edges
(see also [11]). The backward rewriting starts at the outputs
Sum and Carry. The SP is then stepwise replaced according

Fig. 2: AIG node Gate Polynomials

SPHA := 2C + S −A−B = 0

SP0
r1−−−→

Carry
SP1 =2n12 + S −A−B

SP1
r2−−→

Sum
SP2 =2n12 + 1− n10 −A−B

SP2
r3−−→
n12

SP3 =2AB + 1− n10 −A−B

SP3
r5−−→
n10

SP4 =2AB + 1− (1− n8 − n6 + n6n8)−A−B

=2AB + n8 + n6 − n6n8 −A−B

SP4
r4−−→
n8

SP5 =2AB + (A−AB) + n6 − n6(A−AB)−A−B

=2AB +A−AB + n6 − n6A+ABn6 −A−B

=AB + n6 − n6A+ABn6 −B

SP5
r4−−→
n6

SP6 =AB + (B −AB)− (B −AB)A+AB(B −AB)−B

=AB +B −AB −AB +A2B +AB2 − (AB)2 −B

=AB −AB −AB +AB +AB −AB +B −B

=0

Fig. 3: Half Adder Substitution Steps

to the AIG netlist by the corresponding GPs. The steps of the
substitution are shown in Fig. 3. We start by evaluating rule
r1 on the Carry output and r2 on the Sum output. Next, r3 on
node n12 is evaluated and so on until all nodes are replaced
by their GPs. In the final step, r4 is used to substitute node n6

and the SP size reduces to zero, proving the correctness of the
circuit. Boolean algebraic rules are used for the evaluation.

III. MAC GENERATION

In this section we provide the details of the MAC generation
process and of our tool MAC-Gen which generates a variety
of structurally different MAC architectures. The left-hand
side of Fig. 4 shows the general architecture of the MAC
unit including the notation of the bit-width: The bit-level
description of the MAC is defined as (cf. Subsection II-A):

R2n+1 = (An ×Bn) + S2n (2)

The two n-bit inputs of the multiplier unit (MUL) are A and B,
respectively, and the input S of the MAC Stage Adder (MSA)
is 2n-bit wide. The width of the result R is also 2n plus an
additional carry output of the MSA. MUL consists of three
stages:

Fig. 4: MAC-unit Architecture

1) Partial Product Generator (PPG)
2) Partial Product Accumulator (PPA)
3) Final Stage Adder (FSA)

The accumulator part of the MAC is comprised of the MSA.
On the right side in Fig. 4 we show all the possible options
for each component, i.e. for the PPA one out of four designs
is chosen and for FSA and MSA one out of seven. Resulting
in a total number of 4× 7× 7 = 196 different configurations.
Since the first stage is identical in all cases, the PPG is
not listed in the following. To compactly describe different
MAC architectures the three configurations are given as a
concatenation:

Example 2: To denote that the PPA consists of a Wallace
Tree, the FSA is a Carry Skip adder and the MSA is a Ladner-
Fischer adder, we use:

WT • CS • LF (3)

These three parameters together with the bit-width of the
inputs are given to MAC-Gen. It then generates a Verilog
file that can be converted to an AIG representation using
Yosys [18]. The input of the MAC-Verifier is the AIG
representation of the MAC circuit.

A. Area & Delay Calculation

Before considering the verification of the MAC units in the
next section, we first provide some more information on the
synthesis process based on MAC-Gen and how area and delay
is measured. For all our experiments, Cadence Genus Solution
[19] utilizing the ASAP 7 [20] 7.5-track standard cell library
for the 7-nm technology node is used. Area is presented in
µm2 and delay is given in pico seconds (ps).

Fig. 5 shows the area and delay of all 196 MAC config-
urations for 16 bits. The MAC configurations are grouped
according to the PPA, i.e. four different groups are shown
by the colors. E.g. not surprisingly, AR based on the array
(shown in blue) has the largest delay.

IV. MAC VERIFICATION

In this section we present the SCA-based verification pro-
cess and show the MAC specific operations. Firstly, the
Specification Polynomial (SP) is defined, then the verification

Fig. 5: Delay and area of all MAC architectures for 16-bits

process is discussed and the two scalability indicators are
introduced. Finally, we provide the verification results.

A. Specification Polynomial for MAC
For SCA-based verification (as mentioned above), we need

to first represent the SP of the circuit. For the MAC block, the
functionality can be described by only considering its primary
inputs and outputs as mentioned in Section III. From this we
can derive the SP as R−(A×B)−S = 0. For a fixed bit-width
n we obtain:

SP :=

2n∑
i=0

2iRi−
(n−1∑

i=0

2iAi

)
×
(n−1∑

i=0

2iBi

)
−
(2n−1∑

i=0

2iSi

)
(4)

Example 3: An SP for a 4-bit MAC has the following form:
SPMAC4 := R9 − (A4 × B4) − S8 = 0 The full bit-level
representation of the 4-bit MAC is then given by:

SPMAC4

= 256R8 + 128R7 + 64R6 + 32R5

+ 16R4 + 8R3 + 4R2 + 2R1 +R0

−
(
(8A3 + 4A2 + 2A1 +A0)× (8B3 + 4B2 + 2B1 +B0)

)
− (128S7 + 64S6 + 32S5 + 16S4 + 8S3 + 4S2 + 2S1 + S0)

B. MAC-Verifier

The input G to the algorithm is an AIG of a MAC1 The
algorithm returns TRUE if the SP for the circuit G is the
zero polynomial after all the substitution steps are performed;
otherwise it returns FALSE. Metrics, like the initial and the
Maximum Polynomial (MaxPoly) size (corresponding to the
peak memory needed) of the SP during backward rewriting
and the time needed for the verification, are also provided.
These will be used in the following for the definition of the
scalability indicators.

To estimate the likelihood of a MAC architecture to be
verifiable for larger bit sizes, we introduce two scalability
indicators from the evaluation of the algorithm, where we

1MAC-Verifier can also handle isolated ADD and MUL circuit. This
is supported to verify also MAC components as standalone units.

Algorithm 1: MAC-Verifier
Input : AIG G
Result: TRUE if SP is empty, FALSE otherwise
// preparation

1 SP ← GenerateSP (G);
2 AB,N ← AtomicBlockDetection(G);
3 Cones← FindCones(G,AB,N);
// global backward rewriting

4 foreach cone ∈ cones do
5 for candidate ∈ cone do
6 SPold ← SP ;
7 SP ← Substitute(SP, candidate,AB);
8 if SP ≤ threshold then
9 break;

10 else
11 SP ← SPold;
12 end
13 end
14 end

// result evaluation
15 if size(SP) == 0 then
16 return TRUE
17 else
18 return FALSE
19 end

first introduce the indicators by presenting the general idea
and describe them in further detail below:

1) Starting from the initial SP size, i.e. SPinit, we check for
the maximum peak in memory consumption determined
by MaxPoly. This is put in relation to the memory needed
for the SP at the start of the run:

φs1 =
max(|SPi|)
|SPinit|

(5)

2) While φs1 only consider the maximum peak, also the
memory consumption of the entire run can be monitored:

φs2 =

∫ i=ts

i=0
|SPi| − |SPinit|

[
|SPi| > |SPinit|

]∫ i=ts

i=0
|SPinit|+

∫ i=N−1

i=ts+1
|SPi|

(6)

Fig. 6: Trajectory curve of the substitution steps for DT •KS•
BK representing the indicators

The memory consumption of one verification run can be
shown as follows: consider the trajectory curve of the sub-
stitution steps for one example, i.e. DT • KS • BK, in

Fig. 6. The substitution step i is presented on the x-axis and
the corresponding SP size on the y-axis. Key points in the
substitution trajectory, like e.g. SPinit, MaxPoly and tail start
(SPts), are highlighted.

The φs1 indicator shows the maximum possible growth of
the SP size over time during the verification process. The
maximum peak in the SP corresponds to the memory con-
sumption of the MAC-Verifier. By this, φs1 only considers
one point in time of the whole verification run, namely when
the maximal memory is needed. In contrast φs2 considers the
entire run and gives the ratio of the peak area (cf. Peak),
where the area denotes the memory usage over time, to the
remaining area under the trajectory curve under Base and Tail
(see Fig. 6). Here ts is the last point in the substitution, where
SP is larger in size than SPinit (shown as SPts). For this
example the values of the indicators are φs1 = 2.55 and
φs2 = 0.236, respectively.

TABLE I: MAC Verification Overview

MSA
Bits BK CS CL KS LF RC SE Total

8-bit 28/28 26/28 28/28 28/28 28/28 28/28 28/28 194/196
16-bit 13/28 0/28 13/28 13/28 12/28 13/28 13/28 77/196
32-bit 12/28 0/28 12/28 12/28 12/28 12/28 12/28 72/196
64-bit 12/28 0/28 12/28 12/28 12/28 11/28 11/28 70/196

128-bit 12/28 0/28 11/28 12/28 12/28 10/28 10/28 67/196

C. MAC Verification Results

The SCA-based MAC-Verifier is implemented using
C++. All experiments are carried out on an Intel(R) Xeon(R)
CPU E5-2630 v3 processor running at 2.4 GHz and 64 GB
of memory. Benchmarks are generated using MAC-Gen for
all possible MAC architectures. In this subsection we evaluate
our MAC-Verifier tool for all the 196 MAC architectures
generated with bit sizes ranging from 8 to 128. A timeout of
30 minutes is considered for all runs.

Table I summarizes the results. The first column presents
the bit size of the MAC, the next 7 columns the architecture
of the MAC Stage Adder (MSA), and the last column the total
number of verified MAC architectures. It can be observed that
for 8-bit size roughly all MAC architectures are verifiable, but
from 16-bits onward only approximately 40% of the circuits
can be verified. In the following we have a closer look at the
architectures and classify them according to their verifiability.

Table II presents the number of non-verifiable 16-bit MAC
architectures grouped by the PPA of the multiplier for the
MSA. The first column shows the various PPAs for the
multiplier and the bit sizes. The next seven columns show the
various MSAs and the last column shows how many MACs
are non-verifiable. Each cell lists a set of non-verifiable FSA
by name for each MSA. If the cell contains None, it means
that all circuits are verifiable. And when the cell contains
All, it signifies that none of the circuits could be verified
within the given time limit. In all other cases the names of
the FSA are provided for which the verification failed. The
results clearly indicate that multipliers using AR and DT are

TABLE II: Non-Verifiable MAC Architectures Grouped by
PPA and Bit-size

MSA Fail/
Bits PPA BK CS CL KS LF RC SE Total

8

AR None None None None None None None 0/49
CWT None KS None None None None None 1/49

DT None None None None None None None 0/49
WT None KS None None None None None 1/49

16

AR None All None None CS None None 8/49
CWT All All All All All All All 49/49

DT CS All CS CS CS CS CS 13/49
WT All All All All All All All 49/49

32

AR CS All CS CS CS CS CS 13/49
CWT All All All All All All All 49/49

DT CS All CS CS CS CS CS 13/49
WT All All All All All All All 49/49

64

AR CS All CS CS CS CS CS 13/49
CWT All All All All All All All 49/49

DT CS All CS CS CS CS,KS CS,KS 15/49
WT All All All All All All All 49/49

128

AR CS All CS CS CS CS,KS CS,KS 15/49
CWT All All All All All All All 49/49

DT CS All CS,KS CS CS CS,KS CS,KS 16/49
WT All All All All All All All 49/49

the best candidates among the PPAs regarding verifiability. All
FSAs are suitable for verification except the Carry Skip Adder
(CS) and for some cases the Kogge-Stone Adder (KS). For
some specific combinations of multipliers and adders used for
MAC, there is an explosion of the intermediate size of the SP.
Referring to Table II it can be clearly inferred that most of the
MACs using CS result in timeout for AR and DT. Additionally,
the KS adder is problematic for RC,SE and CL MSA in many
cases.

To provide some further insight on the verification runs, the
substitution trajectory curves are shown in Fig. 7 from 8 to
128-bits for AR • SE •RC and DT •KS •RC. The y-axis
shows the memory consumption starting from the SP over the
substitution steps along the x-axis. The blue curve shows that
starting from the SPinit during the backward substitution the
memory decreases. Thus the verification can be carried out
efficiently. But for the orange curve, the memory increases
during the run. This can already be seen in the 8-bit case and
becomes worse with increasing bit-width. Beside the curves,
also the values for φs1 and φs2 are reported. A value close
to 1 (0) for φs1 (φs2) is a clear indicator regarding scalability
of the verification process. As can already be seen here from
the φ-values of smaller bit-width verifiability results can be
extrapolated.

V. SCALABLE VERIFICATION FOR MAC

From the verification results presented in the previous
section, now the classification and analysis of scalable MAC
architectures can be derived.

In Section III only area and delay have been considered,
while verifiability was not addressed (cf. Fig. 5). If the same
experiment is re-run, but only the verifiable MAC instances are
shown, the results in Fig. 8 are obtained. All non-verifiable
(nver) instances are shown in gray. From Fig. 8 it can be
inferred that there is no locality in terms of area and delay for

Fig. 7: Substitution Trajectory Curves from 8 to 128-bits for
two Examples

Fig. 8: Verifiable MAC Architectures for 16-bits

the verifiability property. The designs that are all verifiable
do not necessarily have the largest area or the smallest delay.
This is a somehow surprising result, since typically highly
parallel circuits of small depth, i.e. fast circuits, tend to be hard
to verify. But some particular MAC architectures have lower
φs1 and φs2 . From the above observations ten optimal MAC
architectures in terms of area and delay are derived. These are
taken by calculating the Euclidean distance from the origin to
each MAC, described in terms of a normalized point (area,

TABLE III: Area and delay minima for 16-bit MAC

MAC Circuit Area (µm2) Delay (ps) MaxPoly φs1 φs2 VT (s)
DT • CS • KS 115.984 1091 4751520 13460.40 215.69 T.O.
DT • RC • KS 115.984 1091 504 1.43 0.11 0.290
DT • CS • BK 115.095 1114 4751520 14311.81 328.02 T.O.
DT • RC • BK 115.095 1114 449 1.35 0.05 0.086
DT • CL • CS 116.815 1018 13404881 21580.73 140.80 T.O.
DT • CL • RC 116.815 1018 351 1.09 0.01 0.183
DT • CS • LF 115.065 1130 4751520 14311.81 333.61 T.O.
DT • RC • LF 115.065 1130 468 1.41 0.07 0.090
DT • KS • CS 116.800 1082 148779 328.25 46.20 T.O.
DT • KS • RC 116.800 1082 797 2.48 0.23 0.348

Fig. 9: Substitution Trajectory for 16-bit MAC

delay) for x- and y-axes. All the optimal area-delay MAC
designs for 16-bit sizes are presented in Fig. 9. The diagram
shows the SP size on the y-axis and the substitution steps on
the x-axis. It turns out that five out of the ten best architectures
can be verified within the given time limit. From the diagram
the five non-verifiable architectures can easily be identified,
since all of them have large spikes and result in timeouts.

Table III provides additional details about the Area and
Delay as well as the maximal memory needed during a run
(MaxPoly). Furthermore φs1 , φs2 and the Verification Time
(VT) in seconds are reported. It can be seen that the MAC
architectures that timed out have significantly higher values
of MaxPoly, φs1 , φs2 , but the area and delay are comparable
with others. Also a clear correspondence between φs1 andφs2

with respect to VT can be observed. The higher the VT, the
larger are the values of φs1 and φs2 . From these findings
we can conclude that both φs1 and φs2 provide a very good
estimate of verifiability for larger designs. Those with the
lowest φs1 and φs2 provide MAC architectures that have the
highest likelihood to be verifiable for larger bit size.

A. Scalability Analysis for higher-bit MAC

Considering the verification results presented earlier, a class
of MAC architectures that has the highest potential to scale
for larger bit sizes has been identified. From the analysis
of smaller MAC designs, now the design strategy for larger
designs can be derived. Firstly, the analysis of the relevant
parameters are performed and then the scalability indicators

φs1 and φs2 are determined. Based on these, a classification
regarding verifiability is done. Secondly, we combine the
verifiable design with the area-delay trade-off. Not only the
MAC designs which are area-delay efficient and verifiable are
considered, but also the designs which have lower φs1 and
φs2 values are chosen.

TABLE IV: Result for scalable MAC Design

Bit MAC φs1 φs2 MaxPoly VT (s) Commercial (s)

8

AR • SE •RC 1.00 0.000 98 0.012 47.38
AR •RC •RC 1.00 0.000 98 0.013 47.36
DT •RC •BK 1.43 0.085 152 0.015 21.84
DT •RC • LF 1.50 0.130 159 0.017 21.91

16

AR • SE •RC 1.00 0.000 322 0.051 T.O.
AR •RC •RC 1.00 0.000 322 0.052 T.O.
DT •RC •BK 1.35 0.053 449 0.086 T.O.
DT •RC • LF 1.41 0.066 468 0.090 T.O.

32

AR • SE •RC 1.00 0.000 1154 0.393 T.O.
AR •RC •RC 1.00 0.000 1154 0.386 T.O.
DT •RC •BK 1.99 0.049 2305 0.686 T.O.
DT •RC • LF 2.05 0.059 2375 0.773 T.O.

64

AR • SE •RC 1.00 0.000 4354 4.329 T.O.
AR •RC •RC 1.00 0.000 4354 4.371 T.O.
DT •RC •BK 1.89 0.027 8225 7.473 T.O.
DT •RC • LF 1.99 0.065 8679 9.013 T.O.

128

AR • SE •RC 1.00 0.000 16898 67.889 T.O.
AR •RC •RC 1.00 0.000 16898 67.762 T.O.
DT •RC •BK 1.64 0.021 27715 119.166 T.O.
DT •RC • LF 1.76 0.050 29813 148.031 T.O.

256

AR • SE •RC 1.00 0.000 66562 2066.700 T.O.
AR •RC •RC 1.00 0.000 66562 2076.930 T.O.
DT •RC •BK 1.43 0.016 95093 3486.650 T.O.
DT •RC • LF 1.98 0.030 131832 3825.480 T.O.

512

AR • SE •RC 1.00 0.000 264194 41661.800 T.O.
AR •RC •RC 1.00 0.000 264194 41429.000 T.O.
DT •RC •BK 1.28 0.004 338227 82098.200 T.O.
DT •RC • LF 1.96 0.015 518515 87809.700 T.O.

The MAC architectures selected for scalability are taken
from the set based on fast verifiability, area-delay trade-off and
scalability indicators. The list of selected MAC architectures
are given below:

Fast verifiable designs
1) AR • SE • SE
2) AR •RC •RC

Optimal area-delay designs
3) DT •RC •BK
4) DT •RC • LF

The results for these four identified scalable MAC designs
are presented in Table IV, where for this experiments with
several hundred bits the runtime limit was increased to 100000
seconds (corresponding to approx. one day). The first column
presents the bit size of the MAC and the the second the

MAC architecture. The next two columns are φs1 , φs2 and
the next two columns present the measured results (MaxPoly)
and the Verification Time (VT). The last column presents
the verification time of a commercial tool (see below). The
table presents the results for 8, 16, 32, 64, 128, 256, and
512-bits. This shows that scalable designs of up to several
hundred bits can be fully verified. To demonstrate the quality
of the approach, we have also used a commercial tool for
verifying the MAC architectures. The four considered MAC
architectures are compared against a golden MAC. The tool
failed to verify any architectures larger than 8-bits.

From Table IV it can be seen, that the lower the value
of φs1 and φs2 , the lower is the verification time and the
smaller is MaxPoly also for scaled designs. Further from
the MaxPoly column it can be observed that the two fastest
verifiable designs are identical, whereas the two area-delay
efficient MACs differ in their MaxPoly size. DT •RC•LF has
consistently larger MaxPoly than DT •RC •BK or the other
two designs. The verification time shows a similar behavior.
AR • SE • SE and AR • RC • RC needs roughly the same
time, whereas DT • RC • LF needs consistently more time
than DT •RC •BK. Among all four designs DT •RC •LF
has the highest φs1 and φs2 for all bit sizes. Therefore, it is
not surprising that the MaxPoly and the verification time are
the highest among all.

Our anticipation of the forecast by looking at the smaller
design is found to be very effective. From the analysis a class
of MACs has been identified that is the fastest, most area
efficient and at the same time fully verifiable.

VI. CONCLUSION

In this paper, we present the first automated formal verifi-
cation for MAC using SCA. The ForMAt framework consists
of the tools MAC-Gen and MAC-Verify for generation and
verification of MAC units, respectively. From our experi-
mental study on lower-bit MAC architectures, two scalability
indicators are derived which enable us to extrapolate design
information. This helps the designer in choosing the right
scalable and verification friendly MAC architecture. While
φs2 monitors the entire verification run more precisely, it
has been shown that for MAC verification, also the simpler
indicator φs1 provides very accurate information. By this, the
verifiability aspect can be combined with the area-delay trade-
off. Finally, MAC designs can be identified which are efficient
in terms of area and delay, verifiable and at the same time
scalable.

ACKNOWLEDGMENT

This work was supported in part by DFG within the Reinhart
Koselleck Project PolyVer (DR 287/36-1) and partly by the
German Federal Ministry of Education and Research (BMBF)
within the ECXL project under grant no. 01IW22002.

REFERENCES

[1] Y.-H. Seo and D.-W. Kim, “A New VLSI Architecture of Parallel
Multiplier–Accumulator Based on Radix-2 Modified Booth Algorithm,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 18, no. 2, pp. 201–208, 2010.

[2] K. Neelima and Satyam, “High Performance Variable Precision Mul-
tiplier and Accumulator Unit for Digital Filter Applications,” in 2021
IEEE International Conference on Distributed Computing, VLSI, Elec-
trical Circuits and Robotics (DISCOVER), 2021, pp. 209–212.

[3] E. Morini, B. Zorn, D. Puri, M. Eranki, and S. Jampana, “Achieving end-
to-end formal verification of large floating-point dot product accumulate
systolic units,” Design and Verification Conference & Exhibition, 2024.

[4] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Transactions on Computers, vol. 35, no. 8, pp. 677–691,
1986.

[5] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient SAT solver,” in Proceedings of the 38th
annual Design Automation Conference, 2001, pp. 530–535.

[6] A. Mahzoon, D. Große, and R. Drechsler, “PolyCleaner: Clean your
Polynomials before Backward Rewriting to verify Million-gate Multi-
pliers,” in International Conference on Computer-Aided Design, 2018,
pp. 1–8.

[7] D. Kaufmann, A. Biere, and M. Kauers, “Verifying large multipliers
by combining SAT and computer algebra,” in 2019 Formal Methods in
Computer Aided Design (FMCAD). IEEE, 2019, pp. 28–36.

[8] ——, “Incremental column-wise verification of arithmetic circuits using
computer algebra,” Formal Methods in System Design: An International
Journal, Feb. 2019.

[9] A. Mahzoon, D. Große, and R. Drechsler, “RevSCA: Using Reverse
Engineering to Bring Light into Backward Rewriting for Big and Dirty
Multipliers,” in Design Automation Conference, 2019, pp. 185:1–185:6.

[10] C. Scholl and A. Konrad, “Symbolic Computer Algebra and SAT Based
Information Forwarding for Fully Automatic Divider Verification,” in
2020 57th ACM/IEEE Design Automation Conference (DAC), 2020, pp.
1–6.

[11] A. Mahzoon, D. Große, and R. Drechsler, “RevSCA-2.0: SCA-Based
Formal Verification of Nontrivial Multipliers Using Reverse Engineering
and Local Vanishing Removal,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 41, no. 5, pp. 1573–1586,
2022.

[12] A. Konrad and C. Scholl, “Symbolic Computer Algebra for Multipliers
Revisited-It’s All About Orders and Phases,” in 2024 Formal Methods
in Computer-Aided Design (FMCAD), 2024.

[13] R. Li, L. Li, H. Yu, M. Fujita, W. Jiang, and Y. Ha, “RefSCAT: Formal
Verification of Logic-Optimized Multipliers via Automated Reference
Multiplier Generation and SCA-SAT Synergy,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, pp. 1–1,
2024.

[14] H. Liu, P. Liao, J. Huang, H.-L. Zhen, M. Yuan, T.-Y. Ho, and
B. Yu, “Parallel Gröbner Basis Rewriting and Memory Optimization
for Efficient Multiplier Verification,” in Design, Automation and Test in
Europe, 2024, pp. 1–6.

[15] L. Weingarten, K. Datta, and R. Drechsler, “Towards Polynomial Formal
Verification of Neuromorphic Architectures,” in International Sympo-
sium on Electronic System Design. IEEE, 2024, pp. 1–6.

[16] ——, “Late Breaking Results: Towards Efficient Formal Verification of
Dot Product Architectures,” in Design, Automation and Test in Europe.
IEEE, 2025, pp. 1–2.

[17] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “DAG-aware AIG
rewriting a fresh look at combinational logic synthesis,” in Proceedings
of the 43rd Design Automation Conference, DAC 2006, San Francisco,
CA, USA, July 24-28, 2006, E. Sentovich, Ed. ACM, 2006, pp.
532–535. [Online]. Available: https://doi.org/10.1145/1146909.1147048

[18] C. Wolf, “Yosys Open SYnthesis Suite,” https://yosyshq.net/yosys/,
2024.

[19] “Genus(TM) Synthesis Solution - Cadence Design Systems, Inc.”
https://www.cadence.com/en US/home/tools/digital-design-and-signoff/
synthesis/genus-synthesis-solution.html, 2024.

[20] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline,
C. Ramamurthy, and G. Yeric, “ASAP7: A 7-nm finFET predictive
process design kit,” Microelectronics Journal, vol. 53, pp. 105–
115, 2016. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S002626921630026X

https://doi.org/10.1145/1146909.1147048
https://yosyshq.net/yosys/
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.sciencedirect.com/science/article/pii/S002626921630026X
https://www.sciencedirect.com/science/article/pii/S002626921630026X

	Introduction
	Background
	MAC Operation
	SCA-based verification

	MAC Generation
	Area & Delay Calculation

	MAC Verification
	Specification Polynomial for MAC
	MAC-Verifier
	MAC Verification Results

	Scalable Verification for MAC
	Scalability Analysis for higher-bit MAC

	Conclusion
	References

