
3D Visualization of Symbolic Execution Traces
Jan Zielasko1 Sören Tempel2 Vladimir Herdt1,2 Rolf Drechsler1,2

1Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
2Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

Jan.Zielasko@dfki.de, tempel@uni-bremen.de, vherdt@uni-bremen.de, drechsler@uni-bremen.de

Abstract—Symbolic execution is a powerful software testing
technique for finding bugs in complex software. Unfortunately,
following the symbolic execution and understanding its results is
challenging. However, since symbolic execution is commonly not
complete (i.e. due to path explosion) it is important to understand
the limitations of the performed analysis. Otherwise, insufficiently
tested code parts may not be identified and bugs remain unnoticed.
Prior work attempts to address this problem via 2D visualizations
which communicate properties of the performed analysis to
the verification engineer. Since symbolic execution requires a
visualization of several properties, such 2D visualizations often
lack important information or end up being dense and difficult
to understand.

In order to overcome this limitation, we propose a novel
3D visualization of symbolic execution which allows visualizing
additional properties via the third dimension. For this purpose, we
have implemented a 3D visualization for the symbolic execution
of RISC-V machine code and evaluate this implementation by
comparing it to an existing 2D visualization. Our results demon-
strate that the third dimension allows us to include additional
information which is not captured by the existing 2D visualization.
In order to stimulate further research on 3D visualization of
symbolic execution, we have released our implementation as open
source software.

I. INTRODUCTION

Understanding, analyzing and verifying programs is a challeng-
ing task and the difficulty only increases with the complexity of
the code. An emerging software verification technique to verify the
correctness of complex software is symbolic execution. Symbolic
execution attempts to explore all reachable execution paths through
a given program based on symbolic input variables. Unfortunately,
the number of execution paths in a program grows exponentially
with the number of branches in the code. This problem is referred
to as path explosion in existing literature and one of the cen-
tral challenges faced by existing symbolic execution engines [1,
Section 1.2]. Due to the path explosion problem, enumerating all
reachable paths is not feasible in the common case. For this reason,
manual intervention or adjustments to the exploration strategies
are often necessary to ensure the exploration of interesting paths
through the program.

In order to tweak the symbolic exploration it is central to
understand the results of a prior performed symbolic execution.
Interpreting the results and understanding which parts of the pro-
gram have not been sufficiently explored and why is challenging.
For example, the symbolic execution engine may be focusing
on exploring the same recursive function or loop over and over

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project Scale4Edge under contract
no. 16ME0127 and within the project VerSys under contract no. 01IW19001
and within the project ECXL.

978-1-6654-7332-3/22/$31.00 ©2022 IEEE

again, thus not exploring code outside of it. If the results are not
understood correctly, the exploration is not adjusted accordingly
and critical bugs in the software may remain unnoticed.

Prior work presents 2D visualization to aid the verification engi-
neer in interpreting the results of a performed symbolic execution
[2], [3], [4]. Designing a clear and easy to understand visualization
for the execution of a program is challenging. The majority of
prior work on 2D visualizations uses a graph-based visualization
to represent the control flow of the tested program. However, such
2D graphs often exclude important information (e.g. statistics for
each executed path) or become dense and difficult to comprehend.
Symbolic execution extends the concrete execution of programs
by one dimension, which contains the different paths through the
same program. A possible solution to handle the greater amount
of information that needs to be visualized, is to also extend the
visualization by one dimension.

This paper proposes an approach to visualizing the symbolic
execution of programs in three dimensions. To the best of our
knowledge, this is the first publication proposing a 3D visualization
for symbolic execution. Furthermore, we contribute an animation
system to create a visualization that can replay the execution
and update the created scene with each symbolic execution step,
combining the advantages of static and dynamic visualizations.
This allows us to visualize information about changes in the system
state during execution as well as the number of times and the order
individual sections of the program were explored in. We contribute
a modular open source implementation of this system which is
based on SymEx-VP [5], an existing symbolic execution engine
for RISC-V machine code available at GitHub [6]. We have mod-
ified SymEx-VP to support the automatic generation of symbolic
execution traces, which capture all relevant symbolic execution
runtime information in a dedicated XML format. Furthermore,
we contribute a visualization of generated traces as 3D scenes
using Blender [7]. We evaluate our proposed 3D visualization by
conducting a case-study comparison with SymNav [2] (a popular
2D graph-based visualization). Our results demonstrate that we
can visualize additional important information about the performed
symbolic execution via the third dimension in our visualization.
As such the 3D visualization can support the verification engineer
in getting a better understanding on the results of a performed
symbolic execution and identify limitations or problems of ap-
plied symbolic exploration strategies. The visualization is also
well suited for use in education. We provide our framework as
open source to further stimulate education and research on 3D
visualization of symbolic execution1 2.

1https://github.com/agra-uni-bremen/symex-trace-vp
2https://github.com/agra-uni-bremen/symex-3D

II. RELATED WORK

There exist a large number of different program execution visu-
alization tools, each suited for a different use case. Ghidra [8] is
a popular reverse engineering tool that supports a broad range of
architectures and use cases. It uses a 2D graph based visualization,
which is used by most existing program execution visualization
tools. They split the executed code into coherent control flow
blocks and connect them with edges. CFGExplorer [9] is another
example for a program analysis tool that uses this approach, but
explores a novel graph layout.

Most tools can be differentiated by the abstraction level or
programming language they are designed for and whether they
create a static or a dynamic execution visualization. A dynamic
visualization for symbolic execution, as presented by SED [4],
is often used alongside a debugger and creates a visualization
while the program is executed, which is updated with each step.
In a static visualization approach, the visualization is independent
from the execution environment, as all information is collected
during execution and fed into the visualization component after the
execution has finished. SymNav [2] is one of the most sophisticated
2D symbolic execution visualization tools and provides a visual
analytics environment that aids the user in understanding and
following different aspects of the symbolic execution. It is designed
to be used by security analysts to fine-tune symbolic exploration
of complex malware and software to understand the program and
discover vulnerabilities. As such it targets programs only available
in binary form. In contrast, SEViz [3] is a symbolic execution
visualization tool, that operates on .NET source code.

Looking beyond the visualization of program execution there
exist a range of similar domains such as hardware or software
visualization. It has been shown that most classic visualization ap-
proaches in the domain of hardware/software co-visualization fol-
low a similar 2D graph approach [10], which often runs into prob-
lems due to the complexity of the visualized data [11]. This resulted
in a number of new approaches animating the 2D visualization or
extending the visualization to three dimensions. In the context of
software maintenance, CodeCity [12] and EvoStreets [13] use a
3D approach, to try to solve the task of visualizing vast amounts
of information about software systems. Both represent an object-
oriented software system as a virtual city with EvoStreets extending
this visualization by additionally incorporating the evolution of
the system into the visualization. The experiment conducted by
Wettel [14] shows that such a 3D visualization can lead to a
statistically significant increase in efficiency when interacting with
such a visualization compared to the use of state of the practice
tools that support reverse engineering and program comprehension.
Another experiment compared the differences between viewing and
interacting with the 3D EvoStreets visualization in conventional 2D
environments and virtual reality with head-mounted displays [15].
The results show that users operate with approximately the same
efficiency when interacting with the 3D visualization using ortho-
graphic projection with keyboard and mouse, 2.5D projection with
keyboard and mouse and virtual reality headsets with hand-held
controllers.

III. BACKGROUND ON SYMBOLIC EXECUTION

Symbolic execution is a formal program analysis technique that
can explore many possible execution paths through the program at
the same time without requiring concrete inputs. During a symbolic
program execution, inputs are treated as symbolic. As such, an

input value does not consist of a concrete value, but is instead
internally represented using abstract symbolic expressions and
constraints, which can be used to construct real input instances with
the use of a constraint solver [1]. To run a program on symbolic
values, the program is executed by an interpreter with symbolic
execution capabilities.

When using dynamic symbolic execution to explore a program,
the interpreter begins executing the program similar to a normal
execution, with the difference, that some instructions might operate
on symbolic values. Whenever the execution reaches an expression
that contains a symbolic value which could cause a change of the
program counter that depends on the symbolic value, for example a
branch instruction, the symbolic expression solver checks, whether
the branch is feasible or not. If the solver decides that both paths are
feasible with the current symbolic value and the path constraints,
it forks the current program state and the symbolic execution can
follow both possible paths. For each branch, the symbolic value
responsible for the branch is assigned a path constraint that limits
the symbolic value in accordance to the expression that caused the
branch. Afterwards, each branch can be executed independently
from the other and can spawn any number of new forks itself. If the
execution of a path terminates, either by simply reaching a valid
end state or reaching an erroneous state for which it was previously
specified that it should not be reached, the constraint solver can
return an input instance that causes a concrete execution of the
program to follow the same path to the same end state [16].

In practice, the number of possible paths that are discovered
by the symbolic execution grows exponentially, leading to the so
called path explosion problem. An additional factor that may limit
the scalability symbolic execution is the complexity of symbolic
constraints that have to be maintained and solved along each
execution path [17]. For this reason, symbolic execution is usually
applied to smaller units of code or only limited path lengths [18].
This makes symbolic execution well suited to exhaustively explore
a huge number of different program paths in small programs or only
a limited number of blocks or functions in larger programs.

IV. METHODOLOGY

In this section, we present our proposed methodology on 3D
visualization of symbolic execution using the RISC-V Instruction
Set Architecture (ISA) as a case-study.

A. Overview
Our approach is based on the visualization of symbolic execution

traces. Fig. 1 shows an overview on our proposed 3D visualization
framework, which consists of three major components, that handle:

1) Trace Generation (top left),
2) Trace Analysis and Optimization (middle right), and
3) Trace Visualization (bottom).

Each component was designed in a modular way to allow extension
of the framework or adaption to other ISAs or visualization engines
with minimal changes to the other components.

As the underlying symbolic execution engine we use SymEx-VP
which is freely available on GitHub [6]. We have added a trace gen-
eration backend to SymEx-VP which generates trace files for sym-
bolically executed programs. The central component of SymEx-VP
is the Instruction Set Simulator (ISS) which decodes and simulates
the individual instructions, while the symbolic execution engine
and its internal SMT solver handle the symbolic exploration of
the program. For this reason, the changes necessary to implement

1) Trace Generation (Section IV-B)

3) Trace Visualization (Section IV-C)

SymEx-VP

Symbolic
Execution

Engine
Tracing

RISC-V Program

2)
Trace

Analysis
and

Optimization
(Section IV-C)

Control Flow
Blocks

Function
Blocks Instruction Blocks

Symbolic
Behavior

Animation
System

RTrace
file

PTrace
file

Fig. 1. Overview on the architecture of our porposed 3D visualization
framework

tracing to collect detailed information about an executed program
are mostly confined to these two components.

Executing a program with SymEx-VP generates a raw trace
file (RTrace, top right of Fig. 1) which contains all necessary
information to later reconstruct all important events. Saving the
trace in an intermediate file allows the user to process and visualize
the trace at any later point in time independently of the system
running the backend. Additionally, the RTrace uses an easy to
read and understand format based on XML [19], which makes it
possible to gain information about the symbolic execution from
the trace file itself. Fig. 2 shows an excerpt from an RTrace file
containing one step XML element (lines 1,4), which contains the
information about a single executed ADD instruction. In line 2, it
lists the opcode name, the destination and source register name (rd,
rs1, rs2) and whether they contain a concrete (C) or symbolic (S)
value and lastly the symbolic behavior (beh), which is none in this
example as all operands are concrete.

In the second step, the RTrace file is then fed into the trace
analysis and optimization component, which consists of a set of
Python scripts that analyze and optimize the data for visualization.
As an optional feature, the source code and program binary can also
be fed into the analysis step together with the RTrace file, which
results in additional information about high level control flow, that
enables annotations with source code lines. The processed data
is then written into a processed trace file (PTrace, middle right
of Fig. 1), which is also based on XML, but has a more complex
structure than the RTrace file.

The third component is the trace visualization engine (Sec-
tion IV-D). We implemented the visualization step as an addon for

1 <step pc="100d8" step="417">
2 <instruction opcode="ADD" rd="a5 (x15) C" rs1="a4

(x14) C" rs2="a5 (x15) C" beh="none">
3 </instruction>
4 </step>

Fig. 2. Excerpt from the RTrace file generated from the execution of the
example program used in Section V

Blender, which allows the import of PTrace files into the software,
and automatically creates a 3D scene. The addon creates 3D objects
for control flow blocks, function blocks, that mark function bound-
aries and single executed instructions. To color the created objects,
we define a number of procedural materials. In addition to creating
a 3D scene from the trace, we also use Blender’s keyframe-based
animation system to animate the instruction blocks. This makes it
possible to visualize changes in the symbolic state of the system
during execution and allows us to replay the complete execution
of all discovered paths by the symbolic execution engine. As an
add-on, this component is easy to install and use and was tested for
compatibility with Blender versions 3.0 and 3.1.

More details on the three subsequent steps of our framework are
provided in the following.

B. Trace Generation
To obtain a trace that allows following the concrete execution

of a program, it suffices to save information about instructions and
events that can not be determined from the program’s binary. For
the RISC-V standard instruction set only jumps and branches need
to be traced, as the concrete execution of all other instructions
is either unconditional or can be determined from the program’s
binary [20, p.5]. For symbolic execution, however, we must trace
every executed instruction, as any of them might operate on sym-
bolic values in memory or registers.

The traced data varies for each type of instruction, but always
contains information about its effect on the symbolic state of the
system. The symbolic behavior of an executed instruction can be
classified into the following categories:

• A fully concrete operation has no symbolic behavior (category
none).

• A concrete result may destroy a previously symbolic value.
• A symbolic result may update a previously already symbolic

value.
• The operation can create a new symbolic value.
• A symbolic result may overwrite a symbolic value.
• Other special cases with regard to symbolic execution that

concretize a symbolic value into a concrete value3.
Since this approach does not necessarily rely on the program’s

binary to reconstruct the program’s execution, it also works in
cases where the actual executed code is not directly available in the
compiled binary file since it traces each instruction that is actually
decoded and executed by the SymEx-VP. If the source code of the
executed binary is available it is used to identify the corresponding
source code lines for each executed instruction. This information
is then annotated on the individual instructions or coherent control
flow blocks and included in the generated RTrace file. We designed
the RTrace file to fulfill several requirements:

1) The trace file should be easy to generate and parse.
2) The contents should be human readable.

3For example, a multiplication with zero will always yield a zero result
independent of the (symbolic) input value. Hence, a concrete result is produced
in any case.

3) The trace size should be minimal.
XML strikes a good balance between these three requirements and
was therefore used as the format for the RTrace file.

C. Trace Optimization

The RTrace file obtained by instrumenting the SymEx-VP con-
tains all information necessary to reconstruct the symbolic program
execution. In the next step, the RTrace is processed, analyzed and
subsequently stored in the PTrace format, a format with similar
requirements to the RTrace, but optimized for visualization and
additionally containing all information acquired during the analysis
step. This separation keeps the trace analysis independent from the
execution environment or visualization framework. This means,
the analysis implementation can easily be replaced by a different
implementation without affecting the execution tracing step. De-
spite both steps being separated, any substantial modification to the
information or structure in the PTrace will likely require changes
in the visualization step as the visualization is based on the data
provided.

The goal of the analysis step is to collect global information
about each run as well as the complete symbolic exploration. This
includes the range of accessed memory and PCs to allow a better
placement and optimization of the visualization. This analysis step
also removes all duplicate sections from the traced data, which
drastically reduces the size of the trace. The duplicate sections
are a result from the implementation of the symbolic exploration
engine. SymEx-VP does not fork the execution at branch points
and instead restarts the simulation for each new assignment of input
variables. As such, multiple symbolic execution runs will have
the same execution up until a certain branch point. The common
steps are identical and not needed to understand or follow the
execution. In contrary, they only clutter the scene and make it more
difficult to understand the symbolic execution in the visualization.
For this reason, all duplicate trace sections, that contain the exact
same XML elements as already included in the parent run, are
removed from the trace. To identify duplicate sections however, it
is necessary to know the parent and child relation of all runs. This
information is gained by constructing a binary tree using the run
creation data from the RTrace.

If the binary contains DWARF [21] debug information and the
source code is available, both files are used to extract high-level
information about the execution. The collection of this information
is optional and can later be used to add additional high-level
visualization elements to the low-level visualization.

D. Trace Visualization

With all necessary trace data available, the next step is the
visualization of the processed trace. The first challenge is to find
a suitable visualization type, that can capture all aspects of the
symbolic execution, and a framework, that can be used to create
and display the visualization.

We chose a 3D tree approach as a base for our visualization
with nodes representing the executed instructions and edges rep-
resenting the control flow between them. An obvious control flow
visualization approach would be to copy the design of proven 2D
graph based visualizations and only extend it by one dimension.
However, the graph based visualization approach does not accu-
rately represent how the instructions are seen when viewing a
disassembly of the binary. As this visualization aims to create a
low-level instruction based visualization, we use a strictly linear

Fig. 3. Concept image showing how each of the different spacial dimensions
is used to visualize information

visualization for the program counter with only one dimension
instead, which results in a view similar to that of a binaries disas-
sembly. Further, the graph also hides information about individual
runs, because paths that reach the same program section after a
point of divergence are joined again in the corresponding node.
This compressed graph view is well suited for users who only want
to understand the behavior of the program and are not interested
in how the program was explored. As one of our goals is to aid the
user in understanding the symbolic exploration, evaluating different
exploration strategies and identifying problems, we chose to use
an uncompressed tree based visualization. Fig. 3 shows how the
different aspects are assigned to each axis. The X-dimension is used
to visualize the program counter, with each grey cube representing
a single executed instruction. The Y-dimension, is used to visualize
the different paths through the program found through symbolic
exploration. This makes it easy to compare individual paths and
spot differences or diverging behavior quickly. In Fig. 3 the relation
between the four different paths is visualized by the purple arrows
connecting them. The Z-Dimension is used to visualize the current
call-stack depth. This makes it possible to easily compare different
passes through the same code in the same run. This is useful to
understand how, for example, symbolic values are eliminated after
calling the same function several times.

The main aspects of the visualization backend, that have to be
considered are the 3D scene creation process, shader/material ca-
pabilities, rendering and possible user interactions with the created
scene. A detailed manual control over all the listed aspects after the
scene was generated is essential to allow the user to customize the
visualization or highlight specific details. For this reason, Blender
was chosen as the visualization backend, as it offers all features
that are necessary for automating complex 3D scene (e.g. [22],
[23]) creation from a generated trace through its extensive Python
API [24]. Blender makes it possible to create, place and view
objects at arbitrary locations in 3D space. By using different shapes
for the different instruction types (e.g. arithmetic instructions and
branches) instead of annotating them with text, we create an
abstract visualization of the program code, that makes it easy
to identify interesting sections without cluttering the scene with
unnecessary text. To visualize the different symbolic execution
behaviors identified in Section IV-B, we utilize different colors and
rotations for highlighting the individual instruction blocks. Each
type of symbolic behavior (Section IV-B) is assigned a different
color and rotation axis. We use green to highlight instructions

with the create behavior, red for destroy, blue for update, orange
for overwrite and white for special, but the colors are freely
customizable by the user. The color highlight is only applied to
the inner section of all faces of the object’s mesh, which leaves the
remaining outer sections available for highlighting other aspects.

Blender also offers an advanced keyframe-based animation sys-
tem which we leverage to incorporate dynamic aspects into our
visualization scheme (to set the value of any property, e.g. the
position, rotation, size or color, of any object at specific points in
time and play an interpolated animation between them).

With the animation system, we can use time as an additional
dimension to visualize the exploration of each path. We use this
feature to animate the changes in the symbolic state of the system,
which results in an animation that replays the complete symbolic
execution of each path from start to finish. The animation begins at
the start of the first discovered path, highlighting the first executed
instruction as active with a bright green outline using the outer
section mentioned above and a marker object placed above it.
Similar to how a processor executes a binary, the marker transitions
to the next executed instruction and marks it as active after a
constant time interval. This continues until the execution reaches
an instruction that leads to a new discovered path. From this point
on the animation of the new path begins and both continue on until
the execution is finished. If an active instruction has a symbolic
behavior (Section IV-B), its color and rotation is updated accord-
ingly. This makes it easy to spot sections in the visualization that
contain instructions that operate on symbolic values and identify
problematic functions that introduce multiple new symbolic values
to the execution. In addition to the instruction objects, we also
create objects representing control flow blocks that encapsulate and
group coherent sections of each explored path.

V. EVALUATION

In order to evaluate our proposed methodology we compare it to
an existing 2D visualization using an example program as a case-
study. For this purpose, we compare our novel 3D visualization
with SymNav [2], an existing 2D visualization for symbolic execu-
tion (see Section II). The program used for this case-study is based
on an extended symbolic execution example program from prior
work [25, Listing 1]. It uses several different program constructs
(like recursion and branches), thereby illustrating the visualization
of different aspects of symbolic program execution.

In the following, we present the visualizations of our proposed
approach (Section V-A) and SymNav (Section V-B) and then
provide a discussion which compares both visualizations (Sec-
tion V-C).

A. Proposed 3D Visualization

Our 3D visualization can be viewed from different configurable
perspectives. In this section, we present three different views for
the visualization of the aforementioned example program (Fig. 4,
Fig. 5 and Fig. 6).

In Fig. 4 the 3D scene is shown from a top-down perspective.
This view eliminates one of the dimensions, resulting in a view
similar to classical 2D visualizations. In this regard, Fig. 4 provides
an overview of the paths discovered through symbolic execution.
The six vertical columns each represent a different execution path
through the program (p1-p6). The individual paths are ordered
from left to right in the order they were explored. Each explored
path reaches a different section of the program. The different

program sections are identified by the horizontally-aligned blocks.
Information about the blocks is encoded using their color. Each
block executed by a given path contains a number of smaller and
mostly grey instruction blocks (i) that represent single executed
instructions and underneath, a number of larger, colored control
flow blocks (c). The source and target of jumps (orange) and
branches (green) are connected by curves (b), that, depending on
the direction, are placed either on the left or right side of the
instruction blocks. More information about these blocks is provided
on the left-hand side of Fig. 4. Most importantly, each block
belongs to a function block (f) which is labeled with the function
name and identifies the beginning and end of a function. Slightly
to the right, the program counter (d) for each instruction block
is displayed. Furthermore, the line number for the corresponding
instruction in the source code is provided.

Fig. 5 shows the same visualization from a different perspec-
tive, which makes it possible to see the stack depth information
contained in the Z-dimension. From this perspective the recursion
can be spotted in the top right section (R), which contains a
stack of multiple instruction blocks for each program counter. In
contrast, all other non-recursive sections contain only a single or
no instruction block for each program counter. Fig. 4 shows the
same section in the second most block from the top (R).

One additional difference between the two figures is the program
counter plane that is enabled for Fig. 5. The program counter
plane is a background overlay which makes it easier to associate
individual instruction blocks with their respective program counter.
This is achieved by alternating between a light grey and dark grey
background color for each program counter. Compared to Fig. 4,
the view presented in Fig. 5 also presents a closer view of the
individual instruction blocks. In the lower left section (s) of Fig. 5,
instruction blocks are highlighted in different colors on their inner
section and rotated to visualize their symbolic behavior. The colors
correspond to the behavior described in Section IV-A. The green
color marks the create behavior, while red corresponds to destroy.

A zoomed in view of the section marked in Fig. 5 (M) can be
seen in Fig. 6. The section contains the starting point of p2, p3,
p4 and p5 which are connected to their parent path that spawned
the new symbolic run by a purple arrow. For each run, the control
flow block objects are created for every control flow block that is
reached by that path. In contrast, the instruction objects are only
created from the point onwards from which the path diverges from
its parent to avoid cluttering the scene with duplicate information.

From the three different figures, it is easy to understand which
code sections are reached by which path and which code sections
are explored multiple times by different symbolic runs. In this
example, the first seven control flow blocks are reached by all of the
six different paths, but diverge from this point on. The dark orange
block (beneath i) for example is only reached by p2, which results
in none of the other paths possessing a block for this section. In the
branch condition that caused p2, the symbolic value is compared
to a magic value for equality, which effectively concretizes the
symbolic value to this magic number for this path. This is also the
reason why no other paths are spawned from p2 as the concrete
value can never fulfill both edges of a branch condition. An aspect,
which is difficult to spot in the still image is the starting point of
p1. This point lies at the beginning of the main function at the
top of the teal colored control flow block row (c). In the animated
visualization it is clearly highlighted by a marker and a bright
green color. The instruction objects for all but the first run are

Fig. 4. Top down orthographic view of the 3D visualization of the example
program

only created after the point they diverge from their parent. The
recursive_loop section that lies before the PC of the point of
divergence contains instruction objects for all paths, as execution
jumps to this function after that point in time.

A special case can be seen in the empty section at the bottom,
which represents a section that contains unreachable code. In the
source code, this section contains a check testing the symbolic
variable for (var > 0) ∧ (var < 0).

The visualization of symbolic behavior can be seen in the red,

green and orange colored sections on some of the instruction
blocks. To increase the contrast between instructions with and with-
out symbolic behavior, the light intensity of the object illuminating
the scene can be reduced. This was done for the detailed view in
Fig. 6, which makes it easier to spot sections of interest in larger
scenes. The differences in rotation used for symbolic behavior can
be seen in the bottom left section in Fig. 5. This results in a different
visual shape compared to other instruction blocks when viewed in
3D without losing the instruction type information encoded in the
base shape (the rotated cubes stand out, while still being clearly
identifiable as cubes).

The state of the visualization in all figures is shown at a point
at which all symbolic runs were fully executed. Using Blender’s
animation system, the user can view the state of the symbolic
execution at any point in time or replay the complete symbolic
execution.

B. SymNav 2D Visualization

Fig. 7 shows the 2D CFG generated by SymNav for the same
example program compiled for the x86 architecture. In the SymNav
tool, the graph is shown in the main graph view after the program
was fully explored and with the main function selected as active.

In the full user interface of SymNav, the left side displays general
information about the symbolic exploration, while the right side
allows the user to steer the symbolic exploration or filter the results.
For this comparison, we only focus on the 2D graph visualization
of the symbolic execution shown in Fig. 7.

The graph is a visualization of all paths found by the symbolic
execution through the main function merged into one connected
graph. Each node contained in the graph represents a control flow
block, which are mostly identical to the control flow blocks created
in our 3D visualization. SymNav allows the user to expand or
collapse these blocks to either only contain the block start address
or the complete assembly code of the block. Edges in the graph
that are explored multiple times or by multiple symbolic execution
runs are highlighted by using a greater line thickness. The user can
navigate to different functions by clicking on the corresponding
nodes in the graph, but only a single function can be viewed at
the same time. The second control flow block (m) contains the
x86 equivalent of the dark orange control flow block described in
Section V-A, in which the symbolic value is compared to a magic
value. The visualization of how the new path splits at the first block
is similar, but in the 2D visualization, the paths join again into the
same node. This graph clearly shows how each code section can
be reached, but loses the information about the individual run, as it
is not possible to understand which blocks the path following the
second node (m) can actually reach.

C. Discussion

In this section, we compare the two different visualizations
presented above. We mainly focus on the advantages of a 3D
visualization and the general new aspects of this specific 3D visual-
ization approach in comparison to classical 2D symbolic execution
visualizations. For this reason we only compare the graph view
from SymNav with our animated 3D scene as any of the additional
SymNav windows can be integrated into our visualization tool in a
similar fashion without affecting the main 3D view in any way.

SymNav uses a 2D representation for the control flow, which
merges the information from all symbolic runs in a single graph.
Compared to our approach, in which we visualize each individual

Fig. 5. 3D visualization of the symbolic execution of the example program

Fig. 6. Detailed view of the section marked M in Fig. 5

run, this compressed view is missing detailed information about
how the symbolic execution engine explored the program. Using
our visualization, it is possible to identify problems with the sym-
bolic execution or evaluate different exploration strategies. By us-
ing a one dimensional, linear visualization for the program counter,
we match the code representation as it is seen in a disassembly of
the programs binary. This allows us to use the additional dimension
for other aspects and also results in a number of features, for exam-
ple, being able to spot unreachable program sections. On the other
hand, a 2D graph representation compresses all the information,
which makes it easier to understand the results of the complete
symbolic execution and reduces the size of the visualization. For
this reason, the choice of visualization for the program counter and

control flow depends on the specific use case. SymNav does not
visualize the symbolic behavior for the executed code in any way.
While this information is not necessary to understand the results
of the symbolic execution, it is essential to understand how those
results arise. Using colors to encode this information is easy to
understand in the visualization without cluttering the scene and
could also be applied to SymNav’s 2D visualization. SymNav does
also not directly display information about problematic sections of
the program. As shown in the example, visualizing the stack depth
in the Z-dimension makes it trivial to spot time intensive recursion
and also conveys general information about the control flow to
the user. Fig. 4 effectively demonstrates that any 2D visualization
can be expanded to a 3D visualization to allow visualization of
additional information without sacrificing any aspect of the 2D
visualization.

The animation component in our visualization is essential in
making the propagation of symbolic values and the creation and
start of runs easy to understand, as it guides the user through the
3D graph. In SymNav the user has to manually step through the
2D graph which still makes it possible to follow the execution, but
much harder in comparison. A similar animation could be applied
to SymNav’s 2D graph although it is more difficult to apply to its
compressed control flow graph.

Because of the additional dimensions, extending or adjusting the
creation process of the animated 3D visualization for a specific use
case is more difficult compared to that of a classical 2D graph.

VI. CONCLUSION

We have presented a novel approach for 3D visualization of sym-
bolic execution traces and an animation system which visualizes
changes in the symbolic state over time. Our proposed visualiza-

Fig. 7. Excerpt from the 2D graph created by symbolically executing the
example program with SymNav

tion approach assists verification engineers in understanding the
symbolic program exploration and its results, which help identi-
fying code parts that have been insufficiently tested. Furthermore,
we have presented a modular implementation of our proposed
visualization based on Blender [7] and SymEx-VP [5]. In order
to evaluate this implementation, we have performed a case-study
comparing our 3D visualization approach with an existing 2D visu-
alization from prior work. The results of this comparison indicate
that more information about the performed symbolic exploration
can be visualized using the third dimension without sacrificing
clarity of the visualization. To the best of our knowledge, we have
presented the first 3D visualization specifically for symbolic execu-
tion. To stimulate further research on this topic, we have released
our 3D visualization framework as open source software. We plan
to improve our proposed approach in future work by integrating
additional information into our visualization (e.g. concretization)
to further support the verification engineer in understanding crucial
aspects of a performed symbolic execution.

REFERENCES

[1] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi,
“A survey of symbolic execution techniques,” ACM Computing Surveys,
vol. 51, no. 3, 2018.

[2] M. Angelini, G. Blasilli, L. Borzacchiello, E. Coppa, D. C. D’Elia,
C. Demetrescu, S. Lenti, S. Nicchi, and G. Santucci, “Symnav: Visually
assisting symbolic execution,” in 16th IEEE Symposium on Visualization
for Cyber Security, 10 2019.

[3] D. Honfi, A. Voros, and Z. Micskei, “Seviz: A tool for visualizing
symbolic execution,” in 2015 IEEE 8th International Conference on
Software Testing, Verification and Validation (ICST), 2015, pp. 1–8.

[4] M. Hentschel, R. Bubel, and R. Hähnle, “Symbolic Execution Debugger
(SED),” in Runtime Verification, B. Bonakdarpour and S. A. Smolka, Eds.
Springer International Publishing, 2014, pp. 255–262.

[5] S. Tempel, V. Herdt, and R. Drechsler, “Symex-vp: An open source virtual
prototype for os-agnostic concolic testing of iot firmware,” in Journal of
Systems Architecture, vol. 126, 2022, p. 102456.

[6] Group of Computer Architecture, University of Bremen, “symex-vp.”
[Online]. Available: https://github.com/agra-uni-bremen/riscv-vp

[7] Blender Foundation, “Blender,” https://www.blender.org/, 2002.
[8] N. S. Agency, “Ghidra,” https://ghidra-sre.org/, 2019.
[9] S. Devkota and K. Isaacs, “Cfgexplorer: Designing a visual control flow

analytics system around basic program analysis operations,” Computer
Graphics Forum, vol. 37, pp. 453–464, 06 2018.

[10] R. Drechsler and J. Stoppe, “Hardware/software co-visualization on
the electronic system level using systemc,” in 2016 29th International
Conference on VLSI Design and 2016 15th International Conference on
Embedded Systems (VLSID), 2016, pp. 44–49.

[11] R. Drechsler and M. Soeken, “Hardware-software co-visualization: De-
veloping systems in the holodeck,” in 2013 IEEE 16th International
Symposium on Design and Diagnostics of Electronic Circuits Systems
(DDECS), 2013, pp. 1–4.

[12] R. Wettel and M. Lanza, “Visualizing software systems as cities,” in
2007 4th IEEE International Workshop on Visualizing Software for
Understanding and Analysis, 2007, pp. 92–99.

[13] F. Steinbrückner, “Consistent software cities : supporting comprehension
of evolving software systems,” Ph.D. dissertation, BTU Cottbus - Sen-
ftenberg, 06 2013.

[14] R. Wettel, M. Lanza, and R. Robbes, “Software systems as cities:
a controlled experiment,” in 2011 33rd International Conference on
Software Engineering (ICSE), 2011, pp. 551–560.

[15] M. Steinbeck, R. Koschke, and M. O. Rudel, “Comparing the evostreets
visualization technique in two-and three-dimensional environments a
controlled experiment,” in 2019 IEEE/ACM 27th International Conference
on Program Comprehension (ICPC), 2019, pp. 231–242.

[16] C. Cadar, D. Dunbar, D. R. Engler et al., “KLEE: unassisted and auto-
matic generation of high-coverage tests for complex systems programs.”
in OSDI, vol. 8, 2008, pp. 209–224.

[17] R. Majumdar and K. Sen, “Hybrid concolic testing,” in 29th International
Conference on Software Engineering (ICSE’07), 2007, pp. 416–426.

[18] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing
engine for C,” in Proceedings of the 10th European Software Engineering
Conference, vol. 30, 09 2005, pp. 263–272.

[19] W3C, “Extensible Markup Language (XML) 1.0 (fifth edition) :
W3C recommendation 26 november 2008,” 2008. [Online]. Available:
https://www.w3.org/TR/REC-xml

[20] I. R. Gajinder Panesar, RISC-V Processor Trace, 1st ed., https://riscv.org/
specifications/, UltraSoC Technologies Ltd, 3 2020.

[21] Debugging Information Format Committee, “DWARF Debugging
Information Format,” UNIX International Waterview Corporate Center,
Parsippany, NJ, USA, Tech. Rep. Version 4, 2010. [Online]. Available:
http://www.dwarfstd.org/doc/DWARF4.pdf

[22] J. D. Durrant, “BlendMol: advanced macromolecular visualization in
Blender,” Bioinformatics, vol. 35, no. 13, pp. 2323–2325, 11 2018.

[23] A. et al., “Intuitive representation of surface properties of biomolecules
using BioBlender,” Bioinformatics, vol. 13, no. 16, 3 2012. [Online].
Available: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/
1471-2105-13-S4-S16

[24] Blender Foundation, “Blender 2.93.6 Release Candidate Python API
Documentation,” https://docs.blender.org/api/current/, 2021.

[25] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna, “Sok: (state
of) the art of war: Offensive techniques in binary analysis,” in IEEE
Symposium on Security and Privacy, 2016, pp. 138–157.

