
RISC-V AMS VP: An Open Source
Evaluation Platform for Cyber-Physical Systems

Sallar Ahmadi-Pour
Institute of Computer Science,

University of Bremen
Bremen, Germany

sallar@uni-bremen.de

Vladimir Herdt
Institute of Computer Science,

University of Bremen
Cyber-Physical Systems, DFKI GmbH

Bremen, Germany
vherdt@uni-bremen.de

Rolf Drechsler
Institute of Computer Science,

University of Bremen
Cyber-Physical Systems, DFKI GmbH

Bremen, Germany
drechsler@uni-bremen.de

Abstract—Recently, Virtual Prototypes (VPs) implemented in
SystemC TLM (Transaction-Level Modeling) have been intro-
duced into the growing RISC-V ecosystem to facilitate early soft-
ware development and testing. However, accurate environment
modeling, which is crucial for Cyber-Physical Systems (CPS),
has been mostly neglected to this point.

Thus, in this paper, we propose the RISC-V AMS VP
framework, that combines an existing open source RISC-V
VP with the SystemC AMS (Analog/Mixed Signal) environment
modeling style to obtain a RISC-V evaluation platform tailored
for CPS. As a case study we created a temperature control system
that integrates a sensor and heater component together with a
control software. Moreover, we present results on an exemplary
fault-injection evaluation that is enabled by bringing together
software, hardware and environment models in our unified RISC-
V AMS VP framework. Finally, we provide the RISC-V AMS
VP framework together with the temperature control system as
open source to stimulate further research and as foundation for
educational purposes.

I. INTRODUCTION

RISC-V is a modern free and open source Instruction Set
Architecture [1], [2] that gained an enormous popularity in
academia and industry. A key feature of RISC-V is the modu-
lar and extensible design. Starting with a small mandatory base
integer ISA, a set of optional standard instruction set exten-
sions, such as compressed instructions or multiplication are
defined. Moreover, to further boost performance and energy
efficiency, custom instruction set extensions can be integrated.
This enables to build highly efficient application specific
solutions which are very suitable for resource constrained
embedded devices such as employed in the Internet of Things
(IoT) domain or other Cyber-Physical Systems (CPS).

An important part of RISC-V is the continuously growing
ecosystem that includes a large set of tools, simulators and
processor implementations - both open source and commercial
- to support the development flow. Recently, Virtual Prototypes
(VPs), such as the open source RISC-V VP [3], have been
introduced into the RISC-V ecosystem to facilitate early

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project VerSys under con-
tract no. 01IW19001 and within the project Scale4Edge under contract
no. 16ME0127.

978-1-6654-1825-6/21/$31.00 ©2021 IEEE

software development and testing as well as other system level
use-cases. A VP is essentially an executable abstract model
of the entire hardware platform and predominantly created in
SystemC TLM (Transaction-Level Modeling) [4]. VPs enable
to capture interactions between the hardware and software
accurately. However, in addition accurate environment mod-
els are required which are crucial for CPS. SystemC AMS
(Analog/Mixed Signal) [5] is a modeling standard to provide
such environment models, but has not been integrated with
open VP solutions for RISC-V so far.

Therefore, in this paper we propose to combine the open
source RISC-V VP [3] with SystemC AMS to obtain a
RISC-V evaluation platform tailored for CPS. We call this
combined framework RISC-V AMS VP (Section IV). As
a case study we created a temperature control system that
integrates a sensor and heater component together with a
control software running on a RISC-V platform (Section V).
It illustrates the modeling principles of RISC-V AMS VP,
which can be applied to build other CPS. RISC-V AMS VP
provides a unified view on the software, the hardware in form
of the VP and AMS environment model. This allows the
design and verification engineers to accurately interact with
the system at all different levels, which in turn facilitates to
perform powerful analyses. We demonstrate this use-case by
presenting exemplary results on a fault-injection evaluation
which considers different modeling layers (Section VI). We
believe that RISC-V AMS VP is a suitable foundation for
further research and education. Therefore, we provide the
RISC-V AMS VP framework together with the temperature
control system case study as open source (GitHub link will
follow in the final version).

II. RELATED WORK

Considering RISC-V, there exist a number of simulators
such as the reference simulator SPIKE [6], RISCV-QEMU [7],
gem5 [8], [9], RV8 [10] or Renode [11]. They differ in their
implementation techniques and intended use-case which
range from mainly pure CPU simulation (SPIKE, RV8) to
full-system simulation (QEMU, gem5) and even support
for multi-node networks of embedded systems (Renode).
However, they are mainly designed to simulate as fast

as possible and primarily focus on modeling interactions
between hardware and software, but only offer limited
modeling capabilities to support environment interactions.
Moreover, they are not designed to integrate well with the
standardized SystemC modeling style. Therefore, recently,
SystemC-based solutions have emerged in the RISC-V
ecosystem. One example is the open source RISC-V VP [3],
that we use as foundation in this work, which is implemented
in SystemC TLM and hence provides a foundation for
advanced SystemC-based use-cases. Viable alternatives in
this context are the DBT-RISE [12] framework and the
ETISS [13] ISS which are also designed with a SystemC
integration in mind. With regard to DBT-RISE, an example
VP platform implemented in SystemC TLM is provided [14]
which integrates a RISC-V ISS [15]. Another SystemC
TLM simulator for RISC-V is RISC-V-TLM [16], which is
currently under active development to improve the RISC-
V feature support. However, while these SystemC-based
solutions provide a strong foundation to enable accurate and
extensible modeling of hardware and software interactions,
accurate environment modeling has been mostly neglected
so far. Commercial VP tools, e.g. Synopsys Virtualizer or
Mentor Vista, might support RISC-V in combination with
accurate environment models in a unified VP framework, but
their implementation is proprietary. Finally, some approaches
exist that have been designed to formalize the RISC-V ISA
semantics, e.g. SAIL [17] and GRIFT [18], which also
provide or can generate simulator backends. However, these
simulation backends are tailored for software execution
and thus are not suitable to model extensive and accurate
environment interactions.

Looking beyond RISC-V, for the simulation of hardware
and physical environments, there exist a lot of commercial
and free solutions. Among the prominent commercial tools
there exists Mathworks MATLAB/Simulink [19], Wolfram
Mathematica [20] and Maplesoft Maple [21]. The tools all
offer extensions for the modeling and simulation of various
physical systems, control and hardware systems as well as
tasks around simulation and analysis of systems and control.
There exist open-source alternatives to tools mentioned like
Octave [22], SciLab [23] and the Python library scipy [24].
They partially offer the same set of features while being freely
available without a commercial license. Another open-source
solution for the simulation of heterogeneous systems is the
Ptolemy Project by UC Berkley [25]. Ptolemy is an open-
source software framework for modeling and simulating com-
plex actor-oriented heterogeneous systems offering a variety
of computational models. Neither the commercial tools with
their alternatives, nor Ptolemy offer the simulation of software
execution with hardware/environment interaction.

The RISC-V AMS VP closes the gap between the modeling
of heterogeneous systems containing hardware with physical
environments and their software driven interaction. Moreover,
is is a beneficial open source extension to the growing RISC-V
ecosystem.

III. BACKGROUND: SYSTEMC TLM AND AMS

This section provides relevant background information on
the SystemC TLM (Section III-A) and AMS (Section III-B)
modeling standards.

A. TLM

SystemC TLM-2.0 is an industry-proven modeling standard
used for the design of VPs. TLM adds a set of interfaces
and coding styles that allow for significant improvement of
simulation speed when compared with the traditional SystemC
style with signals, ports, modules and event-driven processes.
With TLM this signal and port based communication is ab-
stracted into transactions that are routed on a memory mapped
bus system from an initiator to a target. Transactions consist
of a command (e.g. read/write), a pointer to the transaction
payload, a start address and the payload length. To further
improve the simulation performance two commonly utilized
techniques are used: Direct Memory Interface (DMI) and Time
Quantum (TQ). DMI allows to bypass the memory mapped
bus and access specific address ranges directly through a
pointer. TQ allows processes to postpone the synchronization
with the SystemC kernel, which can be very beneficial in the
VP context to avoid synchronization in the Instruction Set
Simulators (ISS) after every executed instruction.

B. AMS

The SystemC extension for AMS adds new features regard-
ing the interaction of embedded systems with their physical
environment. A direct use-case implies embedded systems
containing components like radio frequency interfaces, power
electronics, sensors and actors. The formalism for designing,
simulating and verifying these components can also be used
to extend the use-cases for modeling environments connected
to these components. SystemC AMS adds three formalisms,
called Models of Computation (MoC), to the SystemC mod-
eling library. These three MoC are Timed Data Flow (TDF),
Linear Signal Flow (LSF) and Electic Linear Networks (ELN).

In TDF, models are described in discrete-time modules
which calculate their dynamics according to a fixed schedule.
The modules are interconnected to, so called, TDF clusters.
With the static schedules the simulation overhead for the
discrete-event simulation kernel of SystemC is minimized.
In LSF, models are described as continuous-time modules
through a set of primitive modules like add, multiply, integra-
tion or delay. Through these primitives any linear Differential
Algebraic Equation (DAE) system can be described. The
models are described with a block diagram notion and are
solved through a DAE solver. In ELN, models represent
electrical networks designed from predefined primitives like
sources (voltage or current), linear lumped elements (resistors,
capacitors and inductors) as well a restricted set of linear prim-
itives and switches for modeling electrical energy conserving
behavior. As the voltage and current in these networks behave
according to the Kirchhoff’s voltage law and Kirchhoff’s
current law, the models can be represented through DAE and
thus be simulated through a DAE solver like the LSF models.

RISC-V
ISS

TLM 2.0 Bus

sc_signal
TLM

AMS

TLM-AMS-

Bridge

AMS Model
(TDF,LSF,ELN)

TLM
Peripheral

Fig. 1. Modeling approach with the RISC-V AMS VP

Further AMS support verification techniques for time-domain
and frequency-domain analysis, which can be applied to all
AMS MoC.

The AMS extension aims towards interoperability with
TLM and therefore offers interfaces between the TDF and
discrete-event domain of TLM. For more details on the spec-
ification and features of SystemC AMS refer to the official
language reference [5] or user guide [26].

IV. RISC-V AMS VP FRAMEWORK

The RISC-V AMS VP is an extension of the open source
RISC-V VP [3] offering SystemC AMS capabilities to simu-
late highly heterogeneous embedded systems. The VP uses
fast TLM based software/hardware simulation while AMS
enables the domain of analog/mixed signal and physical envi-
ronments to be part of the simulation. Such a combination is
very important, because modern CPS have a strong coupling
between the software/hardware interaction and the physical
environment they are embedded in. Thus, the RISC-V AMS
VP provides a solution to design, simulate and verify CPS in
a unified approach, tailored for RISC-V. Following the VP-
based design flow, RISC-V AMS VP serves as a reliable
executable specification and reference model of the CPS, from
the specification phase, through refinement steps and up to
deployment.

Fig. 1 shows the design approach for AMS modeling with
the RISC-V AMS VP. The interaction with the AMS com-
ponents and environments occurs through a TLM peripheral.
At first the TLM peripheral can directly manipulate the I/O
ports that are available on the AMS model, thus providing a
functionally correct but abstract implementation. For further
refinement, more detailed communication protocols can be
implemented by leveraging Intellectual Property (IP) blocks
commonly used and available on System on Chip (SoC) de-
signs (i.e. PWM, I2C, etc.). On the AMS layer the environment
models can be designed in a similar fashion, following an
iterative demand-driven refinement procedure. Starting with
a lightweight and undetailed model that covers the interface
towards the SoC, more details can be added to cover additional
aspects which are of interest to the designed system. For
example, consider a temperature sensor which can initially be
modeled as a functional mock-up that directly delivers mea-
sured temperature values into TLM registers. A subsequent
refinement can then include additional processing steps which
mimic the real behavior of a sensor in a physical environment,

Embedded
System / VP

ADC,
processing,

bus protocol,
etc.

bytes
representing °C

Sensor

phyiscal environment (closed room)

Scenario: closed room, heating

element and temperature sensor

control heater

°C of air

Fig. 2. System level view of our temperature control system

such as amplification or analog to digital conversion. To
illustrate the modeling principles of RISC-V AMS VP, we
present a temperature control system which we created using
RISC-V AMS VP in the next section.

V. TEMPERATURE CONTROL SYSTEM CASE STUDY

In this section we describe the temperature control system,
which we created as a case study using our RISC-V AMS
VP framework. We start with a general system level overview
(Section V-A) and then present a refined architecture view
that shows the hardware, software and environment model
together (Section V-B). Next, we detail the temperature control
algorithm (Section V-C) and finish with a concrete setup
and application scenario for the temperature control system
(Section V-D).

For differentiation we use the mathematical script (e.g T (t)
or Toff) for physical/mathematical parameters of the System
and standard or verbatim font (e.g. heat_o or heat o) for
software/hardware parameters.

A. High-Level System View

Fig. 2 shows the system level view of our temperature
control system case study. It consists of three main parts: 1) a
heater that can be switched on or off, 2) a temperature sensor
that provides the current temperature value, and 3) an embed-
ded system that controls the heater based on periodic tem-
perature sensor readings. We consider a closed room scenario.
The heater and sensor operate in a physical environment. They
control and pick-up the environment temperature, respectively.
We represent the embedded system as well as models of the
heater, sensor and environment temperature using the RISC-
V AMS VP framework. The temperature control algorithm
is implemented in software which is executed on the VP.
Therefore, the software is periodically triggered via sensor
interrupts. Inside the sensor there are multiple steps to process

 RISC-V SW

 RISC-V VP

 AMS Env.

 (Heat.-Sys.)

TLM 2.0 System Bus

Temperature T(t)
 as double

Environment
Model

Heater
Peripheral

(TLM Register W/O)

RISC-V
ISS

Control Loop
SW

Sensor
Peripheral

(TLM Register R/O)

Scenario
/

Setpoints

Heat P(t)
as double

Heater
Model

Sensor
Model

TLM

AMS

S
y
s
te

m
C

TLM-AMS-
Bridge

Sampled Temperature
T_s(t) as uint32_t

TLM-AMS-
Bridge

etc.

I/O Signal
On/Off

uint32_t uint32_t

Interrupt
Controller

SW

TLM

Fig. 3. Architecture view of the temperature control system as implemented
using our RISC-V AMS VP framework

the raw temperature which is measured from the environment.
First the heat changes the resistance of a sensor element
(for example a PTC), the change in resistance then causes
a change in voltage or current, which in turn is picked up
by an amplification circuit and made available as readable
bytes representing the temperature through an Analog Digital
Converter (ADC). This processed temperature value is then
picked up by the software as input for the control algorithm.

B. Refined Architecture View

Fig. 3 shows the architecture of the system and can be
considered a refined view of the system level. It consists
of three main parts: 1) the control software (top of Fig. 3),
2) the TLM-based VP that represents the embedded system
and executes the control SW (middle of Fig. 3), and 3) the
AMS-based sensor, heater and environment models (bottom
of Fig. 3). To build the VP, we extended the base RISC-
V VP configuration1 by TLM peripherals representing the
interaction with the heater and temperature sensor models.
On the TLM level these peripherals provide registers for the
state of the heater and sensor processed temperature using
C/C++ types (uint32_t). These registers are accessed from
the software side and they are connected to the AMS based

1The open source available RISC-V VP base configuration includes the
ISS, interrupt controller and TLM bus system among others.

Discretize system equation for

Describe and approximate system:

Fig. 4. Environment model with model derivation

environment simulation. The C/C++ types are converted and
translated to their physical representations. If the heater is
turned on, it emits a fixed amount of power as heat (5 W). The
resulting temperature is fed into the sensor model in the AMS
environment. For practical purposes we choose a temperature
resolution of 1 ◦C as this is sufficient enough for temperature
control since the modeled sensor (modeled after a Maxim
Integrated DS18B20 Temperature Sensor2)provides a accuracy
of 0.5 ◦C.

Fig. 4 shows the description of the environment temperature
model. The physical system is represented by the heat equation
(equation (a) and (b) in Fig. 4). For the model it is assumed
that the heat put into the system (Heatin) either leaves
the system through conduction (Heatout) or is stored in
the volume (Heatstored). From this approach the Ordinary
Differential Equation (ODE) of the model is derived. In order
to describe the model with the TDF formalism of SystemC
AMS, the ODE is rearranged and transformed. The following
transformations is applied to the ODE to discretize it into a
difference equation:

P (t) = Pi (1)
T (t) = Ti (2)
T (t)

dt
=
Ti+1 − Ti−1

2∆t
(3)

This transformation discretizes the time into timsteps i
(current timestep), i−1 (last timestep) and i+1 (next timestep)
with ∆t being the stepsize between the timesteps. Equation
(d) of Fig. 4 is obtained after inserting the transformations
and rearranging the terms for the temperature of the next time
step Ti+1 in dependence of the values of the previous timesteps
(Ti−1, Ti).

C. Temperature Control Algorithm

Various control algorithms are available to build a temper-
ature controller. For our case study we consider a hysteresis
controller. This type of controller is very popular in various
embedded application domains because of two key properties:
1) it allows for a lightweight design, and 2) it enables to reduce
the wear on switching elements (such as a relay) and thus

2For more information the datasheet can be found on https://www.
maximintegrated.com/en/products/sensors/DS18B20.html

https://www.maximintegrated.com/en/products/sensors/DS18B20.html
https://www.maximintegrated.com/en/products/sensors/DS18B20.html

heat_o

Fig. 5. Hysteresis-based control to reach and stay at a temperature setpoint

temp_i

COOLING

heat_o := Off

temp_i

HEATING

heat_o := On

reset

temp_i temp_i

Fig. 6. FSM-based hysteresis control algorithm, which we implemented in
software

prolongs the lifetime of the components. In hysteresis-based
control the temperature setpoint (Tset) is reached by keeping
the actual temperature value T around the setpoint. Therefore,
an upper bound Toff is defined, at which the controller turns
off the heat, and a lower bound Ton, at which the controller
turns on the heat. Thus, the resulting temperature stays within
a range around the desired temperature setpoint.

Fig. 5 shows a simplified graph of the desired hysteresis
control over time. The top plot in Fig. 5 depicts the tem-
perature T over time with the setpoint Tset (blue horizontal
line) and the bounds Ton, Toff (dashed blue horizontal lines).
The bottom plot in Fig. 5 shows the state of the heater (1
= on, 0 = off). The top plot shows that the temperature T
is first increased over time, until it reaches the upper bound
Toff . If the temperature is equal or bigger than Toff the
controller turns off the heat and waits for the temperature to
drop again. The temperature will drop until the lower bound
Ton is reached. If the temperature is less or equal than Ton the
controller will turn on the heat again and wait until it reaches
the upper bound again. Thus, resulting in a sawtooth shaped
curve for the temperature T over time.

To implement the hysteresis control in software, we de-
signed a Finite State Machine (FSM) that takes the current
temperature T (t) as an input and outputs the state of the heater
(on or off) controlling P (t) to emit heat into the system.

Fig. 6 shows this FSM. The current temperature is called
temp_i, the heat control output is called heat_o. The FSM
has two states COOLING and HEATING. Initially the FSM will
start in the HEATING state. In the state HEATING the output
heat_o will be on (1), and in the state COOLING the output

Heat System

10 cm

10 cm

10 cm

he
at

_o
 :=

 o
n

/ o
ff

temp_i := AMS sensor output

Heater Sensor

Fig. 7. Heat system modeled in case study for heat control

heat_o will be off (0). The FSM stays in the HEATING state
as long as the temperature temp_i is smaller than Toff , if the
temperature is greater or equal than Toff then it will transition
into the COOLING state. Respectively, the FSM stays in the
COOLING state as long as the temperature temp_i is bigger
than Ton, and if the temperature is smaller or equal than
Ton then it will transition into the HEATING state. Note that
the guards for transitioning the states are mutually exclusive
making the FSM deterministic.

The control software implements this FSM-based hysteresis
control algorithm in an interrupt driven way. On each periodic
temperature sensor interrupt, the software is triggered to
process one transition of the FSM which can either change
or keep the state of the FSM.

D. Evaluation Setup and Scenario

In this case study we exemplary model an enclosed and air-
filled cube of 10 cm width, height and depth. For an illustration
of the modeled setup refer to Fig. 7. We assume a heating
element with 5 W of heating power that can be either turned
on or off. For the cube we choose the following configuration
parameters of the heat system:

α = 5.6 W/m2K

A = 0.06 m2

m = 0.001269 kg

cp = 1005 J/kgK

As an approximation, we assume the airmass inside the
volume to be constant over time3. For the hysteresis controller
we choose a hysteresis band of ±1 ◦C. Thus, for a setpoint
of Tset = 20 ◦C we get Ton = 19 ◦C and Toff = 21 ◦C. The
AMS model is simulated with a stepsize ∆t = 1 ms. Inside the
TLM sensor module the temperature is sampled every 5 ms.

3While, in general a change in temperature has an effect on the airmass,
for our case study the effect is mostly negligible.

Fig. 8. Heat control for two setpoints (20 ◦C and 10 ◦C)

The RISC-V ISS is configured to execute the instructions at a
cycle time of 500 ns.

For evaluation purposes we consider a scenario with two
setpoints, the first at 20 ◦C and the second at 10 ◦C. Both
setpoints are held for a defined number of time steps to repre-
sent a realistic temperature control scenario. Fig. 8 shows the
temperature of the system traced from the environment directly
(black line) and the trace of the sensor as read by the control
loop software (blue line). Additionally the temperature setpoint
is displayed as red dashed-dotted line, with the hysteresis band
as the purple dashed lines. The hysteresis controller produces
the characteristic sawtooth shape on the actual temperature.
This control scenario serves as a baseline for the exemplary
fault injection in the next Section VI.

Please note, that all these configuration and scenario pa-
rameters are configurable and thus can be easily adapted if
necessary.

VI. FAULT INJECTION EVALUATION

Build on RISC-V AMS VP, our temperature control system
(Section V) provides a unified view on the software, the
hardware in form of the VP and AMS environment model.
This allows an interaction with the CPS at different levels to
obtain accurate analysis results. We demonstrate this use-case
by presenting exemplary results on a fault-injection evaluation
which considers different modeling layers, in particular: 1)
the sensor TLM peripheral, 2) the ISS, and 3) the control
loop software. This covers a broad range of potential error
scenarios and as such provides the foundation for verification
engineers to reason about the robustness of the CPS more
comprehensively. We describe the observed effects of these
three exemplary fault-injections, using the parameters and
scenario from Section V-D as a baseline, in the following.

1) Inside the sensor TLM peripheral a stuck-at fault is
inserted into the memory mapped register that holds the
temperature value obtained from the AMS environment
sensor model. The resulting controller behavior is shown

Fig. 9. Fault injection in TLM module

Fig. 10. Fault injection in ISS

in Fig. 9. For the first setpoint at 20 ◦C the control loop
holds the actual temperature within the specified range,
but switches the heater very rapidly. The second setpoint
at 10 ◦C is not reached correctly and instead the control
loop stabilizes at 8 ◦C.

2) In the ISS a stuck-at fault is injected into a register for
a defined range of program counter values. The range
of the program counter affects a section of the control
loop software. The resulting controller behavior is shown
in Fig. 10. Both setpoints are not reached correctly and
at both stable temperatures the switching of the heating
element occurs more frequently compared to the baseline.

3) Inside the software level the guards of the FSM for the
state HEATING are swapped. The resulting controller
behavior is shown in Fig. 11. For the first setpoint at
20 ◦C the temperature is held within the hysteresis band
but with higher switching frequency. The second setpoint
at 10 ◦C is not reached and after analyzing the software

Fig. 11. Fault injection in control loop software

behavior and the logged wavetraces the resulting behavior
of the actual temperature comes from the heater being
switched at a constant frequency as soon as the second
setpoint is set as the target temperature.

Faults injected at different modeling layers can have several
effects and result in different errors at runtime. Errors like
high switching frequencies will cause increased wear on the
switching element (e.g. relay or triac). Other errors like wrong
actual temperatures are even more critical as the controller
does not fulfill its purpose correctly anymore. Therefore, it is
important to have a unified framework available that allows
to reason about the different modeling layers and accurately
propagate information across them.

VII. CONCLUSION AND FUTURE WORK

In this paper we proposed RISC-V AMS VP, an open
source RISC-V evaluation platform for CPS. As a case study
we created a temperature control system to illustrate the the
modeling principles of RISC-V AMS VP. RISC-V AMS VP
integrates the TLM and AMS modeling styles to provide a
framework that allows a unified reasoning on the the software,
the hardware in form of the VP and AMS environment model.
Such a unified view enables to describe and reason accurately
about system interactions at all these different levels, which
is a strong foundation to perform powerful analyses. We
demonstrated this use-case by presenting exemplary results
on a fault-injection evaluation which allows to track the
fault-injection effects accurately across the different modeling
layers. To stimulate further research and education, we provide
the RISC-V AMS VP framework together with the temperature
control system case study as open source (GitHub link will
follow in the final version).

To further boost our approach, for future work we plan to:
• Consider cross-level and hybrid modeling aspects that in-

tegrate components at the Register-Transfer Level (RTL)
as well as real hardware components with the RISC-V
AMS VP framework;

• Devise automated refinement procedures that aid in build-
ing accurate models at the VP level and also consider
integration of models that estimate timing and energy
consumption for design space exploration purposes;

• Implement and provide a more comprehensive library
of common building blocks (sensors, actuators, mod-
els) specifically designed for CPS, which integrate with
RISC-V AMS VP;

• Investigate integration of advanced verification techniques
such as fuzzing and symbolic execution to generate test
inputs in order to obtain comprehensive coverage results
tailored for the RISC-V AMS VP platform.

REFERENCES

[1] A. Waterman and K. Asanović, Eds., The RISC-V Instruction Set Manual;
Volume I: Unprivileged ISA, 2019.

[2] ——, The RISC-V Instruction Set Manual; Volume II: Privileged Architec-
ture, 2019.

[3] “RISC-V virtual prototype,” https://github.com/agra-uni-bremen/riscv-vp.
[4] IEEE Standard SystemC Language Reference Manual, IEEE Std. 1666,

2011.
[5] IEEE Standard for Standard SystemC(R) Analog/Mixed-Signal Extensions

Language Reference Manual, IEEE Std. 1666.1-2016, 2016.
[6] “Spike RISC-V ISA simulator,” https://github.com/riscv/riscv-isa-sim.
[7] “RISCV-QEMU,” https://github.com/riscv/riscv-qemu, accessed: 2018-05-

13.
[8] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,

J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.
[Online]. Available: http://doi.acm.org/10.1145/2024716.2024718

[9] “gem5,” https://github.com/gem5/gem5.
[10] “RV8,” https://rv8.io, accessed: 2018-05-13.
[11] “Renode,” https://renode.io/.
[12] “Dbt-rise-riscv,” https://github.com/Minres/DBT-RISE-RISCV, 2021.
[13] “ETISS (extendable translating instruction set simulator),” https://github.

com/tum-ei-eda/etiss.
[14] “HIFIVE1-VP,” https://git.minres.com/VP/HIFIVE1-VP, 2021.
[15] “DBT-RISE-RISCV,” https://github.com/Minres/DBT-RISE-RISCV, 2021.
[16] “RISC-V-TLM,” https://github.com/mariusmm/RISC-V-TLM.
[17] “Riscv sail model,” https://github.com/rems-project/sail-riscv.
[18] “GRIFT - galois RISC-V ISA formal tools,”

https://github.com/GaloisInc/grift.
[19] MATLAB/Simulink, version 9.8.0 (R2020a). Natick, Massachusetts: The

MathWorks Inc., 2020.
[20] Wolfram Research, Inc., “Mathematica, Version 12.3,” champaign, IL,

2021. [Online]. Available: https://www.wolfram.com/mathematica
[21] a. d. o. W. M. I. Maplesoft, “Maple 2021,” waterloo, Ontario, 2021.

[Online]. Available: https://www.maplesoft.com/products/Maple/
[22] J. W. Eaton, D. Bateman, S. Hauberg, and R. Wehbring, GNU Octave version

5.2.0 manual: a high-level interactive language for numerical computations,
2020. [Online]. Available: https://www.gnu.org/software/octave/doc/v5.2.0/

[23] ESI Group, “Scilab.” [Online]. Available: https://www.scilab.org/
[24] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cour-

napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt,
M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones,
R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas,
D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R.
Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and
SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020.

[25] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Sachs,
Y. Xiong, and S. Neuendorffer, “Taming heterogeneity - the ptolemy
approach,” Proceedings of the IEEE, vol. 91, no. 1, pp. 127–144, 2003.
[Online]. Available: http://chess.eecs.berkeley.edu/pubs/488.html

[26] IEEE Standard SystemC AMS User Manual, https://accellera.org/images/
downloads/standards/systemc/Accellera SystemC AMS Users Guide
January 2020.pdf, 2020, accessed: 2021-05-28.

https://github.com/agra-uni-bremen/riscv-vp
https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-qemu
http://doi.acm.org/10.1145/2024716.2024718
https://github.com/gem5/gem5
https://rv8.io
https://renode.io/
https://github.com/Minres/DBT-RISE-RISCV
https://github.com/tum-ei-eda/etiss
https://github.com/tum-ei-eda/etiss
https://git.minres.com/VP/HIFIVE1-VP
https://github.com/Minres/DBT-RISE-RISCV
https://github.com/mariusmm/RISC-V-TLM
https://github.com/rems-project/sail-riscv
https://www.wolfram.com/mathematica
https://www.maplesoft.com/products/Maple/
https://www.gnu.org/software/octave/doc/v5.2.0/
https://www.scilab.org/
http://chess.eecs.berkeley.edu/pubs/488.html
https://accellera.org/images/downloads/standards/systemc/Accellera_SystemC_AMS_Users_Guide_January_2020.pdf
https://accellera.org/images/downloads/standards/systemc/Accellera_SystemC_AMS_Users_Guide_January_2020.pdf
https://accellera.org/images/downloads/standards/systemc/Accellera_SystemC_AMS_Users_Guide_January_2020.pdf

	Introduction
	Related Work
	Background: SystemC TLM and AMS
	TLM
	AMS

	RISC-V AMS VP Framework
	Temperature Control System Case Study
	High-Level System View
	Refined Architecture View
	Temperature Control Algorithm
	Evaluation Setup and Scenario

	Fault Injection Evaluation
	Conclusion and Future Work
	References

