
Formal Verification of Modular Multipliers using Symbolic
Computer Algebra and Boolean Satisfiability

Alireza Mahzoon
University of Bremen
Bremen, Germany

mahzoon@informatik.uni-bremen.de

Daniel Große
Johannes Kepler University Linz

Linz, Austria
daniel.grosse@jku.at

Christoph Scholl
University of Freiburg
Freiburg, Germany

scholl@informatik.uni-freiburg.de

Alexander Konrad
University of Freiburg
Freiburg, Germany

konrada@informatik.uni-freiburg.de

Rolf Drechsler
University of Bremen/DFKI

Bremen, Germany
drechsler@uni-bremen.de

ABSTRACT
Modular multipliers are the essential components in cryptography
and Residue Number System (RNS) designs. Especially, 2n − 1 and
2n + 1 modular multipliers have gained more attention due to their
regular structures and a wide variety of applications. However, there
is no automated formal verification method to prove the correctness
of these multipliers. As a result, bugs might remain undetected after
the design phase.

In this paper, we present our modular verifier that combines Sym-
bolic Computer Algebra (SCA) and Boolean Satisfiability (SAT) to
prove the correctness of 2n − 1 and 2n + 1 modular multipliers. Our
verifier takes advantage of three techniques, i.e. coefficient correction,
SAT-based local vanishing removal, and SAT-based output condition
check to overcome the challenges of SCA-based verification. The
efficiency of our verifier is demonstrated using an extensive set of
modular multipliers with up to several million gates.

1 INTRODUCTION
Modular arithmetic nowadays plays an important role in many appli-
cations such as cryptography and RNS. Several modular arithmetic
units, e.g. adders and multipliers are proposed and implemented to
meet the increasing demands for efficient modular computations.
Among these units, 2n −1 and 2n +1 modular multipliers have gained
special focus due to their variety of applications and regular struc-
tures. The 2n ± 1 modular multipliers are used in International Data
Encryption Algorithm (IDEA) block cipher [5] for encryption. They are
also employed in some implementations for fast conversion of RNS
to weighted number system [3]. Moreover, they are used for Fermat
number transformation and pseudorandom number generation.

Several architectures have been proposed for 2n ± 1 modular mul-
tipliers [13, 14, 17]. They aim to implement the modular multiplier
function while minimizing the area and delay. These architectures are
usually complex and contain a huge number of gates. Thus, they are
highly error-prone. An important phase after the design of modular

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DAC ’22, July 10–14, 2022, San Francisco, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9142-9/22/07. . . $15.00
https://doi.org/10.1145/3489517.3530605

multipliers is formal verification to prove their correctness. Unfortu-
nately, there is a very limited number of works on the verification of
modular multipliers. The authors of [15] proposed a formal verifica-
tion method based on theorem proving to guarantee the correctness
of Montgomery modular multipliers. However, the technique is not
automated, and it cannot be applied to 2n ± 1 modular multipliers.

Recently, SCA-basedmethods have shown very good results for the
verification of integer arithmetic circuits, including multipliers [4, 6–
8, 16] and dividers [11, 12]. The general idea of the SCA-based verifi-
cation is to (1) represent the function of the multiplier based on its
inputs and outputs as a Specification Polynomial (SP), (2) capture the
gates (or nodes of an AND-Inverter Graph (AIG)) as a set of polynomi-
als PG , and (3) use the Gröbner basis theory to prove the membership
of SP in the ideal generated by PG . The just mentioned 3rd step
consists of the step-wise division of SP by PG (or equivalently substi-
tution of variables in SP with PG) known as backward rewriting, and
eventually the evaluation of the remainder. If the remainder is zero,
the multiplier is correct. Otherwise, it is buggy.

Despite the success of SCA-based method for the verification of
integer multipliers, it fails when it comes to the verification of mod-
ular multipliers. The failure is due to the three obstacles: (1) The
modular computations in the multiplier changes some bit positions.
This effect is reflected in backward rewriting as the change of some
coefficients which leads to an explosion in the size of the intermediate
polynomial after a few substitution steps. (2) Several multi-variable
monomials known as vanishing monomials appear during the back-
ward rewriting. These monomials are reduced to zero after several
steps of backward rewriting or under input conditions. However, they
cause the generation of many new monomials and variables before
cancellation. (3) Obtaining the zero remainder is not enough to prove
that a modular multiplier is correct. It must also be shown that the
output is always smaller than the modulo value.

In this paper, we propose a modular verifier to prove the cor-
rectness of 2n − 1 and 2n + 1 modular multipliers. Our modular
verifier combines SCA and SAT. We come up with three techniques
to overcome the challenges of verifying modular multipliers. First,
we introduce a coefficient correction technique for SCA to obtain
the desired coefficients after each substitution step and avoid the
explosion. Then, we propose a SAT-based method to remove the van-
ishing monomials locally and avoid the generation of large number of
monomials during global backward rewriting. Finally, we introduce a
SAT-based technique to check whether the output condition holds for
a modular multiplier. To the best of our knowledge, this paper is the
first attempt for automated formal verification of modular multipliers.

https://doi.org/10.1145/3489517.3530605

DAC ’22, July 10–14, 2022, San Francisco, CA, USA A. Mahzoon, D. Große, C. Scholl, A. Konrad, R. Drechsler

Z0 Z1 Z2 Z3

n1

n8

n12

n11n9 n10

n5 n6 n7

n4n3n2

A0 B0 A1B1

Figure 1: 2×2 mult

SP := 8Z3 + 4Z2 + 2Z1 + Z0 −A×B

SP
PZ3−−→ SP1 := 8n11 + 4Z2 + 2Z1 + Z0 −A×B

SP1

PZ2−−→ SP2 := 8n11 + 4− 4n12 + 2Z1 + Z0 −A×B

SP2

Pn12−−−→ SP3 := 8n11 + 4n9 + 4n10 − 4n9n10 + 2Z1 + Z0 −A×B

SP3

Pn11−−−→ SP4 := 8n4n7 + 4n9 + 4n10 − 4n9n10 + 2Z1 + Z0 −A×B

...

SP13

Pn3−−→ SP14 := n1 + n2 − (A0B0 +A0B1)

SP14

Pn2−−→ SP15 := n1 − (A0B0)

SP15

Pn1−−→ r := 0

Figure 2: Backward rewriting steps

2 PRELIMINARIES
2.1 Multiplier Structure
An integer multipliers consist of: (1) Partial Product Generator (PPG)
which generates partial products from two inputs, (2) Partial Prod-
uct Accumulator (PPA) which reduces partial products using multi-
operand adders and computes their sums, and (3) Final Stage Adder
(FSA) which converts these sums to the corresponding binary output.

The input of a verification method is usually a gate-level netlist
or an AIG. We use both representations in this paper. However, we
prefer the AIG for the experiments since it gives us the possibility
of advanced reverse engineering to identify atomic blocks, e.g. Half-
Adders (HAs) and Full-Adders (FAs) [7, 16].

2.2 Verification using SCA
The goal of SCA-based verification is to formally prove that all signal
assignments consistent with the gate-level or AIG representation
evaluate the Specification Polynomial (SP) to 0. The SP determines
the function of an arithmetic circuit based on its inputs and outputs,
e.g. for the 2 × 2 multiplier of Figure 1 SP = 8Z3 + 4Z2 + 2Z1 + Z0 −
(2A1 + A0)(2B1 + B0), where 8Z3 + 4Z2 + 2Z1 + Z0 represents the
word-level representation of the 4-bit output, and (2A1+A0)(2B1+B0)
represents the product of the 2-bit inputs.

Before verification, the nodes of an AIG (or gates of a gate-level
representation) should be modeled as polynomials describing the
relation between inputs and outputs. Based on the type of nodes and
edges, five different operations might happen in an AIG. Assuming z
is the output, and ni and nj are the inputs of a node:

z =ni ⇒ pN := z − ni , z = ni ∧ nj ⇒ pN := z − ninj ,
z =¬ni ⇒ pN := z − 1 + ni , z = ¬ni ∧ nj ⇒ pN := z − nj + ninj ,
z =¬ni ∧ ¬nj ⇒ pN := z − 1 + ni + nj − ninj . (1)

The extracted node polynomials are in the form PN = x−tail(PN),
where x is the node’s output, and tail(PN) is a function based on
the node’s inputs. Similarly, the polynomials for the gates can be
extracted in a gate-level representation (see [6, 10]).

Based on the Gröbner basis theory, all signal assignments consis-
tent with the AIG evaluate the specification polynomial SP to 0, iff
the remainder of dividing SP by the AIG node polynomials is equal
to 0 (see [4] for more details).

The step-wise division of SP by node polynomials is shown in
Figure 2 for the 2 × 2 multiplier. As the remainder is zero, the circuit
is bug-free. In arithmetic circuits, dividing SPi by a node polynomial
PNi = xi − tail(PNi) is equivalent to substituting xi with tail(PNi)

in SPi . For example, dividing SP3 by Pn11 in Figure 2 is equivalent to
substituting n11 with tail(Pn11) = n4n7 in SP3. The process of step-
wise division (substitution) is called backward rewriting. We refer to
this intermediate polynomial as SPi in the rest of the paper.

2.3 Modular Multipliers
A Modular Multiplier produces the product of two unsigned integers
modulo a fix constantm:

Z = A × B modm, (2)

where the inputs and output must be always smaller thanm:
A, B < m and Z < m . (3)

There are two ways to generate modular multipliers: (1) the prod-
uct of inputs is computed using a normal integer multiplier; then, a
modular reduction unit is used after the multiplier to obtain the final
result, (2) the modular computations are integrated into the three
stages of the multiplier. Since the second implementation method is
much more area and delay-efficient, it is used in almost all designs.

Now, we focus on the two special modulim = 2n−1 andm = 2n+1.
These modular multipliers have regular structures; thus, they can be
automatically generated for arbitrary sizes.

2.3.1 2n − 1Modular Multiplier. A 2n − 1 modular multiplier pro-
duces the product of two n-bit unsigned integers modulo 2n − 1.

P2,1 P1,2 P3,0 P0,3 P3,3 P2,0 P0,2 P1,1 P3,2 P2,3 P1,0 P0,1 P2,2 P3,1 P1,3 P0,0

c3
c2 c1 c0

t2 t1

s2 s1 s0s3

t0

Z3 Z2 Z1 Z0

FA FA FA FA

FA FA FA FA

FA FA FA FA

HA HA HA HA

Figure 3: 2n − 1 modular multiplier

Figure 3 shows the
structure of a 24 − 1 =
15 modular multiplier,
which receives two 4-
bit numbers and re-
turns their modular
product (see [9, 17]
for the details). The
multiplier is created
using AND gates in
the first stage to gen-
erate partial products
and HAs and FAs in
the second and third stages to reduce them. For simplification, we
show the AND operations as Pi, j = Ai ∧ Bj . Please note that the
weight of partial products should be calculated modulo 2n − 1 at each
step of partial product reduction. Therefore, the bits in position n
(i.e. partial products with weight 2n) are reinserted in position 0. The
red wires depict the bits whose positions have been changed.

2.3.2 2n+1ModularMultiplier. A 2n+1modular multiplier produces
the product of two (n + 1)-bit unsigned integers modulo 2n + 1.

P2,1

P1,2

P0,3 P2,0

P0,2

P1,1 P2,3

P1,0

P0,1

c2 c1 c0

t2 t1

s2 s1 s0s3

t0

Z3 Z2 Z1 Z0

HA HA HA HA

FA FA FA FA

FA FA FA HA

HA HA HA HA

FA FA FA FA

Z4

c3

Figure 4: 2n + 1 modular multiplier

Figure 4 shows the
structure of a 24 +
1 = 17 modular
multiplier, which re-
ceives two 5-bit num-
bers (see [9, 14] for
the details). The first
stage consists of AND,
OR, and NOT gates.
The second and the
third stages of the
multiplier are made of
HAs and FAs. In 2n +
1 modular multipliers,
the bits in position n
(i.e. partial products
with weight 2n) are inverted and then reinserted in position 0. The
red wires show the bits with changed positions.

Formal Verification of Modular Multipliers using Symbolic Computer Algebra and Boolean Satisfiability DAC ’22, July 10–14, 2022, San Francisco, CA, USA

3 CHALLENGES OF VERIFICATION
There are three challenges when it comes to the SCA-based verifica-
tion of modular multipliers. We explain them in three subsections.

3.1 Effect of Modulo on Coefficients
Atomic blocks, including HAs and FAs, have a compact word-level
relation between their inputs and outputs:

HA(in : X , Y out : C, S) ⇒ 2C + S = X + Y ,
FA(in : X , Y , Z out : C, S) ⇒ 2C + S = X + Y + Z . (4)

Thus, for example, if we have 2C + S in our intermediate poly-
nomial SPi , we can directly substitute it with X + Y + Z for a FA
with X , Y , Z inputs, and S , C outputs during backward rewriting.
However, it is possible that 2C + S does not appear in SPi , i.e. a
polynomial consisting of C and S monomials but with different coef-
ficients (e.g. −C + S) occurs. In this case, the sum (S) and carry (C)
are substituted separately with the corresponding polynomials.

Eq. (5) shows the first six backward rewriting steps of the 2n + 1
modular multiplier in Figure 4.

SP := 16Z4 + 8Z3 + 4Z2 + 2Z1 + Z0 − A × B,

SP
Z4,Z3
−−−−−→ SP1 := 8s3 + 8t2 + 4Z2 + 2Z1 + Z0 − A × B,

. . .

SP4
c3
−−→ SP5 := −c3 + 8s3 + 4s2 + 2s1 + s0 + 1 − A × B,

SP5
c3,S3
−−−−−→ SP6 := 8p(3)1 + 8p

(3)
0 + 8c2 − 17p

(3)
1 p(3)0 − 17p

(3)
1 c2 − 17p(3)0 c2

+34p(3)1 p(3)0 c2 + 4s2 + 2s1 + s0 + 1 − A × B,
. . . (5)

The first four steps consist of substituting the HAs’ polynomials
in SPi . For each HA, we have the polynomial 2kC + kS in SPi , where
k is an integer number, and C and S are the carry and sum bits,
respectively. Therefore, we can directly substitute it with the addition
of HA’s inputs. For example, in the first step of backward rewriting,
we have 16Z4 + 8Z3 in SPi . Since Z4 and Z3 are the carry and sum
bits of the HA, we substitute 16Z4 + 8Z3 with 8s3 + 8t2 to obtain SP1.
This process is repeated in the next three steps.

In the sixth step of backward rewriting SP5 → SP6, the polynomial
for the FA with c3, s3 outputs and p(3)1 , p(3)0 , c2 inputs is substituted.
The output polynomial for the FA is in the form −c3 + 8s3 (see blue
polynomial in Eq. (5)), which is different from what we need for a
direct input polynomial substitution, i.e. 16c3+8s3 = 8p(3)1 +8p

(3)
0 +8c2.

The deviating form is due to the effect of modular computations
in the multiplier, which leads to the change of some bit positions (see
red wires in Figure 3 and Figure 4). As a result, the original weight
of c3 has changed from 16 to −1 under modulo 17. This effect is also
reflected in the coefficient of c3 in SP5, i.e. 16c3 is converted to −c3.

As a consequence, the substitution of c3 and s3 is carried out
separately. The result is a polynomial with seven terms in SP6 (see
red polynomial in Eq. (5)). The first three terms (i.e. 8p(3)1 +8p

(3)
0 +8c2)

are the addition of inputs; however, the remaining red terms are
extra terms that resulted from a change in the coefficient of c3. In the
next steps of backward rewriting, these extra terms create many new
terms. As a result, the size of SPi grows exponentially, e.g. the size
of SP7, SP8, and SP9 equals 56, 74, and 156, respectively. Moreover,
even if we successfully finish the backward rewriting, the remainder
is not zero, i.e. all extra terms will be propagated to the remainder.
Similarly, the effect of modulo on coefficients can be observed during
the backward rewriting of the 2n − 1 modular multiplier.

In order to avoid the explosion during the backward rewriting and
obtain the zero remainder, we need to prove that the extra terms can
be reduced to zero. Alternatively, we can prevent the generation of
extra terms during backward rewriting.

3.2 Generation of Vanishing Monomials
Vanishing monomials are non-linear monomials generated during
backward rewriting and reduced to zero after several steps or under
certain input conditions. The value of a vanishing monomial is equal
to zero, i.e. it can be removed from SPi immediately. However, it is
impossible to detect vanishing monomials purely at the polynomial
level during backward rewriting. Thus, they only get canceled out
after several steps of backward rewriting and sometimes with consid-
ering input conditions. The vanishing monomials create many new
monomials and variables before cancellation; therefore, we observe
a large increase in the number of monomials and variables, which
might lead to a polynomial explosion and verification failure.

In modular multipliers, vanishing monomials can be categorized
into two groups: (1) they are generated during backward rewriting
and then canceled out after several steps, (2) they get canceled out
only under input conditions; thus, without considering the conditions,
they propagate to remainder.

We first give an example for the first group of vanishingmonomials:
Eq. (6) depicts the first steps of backward rewriting for the 2n − 1
modular multiplier of Figure 3. In the first step, the polynomial for the
HA is substituted. Since the HA does not have a carry output, only
Z3 (i.e. sum bit) is substituted with s3 + t2 − 2s3t2. The red monomial,
i.e. s3t2, in SP1 is a vanishing monomial. It remains in the calculations
for a long time and only gets completely canceled out after 8 steps
of backward rewriting. Detecting these vanishing monomials and
removing them immediately is essential to keep the size of SPi small.

SP := 8Z3 + 4Z2 + 2Z1 + Z0 − A × B,

SP
Z3
−−→ SP1 := 8s3 + 8t2 − 16s3t2 + 4Z2 + 2Z1 + Z0 − A × B,

SP1
Z2,t2
−−−−−→ SP2 := 8s3 − 16s3s2t1 + 4s2 + 4t1 + 2Z1 + Z0 − A × B,

SP2
Z1,t1
−−−−−→ SP3 := 8s3 − 16s3s2s1t0 + 4s2 + 2s1 + 2t0 + Z0 − A × B,
. . . (6)

Now, we give an example for the second group: the PPG stage of
2n + 1 modular multiplier in Figure 4 contains several chains of OR
gates (see inputs of FAs in the 2nd and 3rd rows). The polynomial
for each chain contains several vanishing monomials, which are zero
under input conditions. Eq. (7) shows the polynomial for one of the
chains in Figure 4. We can prove that the red monomials are reduced
to zero under input conditions: In a 2n + 1 modular multiplier, the
inputs should be always smaller than 2n + 1, i.e. A,B < 2n + 1.
Therefore, ifAn (Bn), which is the most significant bit ofA (B) equals
1, the remaining bits must equal 0. On the other hand, if An (Bn) is
equal to 0, the remaining bits might have any values. As a result,
the product of An (Bn) and any other bit is always equal to zero,
i.e. AnAi = 0 (BnBi = 0). Based on this, we can conclude all the
monomials containing A4Ai or B4Bi , i.e. red monomials, equal zero
and can be omitted.

P3,0 ∨ P3,4 ∨ P4,3 =
P3,0 + P3,4 + P4,3−P3,0P3,4 − P3,0P4,3 − P3,4P4,3 + P3,0P3,4P4,3 =
A3B0 + A3B4 + A4B3−A3B4B0 − A4A3B3B0 − A4A3B4B3 + A4A3B4B3B0 . (7)

However, it is not efficient to first obtain the non-zero remainder
and then prove that all remaining monomials equal zero. There are

DAC ’22, July 10–14, 2022, San Francisco, CA, USA A. Mahzoon, D. Große, C. Scholl, A. Konrad, R. Drechsler

many chains of OR gates in large 2n + 1 modular multipliers and
each one introduces several vanishing monomials to the remainder.
The huge number of vanishing monomials can lead to an explosion
in the number of monomials. Thus, we need to remove vanishing
monomials immediately after the substitution of each OR gate poly-
nomial in order to avoid the explosion. In Section 4.2, we introduce a
SAT-based technique to remove vanishing monomials locally before
global backward rewriting.

3.3 Correctness under Output Conditions
Proving that the remainder of SCA-based verification equals zero is
not sufficient to prove that a circuit implements a modular multiplier.
We have to guarantee as well that for the output Z < m holds. Thus,
we have to show for the 2n − 1 and 2n + 1 modular multipliers that
Z < 2n − 1 and Z < 2n + 1 hold, respectively. In the next section, we
present a SAT-based approach to check the conditions in the outputs.

4 OVERCOMING THE CHALLENGES
In this section, we come up with three techniques to overcome the
challenges of verifying modular multipliers.

4.1 Coefficient Correction
In a modular multiplier, all computations are performed modulom,
including the weight reduction for the initial and newly generated
partial products. We can also take advantage of the modular reduc-
tion during backward rewriting: An intermediate polynomial SPi
represents the difference between the output of a normal multiplier
(i.e.Z) and the expected function (i.e.A×B) based on the intermediate
signals. However, for a modular multiplier, this difference has to be
equal to zero modulom, i.e. the output and the expected function are
equivalent modulom. As a consequence, we can reduce SPi modulo
m after performing a substitution.

Eq. (8) shows the fifth and sixth steps of backward rewriting for
the modular multiplier of Figure 4. After each substitution, SPi is
reduced modulo 24 + 1 = 17. Thus, the four extra terms that would
cause an explosion in the next steps are reduced to zero.

SP4
c3
−−→ SP5 := (−c3 + 8s3 + 4s2 + 2s1 + s0 + 1 − A × B) mod 17,

SP5
c3,S3
−−−−−→ SP6 := (8p(3)1 + 8p

(3)
0 + 8c2 −����17p(3)1 p(3)0 −���17p(3)1 c2 −�

��17p(3)0 c2

+����34p(3)1 p(3)0 c2 + 4s2 + 2s1 + s0 + 1 − A × B) mod 17. (8)

The reduction of SPi modulom helps us to avoid the explosion.
However, it is not the most efficient way since the generation of extra
terms causes peaks in the size of SPi during backward writing. Thus,
we introduce an efficient approach to avoid the generation of extra
terms: Whenever we replace a FA or a HA, we check whether the
only occurrences of the sum bit S and the carry bit C in the current
polynomial are two monomials of the form kS and 2kC for some
integer k . If this is the case, then we can replace the FA/HA as a
whole. If the only occurrences of S and C are of the form kS and
pC , then we check whether p = 2k +m · q for some integer q. In
this case, we can rewrite pC into 2kC (since this does not change the
polynomial modulom) and replace the FA/HA as a whole as well.
In all other cases, we have to replace the FA/HA outputs separately.
For example, after the fifth step of backward rewriting in Eq. (9),
the only occurrences of s3 and c3 are of the form 8s3 and −c3. Since
−1 = 2 · 8 + 17 · (−1), we can rewrite −c3 into 16c3 and replace the

FA as a whole. By this, we avoid the generation of extra terms, and
thus no peak occurs after each substitution.

SP4
c3
−−→ SP5 := (−c3︸︷︷︸

rewritie into 16c3

+8s3 + 4s2 + 2s1 + s0 + 1 − A × B) mod 17,

SP5 := (16c3 + 8s3 + 4s2 + 2s1 + s0 + 1 − A × B) mod 17,

SP5
c3,s3
−−−−→ SP6 := (8p(3)1 + 8p

(3)
0 + 8c2 + 4s2 + 2s1 + s0 + 1 − A × B) mod 17. (9)

4.2 Vanishing Monomials Removal using SAT
In [6, 10], vanishing monomials of the form C · S · f have been
removed where C and S are sum and carry outputs of a HA and f is
the product of other variables in the monomial, respectively. This was
based on the observation that the sum and the carry of a HA cannot
be 1 at the same time, so the corresponding monomials will vanish
at least once the input signals of the circuit are reached. Here, we
generalize this observation: If for a pair of signals a and b, both a and
b cannot be 1 at the same time by assigning primary input variables
in accordance with existing input conditions on the primary inputs,
then all monomials of the form a · b · f are vanishing (at least if the
input condition is taken care of) and can be removed immediately.
Checking whether a · b = 0 can be performed by SAT solving.

We propose a 5-step technique to take advantage of this gener-
alized removal of vanishing monomials in the context of modular
multipliers: (1) extracting the Conjunctive Normal Form (CNF) of the
modular multiplier using Tseitin transformation, (2) adding the input
conditions, i.e. A,B < m, as the new clauses to the CNF; for example,
the input conditions for the 2n + 1 modular multiplier (i.e. AnAi = 0
and BnBi = 0) can be translated into the new clauses (An ∨Ai) and
(Bn ∨ Bi) for 0 ⩽ i < n, (3) extracting fanout-free cones for the
remaining gates/nodes after reverse engineering, (4) performing the
local backward rewriting for each fanout-free cone, and (5) checking
at each step whether the generated multi-variable monomials are
equal to zero using SAT, i.e. if a multi-variable monomial xy appears
in our polynomial, we check whether the CNF is UNSAT under the
constraint x ∧ y = 1. If yes, xy is a vanishing monomial and can be
removed from the polynomial.

P4,4

P0,0

P4,3 P3,4

f

W1

W2

(a) Gate

P4,4

P0,0

P4,3 P3,4

f

V1

V2

(b) AIG

Figure 5: Chain of ORs

Figure 5(a) depicts one of the OR
chains in the PPG stage of the 2n + 1
modular multiplier in Figure 4. This
chain is captured as a fanout-free cone
after the reverse engineering. Eq. (10)
shows the local backward rewriting
steps for the OR chain. In the first step,
we prove using our SAT-based tech-
nique that P4,4W1 equals zero and can
be removed from the polynomial. Sim-
ilarly, P0,0W2 and P4,3P3,4 are removed in the second and third steps,
respectively. As a result, we remove all vanishing monomials locally.

f → P4,4 +W1 −���P4,4W1 → P4,4 + P0,0 +W2 −���P0,0W2

→ P4,4 + P0,0 + P4,3 + P3,4 −���P4,3P3,4 . (10)

The removal of vanishing monomials can be generalized even
more which is useful when considering fanout-free cones in the AIG
representation. Figure 5(b) shows the just mentioned OR chain now
in AIG. In the first step of local backward rewriting (see Eq. (12)),
we cannot find multi-variable monomials which are equal to zero.
However, since P4,4 ∧V1 = 0, we can replace P4,4V1 with P4,4:

P4,4 ∧V1 = 0⇒ P4,4 · (1 −V1) = 0⇒ P4,4 − P4,4V1 = 0⇒ P4,4V1 = P4,4 . (11)

Formal Verification of Modular Multipliers using Symbolic Computer Algebra and Boolean Satisfiability DAC ’22, July 10–14, 2022, San Francisco, CA, USA

Algorithm 1Modular verifier
Require: Modular multiplier AIGG
Ensure: TRUE if the circuit is correct, and FALSE otherwise
1: SP ← CreateSP(G)
2: AB ← ReverseEngineering(G) ▷ AB is the set of atomic blocks
3: C ← FindFanoutFreeCones(G, AB) ▷ C is the set of fanout-free cones
4: CN F ← ExtractCNF(G)
5: PF ← LocalBackwardRewriting(C , CNF) ▷ PF is the set of cone polynomials
6: r ← GlobalBackwardRewriting(SP, PF, AB) ▷ r is the remainder
7: re ← EvaluateRemainder(r)
8: o ← CheckOutputCondition(CNF) ▷ if o = TRUE, the condition is satisfied
9: if (re == 0 & o == TRUE) then
10: return TRUE
11: else
12: return FALSE

This simplification prevents the generation of vanishing monomi-
als in the next steps. Similarly, the same simplification can be applied
in the second step by replacing P0,0V2 with P0,0. In the final step,
P4,3P3,4 is directly removed since P4,3 ∧ P3,4 = 0.

1 − f → 1 + P4,4V1︸ ︷︷ ︸
P4,4

−V1 → 1 + P4,4 + P0,0V2︸ ︷︷ ︸
P0,0

−V2

→ 1 + P4,4 + P0,0 − 1 + P4,3 + P3,4 −���P4,3P3,4 . (12)

Consequently, we can extend the fifth step of our proposed tech-
nique in order to also support the removal of vanishing monomials
in AIGs: at each step of local backward rewriting, if a multi-variable
monomial xy appears in our polynomial, we check whether the CNF
is UNSAT under one of the three constraints: x ∧y = 1, x ∧y = 1, or
x ∧ y = 1. If yes, we replace xy with zero, x , or y, respectively.

4.3 Checking Output Conditions using SAT
We propose a SAT-based technique to check the output condition
Z < m for a modular multiplier: the CNF of the circuit including
the extra clauses related to the input conditions is available from
the previous section. Thus, we have to prove that under constraint
Z ⩾m, the CNF is always UNSAT; thus, the output never has a value
in this range. To do this, we translate Z ⩾ m into new clauses and
add them to the CNF. Then, we use a SAT-solver to check whether the
new CNF is UNSAT. As already shown in Section 4.2, form = 2n + 1,
the output condition Z ⩾ m can be translated into

∨
0≤i<n ZnZi .

Our experiments show that unsatisfiability of this condition can be
easily checked using a SAT solver.

5 SCA-BASED MODULAR VERIFIER
Algorithm 1 shows the pseudo-code of ourmodular verifier. In the first
step, the specification polynomial SP is created based on the input and
output bit-width of the multiplier (Line 1). Then, the atomic blocks
are identified using a dedicated reverse engineering technique [7]
(Line 2). The rest of the nodes which are not part of any atomic
blocks are grouped based on the fanout-free regions (Line 3). The
CNF of the multiplier is extracted by Tseitin transformation (Line 4).
Then, the polynomial for each cone is extracted by local backward
rewriting. In each step of local backward rewriting, the multi-variable
monomials, e.g. xy, are checked using SAT to see whether the simpli-
fication is possible (Line 5). Subsequently, global backward rewriting
is performed by substituting atomic block and cone polynomials in
SPi . The coefficients are corrected after each substitution if needed
(Line 6). Then, the remainder is evaluated under the input conditions
to see whether it can be reduced to zero (Line 7). Finally, the output
condition is checked using SAT (Line 8). If the evaluated remainder
equals zero and the output condition holds, the circuit is correct;
otherwise, it is buggy (Line 10–Line 12).

6 EXPERIMENTS
We have implemented our verifier in C++. In order to solve the SAT
problems, we used the minisat library [2]. All experiments are per-
formed on an Intel(R) Core(TM) i7-8565U CPU with 1.80GHz and 24
GByte of main memory. In order to evaluate the efficiency of our ver-
ifier, we consider 2n − 1 and 2n + 1 modular multipliers with different
sizes as our benchmarks. The benchmarks have been generated by an
extended version of the open-source multiplier generator GenMul1.

Table 1 and Table 2 report the verification results for 2n − 1 and
2n + 1 multipliers, respectively. The Time-out (T.O.) has been set to 48
hours. The first column Size denotes the size of the multiplier based
on the two inputs’ bit-width. The verification data is reported in the
second column Data consisting of four sub-columns: #Nodes gives
the number of nodes in the AIG representation of the circuit. #Simpl.
Mono. refers to the total sum of multi-variable monomials which
are removed or simplified during the local backward rewriting (see
Section 4.2). #MaxPoly presents the maximum size of SPi during the
global backward rewriting based on the number of monomials. #Rem.
presents the size of remainder after the backward rewriting. The
remainder should be evaluated to zero under input conditions. The
run-time (in seconds) of our proposed method is reported in detail in
the third column Run-time consisting of five sub-columns: Rev. Eng.
reports the required time for identifying atomic blocks, including
HAs and FAs in the AIG representation of a multiplier. Local Backw.
Rewriting refers to the time needed for local backward rewriting of
fanout-free cones and simplifying multi-variable monomials. Glob.
Backw. Rewriting reports the time for the global backward rewriting
phase. Check Out. Cond. presents the time for checking the condi-
tion on the output. The overall run-time of our proposed method is
presented in Overall. The run-time of a commercial formal verifica-
tion tool is given in the fourth column Com.. The fifth column Pure
SCA reports the run-time of the Pure SCA-based verification method
without integrating the coefficient correction and vanishing mono-
mials removal techniques. Finally, the last column SAT presents the
run-time of SAT-based verification method. We generated a reference
model by synthesizing a high-level modular multiplier description
into an AIG using %blast command in abc [1], and then use SAT
to prove that our benchmark and the reference model are equivalent.

The results in Table 1 and Table 2 confirm that our verifier can
prove the correctness of modular multipliers with more than 3M AIG
nodes, e.g. 2n − 1 and 2n + 1 modular multipliers with 512× 512 input
sizes. The number of simplified monomials for 2n − 1 multipliers in
Table 1 equals 1, independent of the multiplier size. This monomial
is originating from the HA that generates the MSB bit of output
(see the bottom left HA in Figure 3) and appears in the first step of
backward rewriting (see Eq. (6)). If this monomial remains in SPi , it
generates several monomials and variables in the next steps. Finally,
these monomials are reduced to zero after several steps of backward
rewriting. Thus, removing a small number of vanishing monomials
can avoid a big peak size of the intermediate polynomials. Figure 6
shows the size of the intermediate polynomials based on the number
of monomials (Figure 6(a)) and the number of variables (Figure 6(b))
for the 2n−1 modular multiplier with 8×8 input size. In the absence of
the vanishing removal technique, an undetected vanishing monomial
generates several new monomials containing many variables (see
blue lines). On the other hand, removing a vanishing monomial using
our proposed technique prevents the big peak size of the intermediate
1http://sca-verification.org/genmul

http://sca-verification.org/genmul

DAC ’22, July 10–14, 2022, San Francisco, CA, USA A. Mahzoon, D. Große, C. Scholl, A. Konrad, R. Drechsler

Table 1: Verification information for 2n − 1 modular multipliers

Size
Data Run-time (seconds)

#Simpl. Rev. Local Backw. Glob. Backw. Check Out. Pure
#Nodes Mono. #MaxPoly #Rem. Eng. Rewriting Rewriting Cond. Overall Com. SCA SAT

4×4 160 1 36 0 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.01
8×8 744 1 136 0 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 T.O. 2.53
16×16 3,096 1 528 0 0.04 0.01 <0.01 <0.01 0.05 66.00 T.O. T.O.
32×32 12,344 1 2,080 0 0.13 0.03 0.05 <0.01 0.21 T.O. T.O. T.O.
64×64 49,784 1 8,256 0 0.58 0.14 0.68 <0.01 1.40 T.O. T.O. T.O.
128×128 197,880 1 32,896 0 2.62 0.98 11.55 <0.01 15.16 T.O. T.O. T.O.
256×256 787,960 1 131,328 0 10.57 8.37 365.45 <0.01 384.39 T.O. T.O. T.O.
512×512 3,152,888 1 524,800 0 42.28 80.19 6,826.52 0.01 6,948.99 T.O. T.O. T.O.

Table 2: Verification information for 2n + 1 modular multipliers

Size
Data Run-time (seconds)

#Simpl. Rev. Local Backw. Glob. Backw. Check Out. Pure
#Nodes Mono. #MaxPoly #Rem. Eng. Rewriting Rewriting Cond. Overall Com. SCA SAT

4×4 112 11 36 0 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.01
8×8 599 18 136 0 0.01 <0.01 <0.01 <0.01 0.01 <0.01 T.O. 2.36
16×16 2,728 35 528 0 0.03 0.01 <0.01 <0.01 0.05 60.00 T.O. T.O.
32×32 11,591 66 2,080 0 0.12 0.05 0.05 <0.01 0.22 T.O. T.O. T.O.
64×64 47,752 131 8,256 0 0.55 0.24 0.61 <0.01 1.39 T.O. T.O. T.O.
128×128 193,799 258 32,896 0 2.36 2.64 10.67 <0.01 15.66 T.O. T.O. T.O.
256×256 780,808 515 131,328 0 10.64 26.20 416.47 <0.01 453.31 T.O. T.O. T.O.
512×512 3,134,471 1,026 524,800 0 42.16 245.40 6,777.51 0.01 7,065.08 T.O. T.O. T.O.

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

0

20

40

60

80

100

120
without vanishing removal

with vanishing removal

substitution step

#m
on

o
m

ia
ls

(a) Number of monomials

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

0

50

100

150

200

250

300

350

400
without vanishing removal
with vanishing removal

substitution step

#v
ar

ia
bl

es

(b) Number of variables

Figure 6: Size of SPi for a 2n − 1
multiplier with 8 × 8 input size

polynomials (see red lines). Please note that the results in Figure 6
are obtained in the presence of our coefficient correction technique;
otherwise, an explosion happens in the number of monomials and
the verification times-out (see Table 1, column #Pure SCA). Moreover,
many multi-variable monomials are simplified for the 2n + 1 modular
multipliers, which are related to the chain of OR gates (see Table 2,
column #Simpl. Mono.).

For the both 2n − 1 and 2n + 1 modular multipliers, the size of
remainder after the backward rewriting is equal to zero. This stems
from the fact that our vanishing removal technique removes all the
vanishing monomials locally and avoids the propagation of them
into the remainder. As a result, the remainder evaluation step in
Algorithm 1 can be skipped.

Our tool can verify very large multipliers with 512 × 512 input
sizes in less than 2 hours. On the other hand, the commercial tool
only verifies multipliers up to 16 × 16, and it times out for the bigger
benchmarks. The pure SCA-based verification without coefficient
correction and local vanishing removal techniques can obtain the
remainder for only 4 × 4 multipliers, and it times out for the bigger
designs. The SAT-based verification also works for small multipliers
up to 8×8 and fails for the others. Thus, verifying modular multipliers
by only SAT is not feasible. In contrast, checking the output condition
using SAT is easy, since it can be proven by local reasoning in the
SAT solver (see column Check Out. Cond.).

7 CONCLUSION
In this paper, we presented our modular verifier which combines
SCA and SAT to prove the correctness of 2n − 1 and 2n + 1 modu-
lar multipliers. We overcame the challenges of formal verification
by integrating coefficient correction and SAT-based local vanishing
removal into the SCA. We also proposed a SAT-based technique to
check whether the output condition holds for a modular multiplier.
The experiments using an extensive set of 2n + 1 and 2n − 1 modular
multipliers demonstrated the efficiency of our verifier in proving the
correctness of million-gate benchmarks.

ACKNOWLEDGMENTS
This work was supported by the German Research Foundation (DFG)
within the project VerA (GR 3104/6-1, SCHO 894/5-1, and DR 297/37-
1) and by the LIT Secure and Correct Systems Lab funded by the State
of Upper Austria.

REFERENCES
[1] Abc: A system for sequential synthesis and verification. available at https://people.

eecs.berkeley.edu/~alanmi/abc/, 2018.
[2] N. Eén and N. Sörensson. An extensible SAT-solver. In SAT, pages 502–518, 2003.
[3] D. Gallaher, F. Petry, and P. Srinivasan. The digit parallel method for fast RNS to

weighted number system conversion for specific moduli (2k − 1,2k ,2k + 1). IEEE
Trans. Circuits Syst. II, 44(1):53–57, 1997.

[4] D. Kaufmann, A. Biere, and M. Kauers. Verifying large multipliers by combining
SAT and computer algebra. In FMCAD, pages 28–36, 2019.

[5] X. Lai. On the design and security of block ciphers. PhD thesis, ETH Zurich, Zürich,
Switzerland, 1992.

[6] A. Mahzoon, D. Große, and R. Drechsler. PolyCleaner: clean your polynomials
before backward rewriting to verify million-gate multipliers. In ICCAD, pages
129:1–129:8, 2018.

[7] A. Mahzoon, D. Große, and R. Drechsler. RevSCA: Using reverse engineering to
bring light into backward rewriting for big and dirty multipliers. In DAC, pages
185:1–185:6, 2019.

[8] A. Mahzoon, D. Große, C. Scholl, and R. Drechsler. Towards formal verification of
optimized and industrial multipliers. In DATE, pages 544–549, 2020.

[9] B. Parhami. Computer Arithmetic : Algorithms and Hardware Designs. Oxford
University Press Inc, 2002.

[10] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler. Formal verifi-
cation of integer multipliers by combining Gröbner basis with logic reduction. In
DATE, pages 1048–1053, 2016.

[11] C. Scholl and A. Konrad. Symbolic computer algebra and SAT based information
forwarding for fully automatic divider verification. In DAC, pages 1–6, 2020.

[12] C. Scholl, A. Konrad, A. Mahzoon, D. Große, and R. Drechsler. Verifying dividers
using symbolic computer algebra and don’t care optimization. In DATE, pages
1110–1115, 2021.

[13] L. Sousa and R. Chaves. A universal architecture for designing efficient modulo
2n+1 multipliers. IEEE Trans. Circuits Syst. I, 52-I(6):1166–1178, 2005.

[14] H. T. Vergos and C. Efstathiou. Design of efficient modulo 2n + 1 multipliers. IET
Comput. Digit. Tech., 1(1):49–57, 2007.

[15] C. Walther. Formally verified montgomery multiplication. In CAV, pages 505–522,
2018.

[16] C. Yu, M. Ciesielski, and A. Mishchenko. Fast algebraic rewriting based on and-
inverter graphs. TCAD, 37(9):1907–1911, 2017.

[17] R. Zimmermann. Efficient VLSI implementation of modulo (2n ± 1) addition and
multiplication. In ARITH, pages 158–167, 1999.

https://people.eecs.berkeley.edu/~alanmi/abc/
https://people.eecs.berkeley.edu/~alanmi/abc/

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Multiplier Structure
	2.2 Verification using SCA
	2.3 Modular Multipliers

	3 Challenges of Verification
	3.1 Effect of Modulo on Coefficients
	3.2 Generation of Vanishing Monomials
	3.3 Correctness under Output Conditions

	4 Overcoming the Challenges
	4.1 Coefficient Correction
	4.2 Vanishing Monomials Removal using SAT
	4.3 Checking Output Conditions using SAT

	5 SCA-based modular verifier
	6 Experiments
	7 Conclusion
	Acknowledgments
	References

