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ABSTRACT
In order to meet the time-to-market constraint, High-level Synthesis
(HLS) is being increasingly adopted by the semiconductor industry.
HLS designs, which can be automatically translated into the Register
Transfer Level (RTL), are typically written in SystemC at the Elec-
tronic System Level (ESL). Timing-based information leakage and
its countermeasures, while well-known at RTL and below, have not
been yet considered for HLS. The paper makes a contribution to this
emerging research area by proposing ATLaS, a novel timing-based
information leakage flows detection approach for SystemC HLS de-
signs. The efficiency of our approach in identifying timing channels
for SystemC HLS designs is demonstrated on two security-critical
architectures which are shared interconnect and crypto core.
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1 INTRODUCTION
The emergence of side-channel security attacks has disputed the
validity of the classic assumptions about what data can be publicly
available. Among the existing side-channel security attacks, timing-
based attacks are more interesting for attackers as they only need to
measure the execution time of the victim process without physical
access to the design. Thus, attackers can access secret data at a very
low cost and effort. The security critical modules of a given design
that can be vulnerable against timing-based attacks are various
hardware modules such as crypto cores [5], shared interconnects,
and arithmetic modules [2, 8].

The threat of information leakage by means of timing-based
side-channel attacks is based on the idea that, in a given design,
the time taken by a (computational) module to generate the final
results may be different regarding the data being processed. These
time variations can form a leakage channel that carries the sen-
sitive information regarding the data being processed and opens

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPDAC ’21, January 18–21, 2021, Tokyo, Japan
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-7999-1/21/01. . . $15.00
https://doi.org/10.1145/3394885.3431591

doors for attackers to access sensitive data. Many implementations
of cryptographic algorithms are demonstrated to have a different
execution time based on the value of the secret key. Thus, attackers
who are familiar with the underlying algorithms can take advan-
tage of statistical approaches to extract the key by measuring the
execution time [18].

Since the cost of fixing any security flaws (e.g., timing-based
information flows) increases with the stage of development, the
detection process should be performed before production/manufac-
turing and ideally as early as possible. High Level Synthesis (HLS)
has recently emerged as an alternative design entry to the Register
Transfer Level (RTL). HLS designs, usually developed using SystemC
language [1] at the Electronic System Level (ESL) [10, 11, 16]. HLS
designs can be automatically synthesized into RTL and the quality
of the generated RTL models is mostly comparable to hand-written
RTL for the same functionality with much shorter development
time [7, 13, 20]. Due to the flexibility in generating multiple vari-
ants of the same design, more and more third-party Intellectual
Properties (IPs) are expected to be delivered as SystemC HLS de-
signs. As a consequence of this decentralization, modern System-
on-Chips (SoCs) are notoriously insecure where third-party IPs, in
particular, can be used as a vehicle for exploiting the secret data.

To protect against timing-based attacks, manual analysis of the
source code, e.g., by looking for sources of timing variation such as
branches conditioned on secret values or data-dependent requests
sent to shared resources is not sufficient. This can be a very time-
consuming and error-prone task that requires lots of manual effort
by designers. Moreover, testing the design to capture timing varia-
tions is also becoming impractical due to the scale of modern SoCs.
As the complexity of hardware designs increase, the need for auto-
matic analysis of security threats is inevitable. Hence, alternative
approaches have been developed in the last decade [3, 21, 24, 25, 28].
However, these approaches are only applicable at the abstraction
levels of RTL and below (e.g., gate or transistor level).

In this paper, we focus on the detection of timing channels in
SystemC HLS designs. We present ATLaS, an Automatic Detec-
tion of Timing-based Information Leakage Flows for SystemC HLS
Designs. ATLaS is based on the Information Flow Tracking (IFT)
technique for capturing timing flows of HLS designs and consists
of two main phases: 1) information extraction and 2) timing-based
data flow analysis. In the first phase, we build on the flexible Clang
compiler [19] to statically analyze the Abstract Syntax Tree (AST)
of a given SystemC design, to extract the data path and control
flow of the design, and to formally represent them in a set of well-
structured formats. In the second phase, we perform a data flow
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1 SC_MODULE ( D i v i d e r ) {
2 s c_ in <bool > c lk , r s t , r eady ;
3 s c_ in < s c_u in t <8>> d i v i s o r , d i v i d end ;
4 sc_out < s c _u in t <8>> quo t i en t , r e s i d u e ;
5 s c _ i n t <8> coun t e r = 2 5 6 ;
6 void run ( ) ;
7 SC_CTOR ( D i v i d e r ) {
8 SC_METHOD( run ) ;
9 r e s e t _ s i g n a l _ i s ( r s t , true ) ;
10 s e n s i t i v e << c l k . pos ( ) ; }
11 } ;
12 void Div i d e r : : run ( ) {
13 s c _u in t <8> quot i en t_ temp , d iv idend_temp ;
14 / ∗ . . . ∗ /
15 i f ( ready . r ead ( ) && ( ! r s t . r ead ( ) ) ) {
16 d iv idend_temp = d i v i d end . r ead ( ) ;
17 i f ( d iv idend_ temp >= d i v i s o r . r ead ( ) ) {
18 d iv idend_temp = div idend_temp−d i v i s o r . r ead ( ) ;
19 quo t i en t_ t emp = quo t i en t_ t emp + 1 ; }
20 / ∗ . . . ∗ /
21 i f ( c oun t e r == 0 ) {
22 q u o t i e n t . w r i t e ( quo t i en t_ t emp ) ;
23 remainder . w r i t e ( d iv idend_temp ) ; }
24 e l se
25 coun t e r = counter −1;
26 / ∗ . . . ∗ / }

Figure 1: Part of the simple-divider design’s source code.

analysis on the extracted formal representation of the design’s be-
havior based on the security properties to identify all timing-based
information flows from the sensitive inputs to the final outputs.
The potentially vulnerable paths are reported back to designers for
further inspection. Our static analysis is sound, i.e., it never misses
a timing channel if such exists.

2 RELATEDWORKS
Over the last decade, IFT has beenwidely used in the field of security
for hardware systems.

Several secure languages have been developed to provide de-
signers with modeling provably secure hardware. Caisson [22],
Sapper [21], SecVerilog [28], and VeriCoq-IFT [6] are hardware
security design languages, enabling designers to label and track
information flow. For example, the Caisson [22] and Sapper [21] are
both FSM based languages that have been developed by combining
domain-specific abstractions common to hardware design and type-
based techniques used in secure programming languages. Although
the aforementioned tools facilitate secure hardware design, their
major disadvantages are new language familiarity and needing to
redesign the entire hardware using the new language.

The method in [4] gives the flexibility to define both implicit
and explicit flows. It encodes security attributes into the design for
formal verification of hardware security properties. However, the
method cannot separate functional flows from timing-based ones.
This could be problematic in many security applications where
the functional flow is expected as it is protected by encryption,
while timing flows must be eliminated. Clepsydra [3] uses the IFT
technique for capturing timing leakage of hardware designs. To
do this, it automatically generates the logic required for tracking
timing flows and logical flows in arbitrary HDL codes at RTL. How-
ever, both methods are only applicable at RTL and do not support
SystemC constructs.

At ESL, [12, 17, 26] use the IFTmethod to validate SystemC-based
designs against the security violations related to the confidentiality
and integrity threat models.While thesemethods are able to analyze
the functional information flows (i.e., information does not move
among isolated IPs), they cannot detect any timing flow. Moreover,
they are not able to analyze SystemCHLS designs as they only focus
on the subset of SystemCwhere the timing and precise functionality
are abstract and not fixed. The existing verification methods [9, 14,
15] at ESL are not able to detect this security threat model as the
design functionality (and its related protocol rules) is not affected.

To the best of our knowledge, ATLaS is the first timing-based
information leakage flows detection approach at ESL that can ver-
ify SystemC HLS designs against the timing-based IFT security
properties and report back the vulnerable paths to designers. It is
automated, fast, non-intrusive, and does not rely on any commercial
tool for its analysis.

3 TIMING-BASED INFORMATION LEAKAGE
THREAT

For a given SystemC design, timing-based information flows exist
from inputs to outputs of the design if the completion time of the
outputs depends on the values of the design’s inputs. These leakage
flows can be exploited if the input signals on which the outputs are
dependent contain sensitive data, and the completion time of the
module can be measured by an unauthorized party. The module’s
completion time is the time when its output is updated to its final
value. If the intermediate signals or variables are updated at each
clock cycle, there will be no timing variations. On the other hand, if
there is a degree of freedom for the variables to hold their current
value or receive a new value, timing variation can occur.

For example, consider the simple-divider design in Fig. 1, illustrat-
ing a sequential divider module implemented in SystemC. Please
note that lines 5, 21, 24, and 25 are initially not available. The signals
divisor and dividend are inputs of the Divider module while the
quotient and residue signals are the final outputs.

Now consider the security scenario that divisor and dividend
inputs contain secret data and must be protected against unau-
thorized access. Since the underlying algorithm for the Divider
module is based on comparison and subtraction (lines 17–19), the
updates made to the intermediate variables dividend_temp and quo-
tient_temp are conditioned on the sensitive inputs. Therefore, based
on the values of the input signals, these variables (which are directly
connected to the final outputs) may receive their final values at dif-
ferent times. Thus, an attacker who is familiar with the underlying
algorithm can take advantage of this timing variation to exploit
secret data.

A possible solution to block this timing-based information leak-
age flow is to fully control the update of the final outputs with a non-
sensitive variable. In this example, the counter variable (lines 21–25)
adds a waiting period to the updating process of the final outputs.
Thus, in the case that the waiting period is longer than the worst-
case execution time, the output gets its update at constant time
steps.

As it has been proven in [3], detecting conditional updates caused
by sensitive data captures all timing flows. Thus, in order to detect
timing flows, we need to determine whether or not the updates
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Figure 2: Methodology overview.

made to the outputs occur at constant timesteps. This can be ad-
dressed by detecting variations in the update time of all design
variables and tracking them to the final outputs.

4 TIMING-BASED FLOWS DETECTION
METHODOLOGY

The overall workflow of ATLaS is shown in Fig. 2, consisting of
two main phases which are 1) information extraction and 2) timing-
based data flow analysis.

In the first phase, the AST of a given SystemC HLS design is
analyzed to extract the data path and control flow of the design and
formally represent them in terms of Data Dependency Graph (DDG)
and Hammock Graph (HG). In the second phase, we take advantage
of the aforementioned data structures (i.e., DDG andHG) to perform
a data flow analysis based on the security properties and identify all
timing-based information leakage flows from the sensitive inputs
to the final outputs. The security properties are given by designers
and specify conditions on the final outputs w.r.t to the sensitivity
level of the design’s inputs.

Since the proposed approach is based on a static analysis, it
needs to be run only once to detect all timing-based flow security
violations.

4.1 Information Extraction
As mentioned earlier, the necessary condition to form timing vari-
ation is the existence of intermediate variables or signals which
their update process depends on secret data. In order to identify
these cases, we need to determine all variables of the design that
have the flexibility of selecting between receiving new values and
holding their current values. Since the impact of sensitive data on
computation results can be through both the data path and the
control flow of the design, we need to analyze these parts of the
design to detect all information leakage flows. Hence, the first step
is to extract the data path and control flow of SystemC HLS designs.

To formally represent the data path and control flow of a given
SystemC design, we consider two data structures which are DDG
and HG, respectively. The DDG describes the relation of different
design’s variables (including all modules’ signals, ports, and global
and local variables). The formal definition of DDG is as follows:

Definition 1. A Data Dependency Graph (DDG) is a structure
(N , E, Z ), where N is a set of nodes, E is a set of edges, and Z ⊆ N

n
1

n
2

n
3

n
5

n
4

n
7

n
6

Divider :: run() → clk

n
0 
: rst

n
1 
: ready

n
2 
: divisor

n
3 
: dividend

n
4 
: dividend_temp

n
5 
: quotient_temp

n
6 
: quotient

n
7 
: residue

n
8 
: counter

n
0

n8

Figure 3: Part of the generated DDG of the simple_divider.

is set of output variables. The edge from node X to node Y shows that
Y is dependent to X .

To build the DDG of a given SystemC design, a static analysis
on the AST of the design is performed. First, all variables of the
design are extracted and tokenized by a unique string including the
module, function (for local variable), and variable name. In order to
know how different variables affect each other, a recursive analysis
is performed on the AST from the points where updates on variables
occur, i.e., computational statements. The computational statements
are usually defined as assignments in the design. Moreover, due to
the SystemC structure, it is also possible to assign a computation
of some variables to the output port of a module using the write()
member function of the output ports. In the case of an assignment
statement, the left-hand side operand can be either a global or local
variable (signal). The right-hand side operand (or input of thewrite()
member function of the output ports) can be a function call or an
input port. If a statement includes a function (or SystemC process)
call, we recursively extract the relation of the function variables
with the left-hand side variable or module port.

After analyzing the computational statements and extracting
the relation of their input operands with their result variable, the
analysis is performed for all compound statements (e.g., if-else, for-
loop, or while statements) in which these computational statements
are defined. All variables of the compound statements which consist
of a computation statement are also added into the dependency
list of the result variable of the computational statement. Please
note that multiple occurrences of the same variable are represented
with a single node in the DDG in order to reduce the size of graph
as much as possible. It should be taken into account that in our
framework, we keep the correspondence between nodes in the DDG
and variables in the statements of the SystemC code so when a
node in DDG is selected, the related statement in the SystemC code
is easily determined.

For example, Fig. 3 shows a part of the generated DDG of the
simple-divider design. In this graph, the nodes without input arrows
(the gray nodes) show the primary inputs while the nodes without
output arrows (the black nodes) indicate the primary outputs of the
design. It also shows that all nodes (and the corresponding design’s
variable) belong to the method run of module Divider which is
controlled by clk. Node n8 is initially not available and is added into
the graph when the blockage mechanism is used where the final
results are fully controlled by the counter variable.

In order to know how different statements (data and control
flow) of a given SystemC design are related to each other, the



ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Mehran Goli and Rolf Drechsler

n
0

n
1

n
2

n
4

Line 12 

Line 16 

Line 17 

Line 18

Line 19 

Line 22

HGLoC

n
5

Line 23

Line 27

n
3

End

Begin

n
0

n
1

n
2

n
5

HG-Blockage

n
7

n
3

End

Begin

n4

n6

Line 21

Line 25

Figure 4: Part of the generated HG of the simple_divider de-
sign without and with blockage mechanism.

HG representation of the design is automatically generated from
the AST of the SystemC design. The formal definition of HG data
structure is as follows:

Definition 2. A Hammock Graph (HG) is a structure (N , E, n0,-
ne ), whereN is a set of nodes, E is a set of edges in anN×N processing.
n0 is the initial node and ne is the end node. If (n, m) ∈ E then n is
an immediate predecessor ofm, andm is an immediate successor of n.
There is a path from n0 to all other nodes in N . From all nodes of N ,
excluding ne , there is a path to ne .

The HG graph is generated by analyzing the AST of a given
SystemC HLS design. To do this, we visit all nodes in the AST
which are related to statements of the design. This includes both
computational and control flow statements. As the top-level entities
of a SystemC design aremodules and global functions, the first entry
point of performing statements dependency analysis is to find the
node of the aforementioned entities. Then, a Depth-First Search
(DFS) algorithm is performed within the top-level entities to visit
all nodes of the statement’s type in the AST. We take advantage of
modules binding information to extract the connection of modules
within the design. Moreover, function calls within the modules
process are extracted by visiting the relevant nodes in the AST to
understand how lower hierarchies in a module (i.e., local function
and process) are connected to each other. Please note that each
statement of the design is tokenized by the line of code where the
statement is defined.

For example, Fig. 4 shows a part of the generated HG and HG-
Blockage (including the blockage mechanism) of the simple-divider
design. Each node of the HG represents a statement of the design
and is tokenized by the corresponding line of code (LoC). As illus-
trated in this figure, in HG, nodes n4 and n5 (the final outputs) are
controlled by node n1 (a condition that has sensitive data) which
causes timing flows. On the other hand, for HG-Blockage, nodes
n5 and n7 (the final outputs) are fully controlled by node n4 which
does not contain any sensitive data.

In the next, by taking advantage of DDG and HG, we introduce
an algorithm to detect all potential timing flows based on given
security properties.

4.2 Timing-based Data Flow Analysis
We propose Algorithm 1 to detect all potential timing-based infor-
mation leakage flows in a given SystemC HLS design. In order to
illustrate each part of the algorithm, we use the motivating example
(Fig. 1) where no blockage mechanism is used. The algorithm re-
ceives DDG, HG, and a set security properties as inputs and returns
the list of nodes in HG (and the corresponding lines of code) which
cause timing flow violations. Each security property consists of two
main elements which are 1) the inputs with High Security (HS) tag
and 2) the outputs that must be generated in Constant Time (CT).
Thus, a security property SP is defined as follows:

SP = {(SI , SO) | SI ← {in1 = HS, ...}, SO ← {out1 = CT , ...}} (1)

For example, in the case of the simple-divider design, the security
property is defined as follows:

SP = {(SI , SO) | SI ← {divisor = HS, dividend = HS},

SO ← {quotiont = CT , remainder = CT }} (2)

From the SP, lists of the secure inputs and the outputs that must
be generated in constant time are extracted. To know whether
or not a variable is affected by secure inputs, a forward tracing
is performed on the DDG from the corresponding secure input
node to an output node with a CT tag. All nodes in this trace that
are related to the secure input get the HS tag and are added into
the sensitive list of secure inputs SLSI (lines 5–6). Moreover, as
the output variables may receive their final values through the
intermediates variables, a backward tracing is performed on the
DDG to extract the variables of assignment statements which are
implicitly or explicitly related to the outputs with CT tag. These
nodes (and the corresponding variables of the design) are added into
the sensitive list of secure outputs SLSO (lines 7–8). For example, in
the case of the motivating example, the SLSI and SLSO of the design
after tracing its DDG (Fig. 3) are {n2 , n3, n4, n5} and {n7 , n6, n4, n5},
respectively.

In the next step (lines 9–22), the HG of the design is analyzed
to find all sensitive control signals (which are in SLSI ) that control
the occurrence of updates on the variables with CT tag (which
are in SO and SLSO), causing flows of timing variation from secure
inputs to outputs of the design. To do this, each condition node
type of the HG (e.g., if-else) is visited and its control variables nctrl
and child nodes (which are not condition nodes type) are extracted
(lines 9–12). If the intersection of the extracted control variables of
the condition node nctrl and the sensitive list of secure inputs SLSI is
not empty, further analysis is performed on the child nodes nchilds
of the condition node n (lines 13–18). The goal of this analysis is to
find the assignment statements which their left-hand side variables
are in the secure outputs list SO (case of explicit flow) or in the
sensitive list of the secure outputs SLSO (case of implicit flow). If
there is at least one child node which meets the first condition
(line 15), a timing flow exists in the design. Thus, the nodes in the
HG including the condition and assignment (and the corresponding
lines of code in the design source code) are stored in TFV and
reported to designers. On the other hand, if the second condition
occurs (line 17), there might be a timing flow in the design. To
know whether the suspicious cases are real leakage flows, we need
to find a condition which its control signals are not in SLSI and it
fully controls the updates on variables in SO (lines 19–22). Fully
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Algorithm 1 Timing Flow Analyzer
Require: Security property SP , DDG, HG
Ensure: Timing Flows Violation TFV , TFVsuspicious
1: Secure Inputs SI ← Extract from (SP)
2: Secure Outputs SO ← Extract from (SP)
3: Sensitive List Secure Inputs SLSI ← SI
4: Sensitive List Secure Outputs SLSO ← ∅
5: for each secure input Si ∈ SI do
6: SLSI ← ForwardTraverse (DDG, Si, SO)
7: for each secure output So ∈ SO do
8: SLSO ← BackwardTraverse (DDG, So, SI )
9: for each node n ∈ HG do
10: if n.type() == cond then
11: nctrl ← Extract list of controllers from n
12: nchilds ← Extract child elements of n
13: if nctrl ∩ SLSI , ∅ then
14: for each child c ∈ nchilds do
15: if (c.type() , cond) && (vars in c ∈ SO) then
16: TFV ← (n, c)
17: else if (c.type() , cond) && (vars in c ∈ SLSO ) then
18: TFVsuspicious ← (n, c)
19: else
20: for each child c ∈ nchilds do
21: if (c.type() , cond) && (vars in c ∈ SO) then
22: FCflag ← 1

23: if (TFV == ∅) && (FCflag == 0) then
24: TFV ← TFVsuspicious
25: return TFV, TFVsuspicious

controlling control signal implies that variables in SO getting a
new value if and only if the controllers get a new value. If there is
no such a condition in the design and also no direct leakage flow
exists, the suspicious case becomes a real leakage flow case, thus it
is stored in TFV (lines 23–24).

Coming back to the motivating example, the condition type
node in the HG of the design (Fig. 4) is n1 whose its control sig-
nals are nctrl = {dividend_temp, divisor} and its child nodes are
nchilds = {n2 , n3, n4, n5}. Since the child nodes n4 and n5 are in the
list of secure outputs SO, the first condition in Algorithm 1 occurs
(line 15), indicating an explicit leakage flow in the design. Now
consider the HG-Blockage of the design, the first node of condition
type in this graph is n1. Analyzing its child nodes nchilds = {n2 , n3}
shows a suspicious case of leakage flow as variables dividend_temp
and quotient_temp (corresponding to child nodes of n1) are in the
sensitive list of the secure outputs SLSO . Thus, these nodes are
stored in TFVsuspicious . By continuing the analysis, node n4 is the
next condition node type whose its control signal nctrl = {counter}
dose not have any intersection to the SLSI (lines 19–22). Moreover,
its child nodes list includes nodes n5 and n7 which are in the SO.
Thus, this condition node (n4) fully controls the secure outputs of
the design and its condition signal is non-sensitive. In this case,
there is no timing-based leakage flow in the design, however, the
suspicious case is reported to designers for their information.

5 EXPERIMENTAL RESULTS
In this section, we elaborate on how various security properties are
defined based on the notion of IFT and can be verified using ATLaS.
The proposed approach was applied to two standard SystemC HLS
designs which are shared interconnect (inspired by [27]) and RSA
crypto core [23]. For each design, we briefly discuss the architectural
features that cause timing flows, the attack model for exploiting,
the possible mitigation technique, and the results of our security
analysis. The Static Analyzer module is implemented in C++ using
the LibTooling library of the Clang compiler [19]. To access relevant

nodes in the AST (generated by Clang) of a given design, we use
the primary node visitor RecursiveASTVisitor of Clang. The Timing
Flow Analyzer module is implemented based on Algorithm 1 in C++.
All the experiments were carried out on a PC equipped with 8 GB
RAM and an Intel Core i7 CPU running at 2.4 GHz.

5.1 Shared Interconnect
In the first case study, we consider a common source of timing-
based side-channel attacks in hardware designs when different
IPs are connected to a shared interconnect (or bus). If the access
control policy of the bus (the way IPs can access a shared resource
e.g., memory) is not strong enough, a software adversary can use an
IP to control the access patterns to a shared resource and impacting
the time when other IPs can use the same resource. Such access
control policies are commonly implemented in components with
routing functions e.g., an arbiter module.

To model this security vulnerability, we have implemented a
shared interconnect architecture inspired by the real-world AMBA-
2.0 AHB bus in [27]. We have integrated three microprocessor
units MPU1, MPU2 and MPU3 (act as master), two regular memo-
ries RgMem1 and RgMem2 (act as slave) and one shared memory
ShMem (act as slave) to the interconnect module. To access the
shared memory over the bus architecture, the master IP sends a
request signal and waits for the arbiter to send back an acknowl-
edge signal. The arbiter module was implemented based on the
Round Robbin (RR) access policy, providing master IPs with an
equal priority to access the shared memory.

In order to assess the security of the design with respect to
timing-based side channel attacks, we have defined six security
properties. They check whether access of a givenMPU of the design
to the shared memory ShMem is dependent on the other MPUs. For
example, a security property to specify this condition is as follows:

SP = {(SI , SO) | SI ← {req1 = HS}, SO ← {ack2 = CT }} (3)

The security property SP ensures that the acknowledge signal ack2
sent by the arbiter to the MPU2 module must not be dependent
on the request signal req1 of the MPU1 module. As the policy of
the bus to access a shared resource is based on the RR algorithm,
our approach could detect the dependency between the req1 and
ack2 signals. It means IPs that are supposed to be isolated can
secretly communicate by controlling the access patterns to the
shared memory and by affecting the time when other IPs can use
the same resource.

In order to block this timing flow, we replaced the RR algorithm
of the arbiter with a Time Division Multiple Access (TDMA) algo-
rithm where the acknowledge signals are issued based on a counter.
We have analyzed the interconnect architecture again, and in this
case, no timing flow was detected as the acknowledge signals are
fully controlled by a counter variable (which is non-sensitive). The
analysis took 27.39 seconds to report the results.

5.2 RSA Crypto Core
In the second experiment, we applied our timing-based information
leakage detection approach on the SystemC HLS implementation of
the RSA algorithm, provided by [23]. We have defined the following
security property to verify the design against the existence of any



ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Mehran Goli and Rolf Drechsler

timing channel.

SP = {(SI , SO) | SI ← {SKey = HS}, SO ← {msg = CT }} (4)

The security property SP ensures that there must be no timing flow
from the secret key SKey to the ciphertextmsg. Using our detection
algorithm, we could find a timing flow when messages are ciphered
using the RSA secret key. The main reason for this vulnerability
is an insecure implementation of the modular exponentiation step
(module modular_exp in the design) in the RSA algorithm, where
the duration of generating the ciphertext is linearly related to the
number of ‘1’ bits in the key. Although the number of ‘1’ bits alone
may not be sufficient to easily find the key, an attacker can perform
a statistical correlation analysis of timing information to recover
the key completely by repeating executions with the same key and
different inputs.

In order to block this timing-based leakage flow, we have added
a counter into the modular_exp of the design to eliminate the de-
pendency of generating the ciphertext to the value of the secret
key. The value of the counter has been defined based on two tech-
niques which are delaying until the worst-case execution time and
randomization. We have analyzed the RSA design again, and in this
case, no timing flow was detected as the duration of generating the
ciphertext is fully controlled by a counter variable which is non-
sensitive. Although this countermeasure increases the execution
time of the RSA design, it leads to a time-independent execution
from the key. The analysis took 21.56 seconds to report the results
and no suspicious cases were reported.

Please note that in crypto cores, functional flow from the secret
key to the ciphertext exists (as the ciphertext is computed from the
key), but it is protected by encryption. However, designers need to
ensure that the time taken for the ciphertext to become available
does not depend on the value of the secret key. The functional IFT-
based methods cannot specify the nature of detected flows, thus,
making designers unable to find the right mitigation technique.
Our approach truly assesses the security of the design against the
timing-based side-channel attacks.

6 CONCLUSIONS
In this paper, we presented ATLaS, the first timing-based informa-
tion leakage flows detection approach for SystemC HLS designs at
ESL. At the heart of the approach is a scalable static information
flow analysis that operates directly on the SystemC models. The
analysis formally represents the behavior (data path and control
flow) of the system in terms of two well-structured graphs. Parts of
the design that violate specified secure information flow properties
are identified by analyzing the extracted graphs. These potentially
vulnerable paths are reported back to designers for further inspec-
tion. We have demonstrated the applicability of our approach on
two security-critical architectures.
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