
Scalable Simulation-based Verification of
SystemC-based Virtual Prototypes

Mehran Goli Rolf Drechsler
Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
{mehran.goli, rolf.drechsler}@dfki.de {mehran, drechsler}@uni-bremen.de

Abstract—Virtual Prototypes (VPs) at the Electronic System
Level (ESL) written in SystemC language using its Transaction
Level Modeling (TLM) framework are increasingly adopted by
the semiconductor industry. The main reason is that VPs are
much earlier available, and their simulation is orders of magni-
tude faster in comparison to the hardware models implemented
at lower levels of abstraction (e.g. RTL). This leads designers
to use VPs as reference models for an early design verification.
Hence, the correctness assurance of these reference models (VPs)
is critical as undetected faults may propagate to less abstract
levels in the design process, increasing the fixing cost and effort.

In this paper, we propose a novel simulation-based verification
approach to automatically validate the simulation behavior of a
given SystemC VP against both the TLM-2.0 rules and its spec-
ifications (i.e. functional and timing behavior of communications
in the VP). The scalability and the efficiency of the proposed
approach are demonstrated using an extensive set of experiments
including a real-word VP.

I. INTRODUCTION

The increasing functionality of digital systems, and reduced
time-to-market constraints push designers to model systems at
higher levels of abstraction. Particularly, hardware modeling
at the Electronic System Level (ESL) received strong attention
in the last decades. Among high-level hardware description
languages, SystemC [1] has become a de-facto standard at
the ESL due to its fast simulation and strong support for
mixed hardware-software systems. This has led to the rapidly-
growing adoption of Virtual Prototypes (VPs) written in Sys-
temC using its Transaction Level Modeling (TLM) frame-
work [2]. The much earlier availability and the significantly
faster simulation speed of the VP in comparison to the Register
Transfer Level (RTL) hardware model motivate designers to
use it as a reference model for an early system verification in
the design process. Hence, ensuring the correctness of VPs is
of the utmost importance, as undetected faults may propagate
to lower levels of abstraction and become very costly to fix.

In the ESL design, TLM-2.0 (as the current standard)
provides designers with a set of standard interfaces and
rules (TLM-2.0 base protocol) to model a VP based on
abstract communications (i.e. transactions). It allows designers
to abstract away the implementation details related to the
computation of Intellectual Properties (IPs) and only focus on
the communications. Thus, communications (among different
IP blocks) are the main part of a VP model that must be
verified. The first step to verify the communications in a
given VP is to check whether or not they adhere the TLM-2.0
rules. In addition, as a VP is the first executable model of the
design specifications describing its functionality and timing

This work was supported in part by the German Federal Ministry of Education and
Research (BMBF) within the project SecRec under grant no. 16K1S0606K, and by
the University of Bremen’s graduate school SyDe, funded by the German Excellence
Initiative.

behavior in terms of abstract communications, a functional
assurance of the VP against its specifications is necessarily
required. Especially, if the VP under development represents
a safety-critical system. Therefore, to ensure the correctness
of communications in a given VP, apart from validating the
VP against TLM-2.0 rules (protocol validation), the functional
and timing behavior of the VP must be verified as well.

In general, the SystemC-based VP correctness can be en-
sured by two different approaches: formal verification and
simulation-based verification (also called validation). Formal
approaches usually require to specify the model in formal
semantics such as abstract state machines [3]–[6] or Inter-
mediate Representation (IR) models [7]. However, due to the
object-oriented nature and event-driven simulation semantics
of SystemC, it is very challenging to formally verify a given
SystemC VP. Moreover, state space explosion is another well-
known problem for this category. Due to these restrictions,
formal approaches are not able to verify complex systems
as several assumptions need to be imposed on a given VP
(e.g. function pointers, recursion or templates cannot easily be
described formally). In contrast, simulation-based verification
approaches [8]–[13] are still the predominant techniques to
verify systems at ESL as they scale very well with an
arbitrary complexity of VPs. In this scope, assertion-based
techniques [10]–[12], [14] are particularly well-suited for
validation purposes. However, the major drawback of them
is that deriving assertions (i.e. properties) from the design
specifications or TLM-2.0 rules usually requires manual effort
by designers. Moreover, mostly the generated assertions need
to be inserted manually into the VP.

In this paper, we propose a simulation based verification
approach which automatically validates a given SystemC VP
against the TLM-2.0 rules and its specifications. The main
challenges to be overcome here are to deal with the Sys-
temC specific language constructs, the TLM-2.0 semantics and
timing models. We take advantage of the flexible compiler
infrastructure Clang [15] provided by Clang-LLVM [16] to
analyze the Abstract Syntax Tree (AST) of the VP model for
run-time information extraction by automatically generating
an instrumented version of the VP. A post-execution analysis
is applied to the extracted information to build the simulation
behavior of the VP and describe it in terms of abstract com-
munications (i.e. transactions). Properties are automatically
generated from the design specifications and TLM-2.0 rules.
Finally, the simulation behavior of the VP is validated against
the generated properties. The violated properties and the
corresponding transactions are reported back to the designers
for further analysis. The focus of the proposed approach is to
detect the errors related to the most common and important
fault types of communications in a VP at ESL; i.e. dynamic

LT-AT_B
U
S

Initiator_B Target_B

Initiator_A Target_A

Fig. 1: The Architecture of LT-AT_BUS VP.

rules (that cannot be checked statically e.g. during compilation
time) related to the TLM-2.0 base protocol transactions (and
its attributes), functionality and timing behavior. The approach
is applied to several case studies including a real-world VP to
demonstrate its precision, scalability, and advantages.

II. RELATED WORK

SystemC-based VPs verification includes both formal and
simulation-based approaches. Section I already studied notable
approaches of the former category. In this section, we focus
only on simulation-based approaches.

In Assertion-based Verification (ABV) approaches [10]–
[12], [14] VP’s specifications or protocol rules that need to be
verified are expressed as assertions. An assertion is a statement
written usually in Property Specification Language (PSL) or
System Verilog and checked either statically using model
checkers or dynamically during simulation time. The main
drawback of these approaches is that they require complex
specification to formulate e.g. TLM-2.0 rules in terms of
assertions. This needs to be performed manually by designers
which heavily reduces the degree of automation. Furthermore,
most of them specifically focus on validating communications
in the VPs against the TLM-2.0 rules and do not support the
correctness of their functional and timing behavior.

In addition to the ABV approaches, [8], [9] use Aspect
Oriented Programming (AOP) to access simulation behavior
of VPs and then validate it against the VPs’ properties.
Essentially, AOP provides designers with a source-to-source
translation where additional code (aspects) can be inserted to
specific points of the VP’s source code. In [8], the simulation
behavior of VPs is traced using AOP technique and checked
against the properties implemented as a C++ class. In [9] user
code primitives are defined manually in property specifications
by designers. Then, AOP is used to instrument the SystemC
source code by generating a monitor for each property to be
check during the execution. For both the aforementioned meth-
ods, user interaction is heavily required to define the aspects
and design primitives. Additionally, defining and debugging
AOP setups are very challenging and require further manual
efforts by designers.

The recently published method [13] takes advantage of the
GNU debugger (GDB) to retrieve the simulation behavior of
VP models (introduced in [17]). The extracted VP’s behavior
and TLM-2.0 rules are translated into a set of time automata
models, and properties in TCL, respectively. Although it
has shown to be a promising approach, it has two major
limitations. As the method uses the GDB breakpoints feature
to extract the run-time data, the required time for the analysis
can be really huge especially when the size of running
software or VPs complexity increases. Moreover, the method
can only validate the VPs’ behavior against TLM-2.0 rules
and not the functional and timing behavior of their IP blocks
communications.

TABLE I: Different Types of the TLM-2.0 Transaction.
TM TT Communication Interface Call Return Status Phase Transition
LT T0 b_transport TC -

AT

T1 nb_transport_fw TC BRQ
T2 nb_transport_fw TU→TC BRQ→BRP→ERP
T3 nb_transport_fw TU→TA BRQ→BRP→ERP
T4 nb_transport_fw/nb_transport_bw TU→TA→TA BRQ→ERQ→BRP→ERP
T5 nb_transport_fw/nb_transport_bw TU→TC BRQ→ERQ→BRP
T6 nb_transport_fw/nb_transport_bw TU→TC BRQ→BRP
T7 nb_transport_fw/nb_transport_bw TU→TU BRQ→ERQ→BRP→ERP
T8 nb_transport_fw/nb_transport_bw TA→TC BRQ→BRP
T9 nb_transport_fw/nb_transport_bw TA→TA→TC BRQ→BRP→ERP
T10 nb_transport_fw/nb_transport_bw TA→TU BRQ→BRP→ERP
T11 nb_transport_fw/nb_transport_bw TA→TA→TC→TC BRQ→ERQ→BRP→ERP
T12 nb_transport_fw/nb_transport_bw TA→TA→TC BRQ→ERQ→BRP
T13 nb_transport_fw/nb_transport_bw TA→TA→TU BRQ→BRP→ERP

TM: Timing Model TT: Transaction Type TC: TLM_COMPLETED TA: TLM_ACCEPTED TU: TLM_UPDATED
BRQ: BEGIN_REQUEST BRP: BEGIN_RESPONSE ERQ: END_REQUEST ERP: END_RESPONSE

III. BACKGROUND AND MOTIVATION

In this section, we first give a brief introduction to the Sys-
temC TLM-2.0 framework. Then, with a motivating example,
we explain the necessity of the SystemC VP validation in the
design process and different type of faults related to the IPs’
communications in a given VP.

A. Background

SystemC is a C++ based system level design language
providing an event-driven simulation kernel. TLM-2.0 frame-
work (as the current standard of SystemC TLM framework)
introduces the transaction concept allowing designers to de-
scribe a model in terms of abstract communications using the
base protocol and standard interfaces (e.g. b_transport and
nb_transport). A transaction is a data structure (i.e. a C++
object) passed through TLM modules using function calls.
A TLM module may include initiators (generating transac-
tions), interconnects (acts as a transaction router), and targets
(responds to the incoming transactions). A communication
between two TLM modules in a VP can be performed based on
two timing models, Loosely-timed (LT), and Approximately-
timed (AT). The former is appropriate for the use case of
software development while the latter for architectural ex-
ploration and performance analysis. The LT model is imple-
mented using the blocking transport interface (b_transport)
allowing only two timing points to be associated with each
transaction. The first timing point is the request, while the
second is the response. The AT model is implemented using
the non-blocking transport interface (nb_transport) providing
multiple phases and timing points for a transaction. Due to
the combination of these phases and timing points, 13 unique
transaction types are defined in the base protocol. In summary,
Table I shows different transaction types (column TT) of
the TLM-2.0 base protocol and describes them based on the
communication interface call, return status of the interface call
and the transaction’s phase transitions.

B. Motivating Example

Consider the LT-AT_BUS VP which is inspired by [18]
and implemented in SystemC TLM-2.0. The VP includes five
modules i.e. two initiator modules, an LT-AT interconnect and
two target modules.

The design team implements the VP base on different TLM-
2.0 base protocol transactions and the following specifications.
Initiator_A communicates with target modules through LT-
AT_BUS by generating two types of AT transactions. The
transaction type T1 and T2 (w.r.t Table. I) to access Target_A
(each type for different memory address ranges), and type

T3 to access Target_B. The Initiator_B module generates AT
transactions of type T4 to access target modules Target_A, and
the LT transactions type (T0) to access Target_B. For example,
consider the communication between Initiator_A and Target_A
(the gray components in Fig. 1). The Initiator_A module
generates transactions of types T1 (including less transition
phases to gain performance) and T2 to access memory address
range (0x00 to 0x0A) and (0x0B to 0xFF) of the Target_A
module, respectively. Now consider three possible Fault Types
(FTs) that designers may be faced during the design process.

FT1: Implementing an incorrect TLM-2.0 base protocol
transaction. After implementing the VP, it might happen that
some TLM-2.0 based protocol rules are implemented incor-
rectly by designers. For example, the generated transactions
by Initiator_A to access address range (0x0B-0xFF) of target
module Target_A have wrong transition phase orders. How-
ever, this type of faults cannot be detected by either SystemC
compiler or TLM-2.0 library. Moreover, manually checking
the correctness of these rules even for a simple design is very
difficult as TLM-2.0 includes many rules.

FT2: Transporting incorrect transaction data can also cause
malfunction for the VP model. Transaction’s attributes such
as data, address or data length can be assign to a wrong
value by each of the TLM modules, resulting in transporting
transaction to an incorrect destination, or receiving a wrong
data by the initiator or target modules. For example, some
transactions of type T1 generated by the Initiator_A access
the memory addresses 0xB2 and 0xB3 which are against the
VP specifications. In this case although the VP implementation
adheres the TLM-2.0 rules, it violates the VP specifications.
Thus, the traditional verification approaches such as [13] and
[10] that only focus on verifying the VP against the TLM-2.0
base protocol rules fail to detect this type of faults.

FT3: Implementing an incorrect timing behavior can also
cause an error. This specifically is related to the timing
annotation of a transaction and defined as the delay that
the transaction requires to be transferred between two TLM
modules. For example, the delay parameter of transactions
generated by Initiator_A to access the address range (0x00 to
0x0A) of Target_A must be less than 80 ns. Hence, designers
want to know whether or not the timing behavior of the
generated transactions by Initiator_A to access this range of
address in Target_A adheres the VP’s timing specifications. For
this type of faults, again traditional approaches such as [13]
and [10] fail to validate the VP against its specifications.

Hence, to detect all the aforementioned types of fault, an
automated validation process is required that not only checks
the correctness of VPs against TLM-2.0 rules but also validates
their functinal and timing behavior against their specifications.

IV. METHODOLOGY

A. Overall Workflow
Fig. 2 provides an overview of the proposed approach

includes four main phases as below.
1) Extracting the run-time behavior of the SystemC VP by

executing its instrumented version.
2) Analyzing the extracted information to

a) retrieve each transaction lifetime from the VP’s run-
time behavior log and

b) transform transactions’ lifetime into a set of access
paths.

Error Detector

VP
Specifications

TLM-2.0
Protocol

Rules

Transaction
Lifetime

Access
Paths

Run-time
Log

FTrans
Violated

Properties

1. Data Extraction

2. Information Transformation

3. Property Generation

4. Error Trace

Source
(.cpp)

Clang

Static Analyzer

Exec
Binary

Instrumented
Source
(.cpp)

Fig. 2: The Proposed Methodology Overview.

3) Generating a set of properties from the following sources.
a) TLM-2.0 based protocol rules and
b) VP specifications related to its functional and timing

behavior.
4) Validating the VP’s behavior against the TLM-2.0 base

protocol rules and the generated properties from the VP’s
specifications.

In the following, each phase of the proposed approach
is explained in detail and illustrated using the motivating
example LT-AT_BUS VP (Fig. 1).

B. Data Extraction

The first phase of the proposed validation approach is to
access the run-time information of a given VP describing
its behavior (which is defined in terms of transaction). This
requires to trace all transactions of the VP generated by
different initiator modules and transferred through the in-
terconnect to access the corresponding target modules. To
trace a given VP’s transactions, we take advantage of the
Clang compiler to generate an instrumented version of the VP
source code (inspired by [19]). To do this, the Static Analyzer
(Fig. 2-phase 1) module analyzes the AST of the VP which
is generated by Clang from its source code. This analysis
includes two steps. In the first step, the information related
to the VP’s structure is extracted by visiting the reverent node
in the AST. This information consists of
• the name of TLM modules and their member functions

and
• type of each TLM module which is defined by analyzing

its socket(s) type. Due to the TLM-2.0 rules an initiator
module only has initiator socket(s), a target module only
has target socket(s) and an interconnect module has both
types of socket.

In the second step, the extracted information is used to
automatically generate an instrumented version of the existing
source code by inserting the Trans_Recorder statements. The
Trans_Recorder statement includes the instructions to extract
the information which is necessary required to properly trace
a transaction. This information is the transaction’s reference
address, the value of transaction’s attributes and its related pa-
rameters such as timing annotation, phase (e.g. BEGIN_REQ)
and functions’ return status (e.g. TLM_COMPLETED). More-
over, the simulation time is retrieved to identify the exact
time when the transactions’ state changes. In order to trace

1 s t r u c t Target_A : sc_module {
2 t l m _ u t i l s : : s i m p l e _ t a r g e t _ s o c k e t <Target_A , 32> s o c k e t ;
3 . . .
4 void s e n d _ r e s p o n s e (t lm : : t l m _ g e n e r i c _ p a y l o a d& t r a n s) {
5 t lm : : t lm_sync_enum s t a t u s ;
6 t lm : : t l m _ p h a s e phase ;
7 s c _ t i m e d e l a y ;
8 . . .
9 s t a t u s = s o c k e t−>n b _ t r a n s p o r t _ b w (t r a n s , phase , d e l a y) ;

10 Fout <<" Target_A : : s e n d _ r e s p o n s e : : R e f _ a d r s ="<< t r a n s <<" Data="<< t r a n s−>
g e t _ d a t a _ p t r () <<"Cmd="<< t r a n s−>get_command () <<" Adrs="<< t r a n s−>
g e t _ a d d r e s s () <<" Rps="<< t r a n s−>g e t _ r e s p o n s e _ s t a t u s () <<" Dl="<< t r a n s−>
g e t _ d a t a _ l e n g t h () <<" Delay="<< de lay <<" Phase ="<<phase <<"
Ins t ance_name_modu le ="<< t h i s−>name () <<"ST="<< s c _ t i m e _ s t a m p () << e n d l ;

11 . . . }

Fig. 3: Part of the Instrumented Source Code of Module
Target_A of the LT-AT_BUS VP.

a transaction after any possible changes, two locations need
to be considered. First, the line of code where the transaction
is defined (e.g. as a function arguments or a local variables
within the function’s body), is considered as DEF location.
Second, the function call (e.g. transport interfaces b_transport
or nb_transport) where the transaction object is used as an
input argument, is considered as USED location. Thus, the
Trans_Recorder statements are inserted to the source code
after the aforementioned locations.

For example, consider the Target_A module of the LT-
AT_BUS design (Fig. 3). Line 10 is not initially available.
In order to retrieve all transactions related to this module,
all functions of the module (e.g. send_response) in which a
transaction object is referenced needs to be traced. This is per-
formed by analyzing the VP’s AST using the Static Analyzer
module (Fig. 2, phase 1) to find DEF and USED locations
in the source code. As an example of the USED location,
consider Line 9, in Fig. 3 where the transaction object trans
is used as a function argument of the nb_transport_bw
interface. To properly trace the transaction, all information
related to its flow and data needs to be extracted. The
former refers to the module name (Target_A) and the
parent function (send_response) to which this transaction
belongs and the transaction’s reference address. The later
refers to all attributes of the transaction which are data,
address, response status and data length, and its related pa-
rameters. The transaction’s related parameters are the phase
and delay arguments of the nb_transport_bw interface
and its return status stored in the status variable. From
the extracted information, the Trans_Recorder statement Fout
(Line 10, Fig. 3) is automatically generated and inserted after
the USED location in the new source code. To extract the
instance name of the module, instruction this->name()
is added to the Trans_Recorder statement. This requires
to identify that the transaction trans belongs to which
instance of the Target_A module. Moreover, instruction
sc_time_stamp() is used to extract the simulation time
when the transaction is sent.

C. Information Transformation

To validate that a transaction adheres the TLM proto-
col rules and the VP specifications, building the transaction
lifetime is necessary. This requires to analyze the Run-time
Log file to retrieve all information related to a transaction
from the time that it is created by an initiator module until
its completion. This time is considered as the transaction
lifetime. Due to the TLM-2.0 rules [2] a transaction object is
passed as a function argument to a communication interface
(e.g. b_transport or nb_transport) with a reference address
(call by reference). This address can be used as the transaction

identifier to isolate the information related to a transaction
within its lifetime from others in the Run-time Log file.
However, this reference address is not a unique identifier as
it may be re-used for new transactions when an old one is
completed. Thus, to handle this issue, the information related
to the type of the modules (i.e. initiator, interconnect or target)
taking part in the transaction lifetime and the return value of
the communication interfaces are used to identify the start
and end points of the transactions with the same reference
address. By this, the Run-time Log file is transformed into a
structural format (Transaction lifetime in Fig. 2-phase 2) where
each transaction is described within its lifetime. A transaction
lifetime includes several sequences (timing steps) illustrating
the transaction creation, manipulation by TLM modules and
its completion. Each sequence in the transaction lifetime is
defined based on the following definition.

Definition 1. A sequence SQ is a tuple (F ,D) where F is
all information related to the transaction’s flow and D denotes
the information describing the transaction’s attributes and its
related parameters.

SQ = {(F ,D) | F = (M , I ,Func,ST ,TID,MT),

D = (data, adrs, cmd, dl, rps, phase, delay, rs)} where

• M and I are the root and instance names of a module,
respectively.

• Func is the function name that a transaction object is
referred.

• ST shows the simulation time.
• TID is the transaction reference address.
• MT illustrates the type of a TLM module.
• data, adrs, cmd , dl and rps are the transaction’s at-

tributes denoting the data, address, command, data length
and the response statues, respectively.

• phase, delay and rs present the transaction’s phase,
timing annotation and return status of the communication
interfaces, respectively.

Please note that the phase parameter in LT model is set
to NULL as it is only relevant to the AT model. Base on
Definition 1, transaction lifetime is defined as the following.

Definition 2. A transaction lifetime TL is a set of sequences
SQ where

TL = {SQi | 1 ≤ i ≤ nT}

and nT is defined based on which base protocol transaction is
used as different types have disparate number of sequences.

Although the generated transaction lifetime TL has a proper
structure to validate each transaction against the TLM-2.0 base
protocol rules, to verify functional (FT2) and timing (FT3)
fault types further translation on the transaction lifetime is
required. Since the validation of a given VP’s transactions
against FT2 or FT3 requires to check whether or not the
transactions are sent to the right target module (e.g. a right
memory address) with the expected transaction type or delay
w.r.t the VP specifications, we transform each transaction
lifetime into an access path based on the following definition.

Definition 3. A complete simulation behavior of a given
SystemC VP can be defined as a set of access paths SAP
where each path AP shows a connection between an initiator
module IM and a target module TM as below

SAP = {APi | APi = {IM → TM :: (TID,TT ,Tadrs, cmd,TD)},

1 ≤ i ≤ nseq} where

SQ1 : ([I n i t i a t o r _ A , i n i t A , p r o c e s s _ 1 , 50 ns ,NULL, i n i t i a t o r] ,
[0 x76ab561 , 0x06 , WRITE , 4 , TLM_INCOMPLETE_RESPONSE, BEGIN_REQ , 5 ns , NULL])

SQ2 : ([LT−AT_BUS , bus_0 , n b _ t r a n s p o r t _ f w , 55 ns , 0 x683c10 , i n t e r c o n n e c t] ,
[0 x76ab561 , 0x06 , WRITE , 4 , TLM_INCOMPLETE_RESPONSE, BEGIN_REQ , 5 ns , NULL])

SQ3 : ([Target_A , trgA , n b _ t r a n s p o r t _ f w , 60 ns , 0 x683c10 , t a r g e t] ,
[0 x76ab561 , 0x03 , WRITE , 4 , TLM_OK_RESPONSE, BEGIN_REQ , 5 ns , TLM_COMPLETED])

SQ4 : ([LT−AT_BUS , bus_0 , n b _ t r a n s p o r t _ f w , 65 ns , 0 x683c10 , i n t e r c o n n e c t] ,
[0 x76ab561 , 0x03 , WRITE , 4 , TLM_OK_RESPONSE, BEGIN_REQ , 5 ns , TLM_COMPLETED])

SQ5 : ([I n i t i a t o r _ A , i n i t A , p r o c e s s _ 1 , 70 ns ,NULL, i n i t i a t o r] ,
[0 x76ab561 , 0x03 , WRITE , 4 , TLM_OK_RESPONSE, BEGIN_REQ , 5 ns , NULL])

Fig. 4: A single transaction lifetime of the LT-AT_BUS VP.

• IM and TM are initiator and target modules (their root
and instance names), respectively.

• TT is the transaction type illustrating which timing
model (LT or AT) is used. In case of the AT model, it
shows which type of the based protocol transaction is
implemented w.r.t the Table I. To identify the transaction
type, a unique type signature is generated by concate-
nating three parameters from the transaction lifetime
i.e. communication interface call, return status, and phase
transitions.

• Tadrs shows the address of the transaction in the target
module TM .

• cmd is the transaction command attribute. It shows the
type of the transaction access (e.g. read or write).

• TD is the total delay of all sequences within the trans-
action lifetime. This is obtained by differentiating the
simulation time ST of the first and last sequences.

• nseq is the number of sequence in a transaction lifetime.
For example, Fig. 4 shows a part of single transaction

lifetime of the LT-AT_BUS VP. It shows that the transac-
tion lifetime has five sequences and implement type T1

of the based protocol transaction as its type signature is
“nb_transport_fw+BRQ+TC”. The access path representation
of this transaction lifetime based on Definition 3 is as below.

AP = {Initiator_A : initA→ Target_A : trgA ::

(0x683c10 ,T1 , 0x03 ,WRITE , 20ns)} (1)

It shows that the instance initA of initiator module Initiator_A
created a transaction with reference address 0x683c10 to write
in memory address 0x03 of the instance trgA of target module
Target_A. It also indicates that the overall delay for this
transaction is 20 ns as its first (SQ1) and last (SQ5) sequences
are started at simulation time 50 ns and 70 ns, respectively.

D. Property Generation
The design rules are usually written in a textbook spec-

ifications and designers use them to implement the design.
To model a SystemC VP, a part of these specifications is
defined by the TLM-2.0 base protocol describing e.g. how
communications between TLM modules must be implemented.
This type of constraint is implemented as a part of the
Error Detector module (Fig. 2-phase 3) and explained in
Section IV-E. The other parts of these specifications related
to the functional and timing behavior of the VP are defined
by designers and considered as User constraints. The focus of
this section is to show how the User constraints are translated
into the corresponding proprieties.

1) User constraints – (Functional Properties): To validate
the behavior of a given VP against the VP specifications
related to the functional constraints, these rules need to be

Algorithm 1: Functional Property (FP) Generation.
Data: Design specification VPfs

Result: Functional properties FP to validate connection paths in SAP
1 Ltrg ← extracting all target modules of VP from VPfs ;
2 i ← 0 ;
3 FP ← ∅;
4 foreach target TM of initiator module IM in VPfs do
5 FTLIM ← Ltrg − TM ;
6 foreach target T in FTLIM do
7 foreach transaction type TT in LTT do
8 pi ← (IM ,T ,TT);
9 add(FP, pi);

10 i ← i + 1 ;
11 end
12 end
13 FTTIM ← LTT − TTIM ;
14 foreach target TM in TL do
15 foreach transaction type tt in FTTIM do
16 pi ← (IM ,TM , tt);
17 add(FP, pi);
18 i ← i + 1 ;
19 end
20 end
21 end

translated into a set of properties. To do this, the VP specifi-
cations are given as inputs based on the following definition.

Definition 4. The VP functional specifications VPfs , for
each initiator module IM include the list of all target modules
TM that IM is allowed to access with a specific transaction
type TT as below.

VPfs = {IMi | IMi → {(TMj (address_range), TTn)},
0 ≤ i ≤ ninit , 0 ≤ j ≤ ntrg , 0 ≤ n ≤ 13}

Where ninit and ntrg indicate the number of initiator and target
modules, respectively.

The given VP specifications are analyzed by the Error
Detector module (Fig. 2-phase 3) to automatically generate
all properties related to the invalid connection paths of an
initiator and a target module either based on a wrong address
or transaction types. As illustrated in Algorithm 1, the VPfs

is analyzed to extract all target modules of the VP and store
them in the Ltrg (Line 1). For each initiator module IM of the
VP a Forbidden Target List FTLIM is generated containing
the target modules that the initiator is not allowed to access
(Lines 4 and 5). Then, properties are generated to indicate the
following two important facts.

1) For the initiator module IM there must be no connection
path to the targets in its FTLIM for all types of based
protocol transactions specified in LTT (Lines 5 to 12).

2) For the initiator module IM there must be no connection
path to its target list TL with the transaction types
specified in its Forbidden Transaction Type list FTTIM

(Lines 13 to 20).
For example, consider the LT-AT_BUS VP (Fig. 1). The VP

specifications related to the initiator_A is defined as below.

VPfs = {Initiator_A→ (Target_A(0x00 − 0x0A),T1),

(Target_A(0x0B − 0xFF),T2),

(Target_B(0x00 − 0xFF),T3)} (2)

Base on the aforementioned VPfs , (3) shows a part of the gen-
erated functional properties FP related to the communication
path between Initiator_A and Target_A(0x00 − 0x0A).

FP = {p1 = (Initiator_A,Target_A(0x0B − 0xFF),T2), ...

p12 = (Initiator_A,Target_A(0x0B − 0xFF),T13), ...} (3)

Algorithm 2: Timing Property (TP) Generation.
Data: Design specification VPts

Result: Timing properties TP to validate connection paths in SAP
1 VPts ;
2 i ← 0 ;
3 TP ← ∅;
4 foreach target TM of initiator module IM in VPts do
5 pi ← (IM , T , TT , ! = DT);
6 add(TP, pi);
7 i ← i + 1 ;
8 end

The generated properties p1 and p12 in (3) show
that Initiator_A must not access the address range
(0x00 − 0x0A) of Target_A by transaction types T2 and
T13 , respectively.

2) User constraints – (Timing Properties): In order to vali-
date the timing behavior of a given VP’s transactions generated
by different initiator modules against the VP’s specifications,
the timing specifications of the VP are required to be defined
and given as inputs. This specification is defined in the same
way as the functional specification. The only difference is that
in addition to the information in Definition 4, the required
time of a communication between an initiator module and
its corresponding target (total transaction delay) needs to be
identified in the VP’s specifications. Thus, the VPts is defined
as the following.

VPts = {IMi | IMi → {(TMj (address_range), TTn ,TD)},
0 ≤ i ≤ ninit , 0 ≤ j ≤ ntrg , 0 ≤ n ≤ 13} (4)

Where TD denotes the total delay of the generated transaction
type TT by the initiator module IM to access the target
module TM .

The given VP’s specifications are analyzed by the Error
Detector module (Fig. 2-phase 3) to automatically generate
timing properties. As shown in Algorithm 2, for each target
TM of the initiator IM , the property pi indicates that there
must not be a communication with the transaction type TT
that requires less or more time than TD to perform the
communication (Lines 4 to 8). For example, a part of the
generated timing properties TP related to the transactions
generated by Initiator_A to access Target_A(0x00 − 0x0A)
is as the following.

TP = {p1 = (Initiator_A,Target_A(0x00 − 0x0A),T1 , ! = 20)} (5)

E. Error Trace
The validation process of a given VP is performed in two

main steps. First, the TLM-2.0 rules are checked indicating
whether or not the VP behavior adheres the TLM.2.0 based
protocols. In this case any violation is reported to designers
to be overcome before the user constraints (defined based
on the VP specifications) are verified. In the second step,
user constraints are verified including both the functional and
timing properties.

1) TLM-2.0 Rules Validation: This type of constraint is
directly generated from the TLM-2.0 base protocol including
all rules related to the transaction types (e.g. the generated
transaction of a given VP describes one of the valid based
protocol transactions), transaction attributes (e.g. the data
length attribute of a transaction must be a positive integer
number) and the expected TLM modules behavior (e.g. an
interconnect module must not modify the data attribute of a
transaction).

Constraints related to the transaction types are generated by
translating the base protocol transactions into the correspond-
ing type signature as illustrated in Table. I. This covers 25
rules of the TLM-2.0 based protocols. In order to check the
correctness of each transaction lifetime against the transaction
types fault, the followings two steps are performed. First,
the transaction type signature is generated by analyzing each
transaction lifetime in TL. Then, an string matching algorithm
is performed to identify unmatched transaction type signature
that is not match the reference model. The lifetime of the
violated transactions is analyzed to indicate the first faulty
sequence. This sequence is reported to designers.

Concerning the transaction attributes rules, for each se-
quence SQ in the transaction lifetime TL based on Defini-
tion 2, the Error Detector module (Fig. 2-phase 3) checks its
data D to find an attributes’ rule violation. Overall, 10 TLM-
2.0 rules in this regard are implemented.

To validate TLM-2.0 rules related to the TLM modules
behavior, the Error Detector module (Fig. 2-phase 3) first,
identifies the type of modules in a transaction lifetime TL.
This is performed by analyzing the transaction’s flow F in
each sequence SQ w.r.t Definition 1. Then, the behavior
validation process is performed based on their types. For
example, to validate that an interconnect module does not
change the data attribute of a transaction object in its lifetime,
first the sequences that the interconnect module takes part
are identified. Then, the data attribute of the transaction in
this sequence is compared to the previous and next sequences
to indicate whether or not the data is changed. In case of
violation, this sequence is reported to designers. Overall, 15
TLM-2.0 rules are implemented in the error detector module
regarding this type of faults.

2) User constraints Validation: Verifying a VP against both
functional and timing properties is performed by analyzing the
access paths in SAP . For each property in FP or TP the SAP
is traversed in order to find property violations related to the
functional or timing behavior of the VP, respectively. For both
cases, the violated paths are reported to designers.

V. EXPERIMENTAL RESULTS

The Static Analyzer module is implemented using the
LibTooling library of Clang compiler [16]. The Error Detector
module is implemented in C++ based on the explanation in
section IV-E and Algorithm 1 and 2.

The proposed approach is applied to several standard VPs
provided by Doulos [18] and [20]. The experimental results
(Table II) are described in two parts. First, a real-word case
study – the LEON3-based VP SoCRocket (implemented in
SystemC TLM-2.0) [20] is illustrated in detail in Section V-A.
Second, we give a brief discussion on the quality of obtained
experimental results in Section V-B.

All the experiments have been carried out on a PC equipped
with 8 GB RAM and an Intel core i7 CPU running at 2.4 GHz.

A. Case Studies

To evaluate the quality of the proposed approach, we have
injected faults into the VPs based on FT1, FT2 and FT3
introduced in Section III. The proposed approach was applied
to validate the correctness of each VP against the TLM-2.0
rules and the VP’s specifications. These faults are injected

TABLE II: Experimental Results for all Case Studies.

SystemC VP LoC #Trans #TT TM #Properties - Ours #Properties - [13] ET (s) - Ours ET (s) - [13] CET (s)
Total Pass Fail FTrans Total Pass Fail FTrans P1 P2 P3 P4 Total Compile Exe Total

O
riginal

LT-example1 175 1,000 1 LT 37 37 0 0 5,886 5,886 0 0 1.4 0.9 0.6 2.2 5.1 566.7 1.3 0.1 1.4
Routing-model1 456 1,000 1 LT 84 84 0 0 11,960 11,960 0 0 1.9 1.0 0.6 2.3 5.8 10,579.2 1.7 0.1 1.8
AT-example1 2,942 2,000 8 AT 245 245 0 0 TO TO TO TO 27.5 1.7 1 3.3 33.5 TO 21.0 0.2 21.2
Locking-two1 3,831 4,000 10 LT/AT 233 233 0 0 TO TO TO TO 29.2 2.9 1.1 6.1 39.3 TO 23.9 0.3 24.2
SoCRocket2 50,000 12,000 8 LT/AT 773 773 0 0 TO TO TO TO 53.8 5.8 1.6 18.6 79.8 TO 27.6 2.3 29.9

FT
1

LT-example 175 1,000 1 LT 22 21 1 275 5,886 4,415 1,471 275 1.4 0.9 0 1.6 3.9 515.4 1.3 0.1 1.4
Routing-model 456 1,000 1 LT 22 20 2 388 11,960 7,416 4,544 388 1.9 1.0 0 1.6 4.5 9,421.3 1.7 0.1 1.8
AT-example∗ 1,950 2,000 8 AT 35 32 3 719 TO TO TO TO 27.5 1.7 0 2.1 31.3 TO 19.8 0.2 20.0
Locking-two∗ 2,907 4,000 10 LT/AT 55 52 3 1,091 TO TO TO TO 29.2 2.9 0 3.9 36.0 TO 21.2 0.3 21.5
SoCRocket 50,000 12,000 8 LT/AT 55 52 3 2,168 TO TO TO TO 53.8 5.8 0 10.7 70.3 TO 27.6 2.3 29.9

FT
2

LT-example 175 1,000 1 LT 13 12 1 317 5,886 5,886 0 0 1.4 0.9 0.4 0.4 3.1 566.7 1.3 0.1 1.4
Routing-model 456 1,000 1 LT 54 44 10 207 11,960 11,960 0 0 1.9 1.0 0.4 0.4 4.7 10,579.2 1.7 0.1 1.8
AT-example 2,942 2,000 8 AT 195 180 15 492 TO TO TO TO 27.5 1.7 0.6 0.7 30.5 TO 21.0 0.2 21.2
Locking-two 3,831 4,000 10 LT/AT 156 135 21 723 TO TO TO TO 29.2 2.9 0.6 1.3 34.0 TO 23.9 0.3 24.2
SoCRocket 50,000 12,000 8 LT/AT 676 642 34 3,391 TO TO TO TO 53.8 5.8 0.9 5.2 65.7 TO 27.6 2.3 29.9

FT
3

LT-example 175 1,000 1 LT 2 1 1 480 5,886 5,886 0 0 1.4 0.9 0.2 0.2 2.7 566.7 1.3 0.1 1.4
Routing-model 456 1,000 1 LT 8 6 2 95 11,960 11,960 0 0 1.9 1.0 0.2 0.3 3.4 10,579.2 1.7 0.1 1.8
AT-example 2,942 2,000 8 AT 15 11 4 471 TO TO TO TO 27.5 1.7 0.4 0.5 30.1 TO 21.0 0.2 21.2
Locking-two 3,831 4,000 10 LT/AT 22 17 5 811 TO TO TO TO 29.2 2.9 0.5 0.9 33.5 TO 23.9 0.3 24.2
SoCRocket 50,000 12,000 8 LT/AT 42 31 11 2,392 TO TO TO TO 53.8 5.8 0.7 2.7 63.0 TO 27.6 2.3 29.9

1 and 2 provided by [18] and [20], respectively LoC: Lines of Code #Trans: Number of Transactions #TT: Number of Transactions’ Type TM: Timing Model FTrans: Number
of Faulty Transactions CET: Compilation and Execution Time ET: Extraction Time TO: Time Out (it has been set to three hours) *The AT-example and Locking-two VPs

includes custom base protocol checkers in their original source codes and were removed to create faulty model FT1.

to the VPs based on the aforementioned fault types as the
followings.

• FT1: an incorrect initialization of the transaction’s re-
sponse status (fault related to the transaction attributes
rules), modification of the transaction data length by an
interconnect module (fault related to the TLM modules
behavior) and a wrong sequences order of transactions’
phase transitions (fault related to the transaction type).

• FT2: initiating transactions with an incorrect address
computation or an incorrect initialization of the VP
memory configuration file.

• FT3: altering the timing annotation of transactions with
an incorrect computation.

For a real-word experiment, we applied the proposed ap-
proach to validate the LEON3-based VP SoCRocket [20]. The
VP is implemented in SystemC TLM-2.0 including more than
50,000 lines of code. It consists of several IPs working together
in master (e.g. initiator modules LEON3 processor, ahbin1
and ahbin2) or slave (e.g. target modules AHBMem1 and
AHBMem2) mode connecting to the on-chip bus AMBA-2.0
AHB (Advanced High-performance Bus). The communication
uses a 32-bit address mode where the 12 most significant
bits are used to specify the memory address. For brevity, we
refrain from giving a detailed introduction to the whole VP.
To show how different fault types are injected to the VP and
the validation process was performed, consider a part of the
VP including the initiator modules ahbin1 and ahbin2 and the
target modules AHBMem1 and AHBMem2 connected to the
AMBA-2.0 AHB.

Regarding FT1, we injected the transaction attributes
fault into the ahbin2 to generate transactions with
an incorrect default value of the response status
attribute (i.e. TLM_OK_RESPONSE instead of
TLM_INCOMPLETE_RESPONSE). We injected the TLM
modules behavior fault into the AMBA-2.0 AHB to change
the data length of receiving transactions (i.e. 2 instead of
4 Bytes). Moreover, we injected the transaction type fault
into the ahbin1 to generate transactions with initial phase
BEGIN_RESP instead of BEGIN_REQ for transaction type
T1 . The first fault was detected by checking the first sequence

of each transaction lifetime where the initial response statues
must be TLM_INCOMPLETE_RESPONSE. The Error
Detector module was able to find the second fault by
comparing the data length attribute of each transaction of the
interconnect sequences to the previous and next sequences
in the transaction lifetime. The third fault was detected by
comparing the type signature of each transaction lifetime to
the pre-defined reference type signature (based on Table I).
The faulty type signature “nb_transport_fw+TC+BRP” was
not matched any of the pre-defined signatures. Overall, 1000
transactions are generated by both initiator modules which
273 of them were against the TLM 2.0 rules.

Concerning FT2, we consider the expected functional spec-
ifications of the VP as the following.

VPfs = {ahbin1 → (AHBMem1(0xA0000000 − 0xA0000CC4),T1),

(AHBMem1(0xA0000CC5 − 0xA0000FFF),T2),

(AHBMem2(0xB0000000 − 0xB0000FFF),T8),

ahbin2 → AHBMem2(0xB0000000 − 0xB0000FFF),T0)} (6)

The functional faults injected into the lines of code of the
ahbin1 where transactions address are generated. These lines
of code were altered to generate random values for the 12 less
significant bits of the transactions’ address (i.e. 000 to FFF)
for both transaction types T1 and T2 . Due to the VPfs , 52
functional properties were generated by the Error Detector
which a part of them are as the following.

FP = {p1 → (ahbin1, (AHBMem1(0xA0000000 − 0xA0000CC4),T2))

..., p52 → (ahbin2, (AHBMem2(0xB0000000 − 0xB0000FFF),T13))} (7)

Overall, 12 properties were violated indicating the initiator
modules ahbin1 and ahbin2 had 12 invalid access to the
target modules AHBMem1 and AHBMem2 w.r.t the functional
specifications of the VP.

Regarding FT3, we consider the expected timing specifica-
tions of the VP related to the ahbin1 and ahbin2 as below.

VPts = {ahbin1 → (AHBMem1(0xA0000000 − 0xA0000CC4),T1 , 50),

(AHBMem1(0xA0000CC5 − 0xA0000FFF),T2 , 100),

(AHBMem2(0xB0000000 − 0xB0000FFF),T8 , 200),

ahbin2 → (AHBMem2(0xB0000000 − 0xB0000FFF),T0 , 50)} (8)

We changed the lines of code where the timing annotation
of the transactions type T1 and T2 generated by ahbin1

are defined. Due to the VPts , four timing properties were
generated by the Error Detector as the following.

TP = {p1 → (ahbin1, (AHBMem1(0xA0000CC5 − 0xA0000FFF),T1 , ! = 50),

p2 → (ahbin1, (AHBMem1(0xA0000CC5 − 0xA0000FFF),T2 , ! = 100),

p3 → (ahbin1, (AHBMem2(0xB0000000 − 0xB0000FFF),T8 , ! = 200),

p4 → (ahbin2, (AHBMem2(0xB0000000 − 0xB0000FFF),T0 , ! = 50)} (9)

Our validation approach could detect two properties viola-
tion which are p1 and p2 . From 1000 generated transactions
by the initiator modules ahbin1 and ahbin1, 37 transactions
had incorrect timing behavior w.r.t the VPts .

The experimental results for different types of ESL bench-
marks are shown in Table II. The first column shows four
variants of SystemC VPs denoted as Original, FT1, FT2
and FT3 referring to the reference model of the VP and
three faulty models, respectively. Columns SystemC VP, Loc
and #Trans list name, lines of code and the number of ex-
tracted transactions for each VP, respectively. The #TT column
illustrates the number of transaction types implemented in
each VP. Column TM presents the timing model of each
design. Column #Properties shows the number of generated
properties to validate each VP against the TLM-2.0 rules or its
specifications. For this column, Total, Pass, Fail and FTrans
illustrate the number of generated, satisfied, violated properties
and faulty transactions, respectively. For the original model
of each VP, column properties shows the total number of all
generated properties (including TLM-2.0 rules) that the VP
was validated against them. The value zero for columns Fail
and FTrans indicate that all transactions adhered the TLM-
2.0 rules and the VP specifications. Please note that for FT1
variant of each VP, column #Properties-Ours illustrates the
number of TLM-2.0 rules that are covered by the proposed
approach w.r.t the VP’s timing model.

The execution time of the proposed approach is reported in
column ET followed by the data extraction P1, information
transformation P2, property generation P3 and total execution
time Total. Column CET shows the time of each VP’s com-
pilation and execution without any instrumentation.

B. Discussion
We evaluated the quality of the proposed approach to

analyze a given SystemC VP by comparing it to [13]. The
comparison is performed based on the ability of each approach
to validate a given SystemC VP against different types of fault
and the required time for this analysis.

The experimental results in Table II illustrate that the
proposed approach not only can validate a given SystemC VP
against the TLM-2.0 rules but also it is able to validate the
VP’s functional and timing behavior against its specifications.
The proposed approach reports the same number of faulty
transactions in case of FT1 to designers as [13]. Concerning
FT2 and FT3, [13] does not support the validation of VPs
against its specifications as the number of failed properties
(column Fail) and faulty transactions (column FTrans) for
the FT2 and FT3 variants of VPs are zero. The main reason
is that, this method is not able to generate functional and
timing properties. Thus, all its generated properties (which
related to TLM-2.0 rules) are passed in case of fault types
FT2 and FT3. In contrast, our proposed approach detects both
the aforementioned types of fault. Moreover, Table II shows
that the execution time of the proposed approach (column ET)
for all case studies lies in an order of seconds, allowing it to

be used in common development environments. In comparison
to [13], this time for our validation approach is significantly
lower (seconds versus hours). For complex designs with large
number of transactions, the parameter TO (that is set to four
hours) indicates that [13] is not applicable.

In summery, the proposed approach provides designers
with a comprehensive validation technique that has negligible
performance loss in comparison to its pure compilation and
execution time in Table II, column CET. Since neither the
SystemC library nor the SystemC simulation kernel are mod-
ified by the proposed approach, any results obtained using the
approach are identical to the original results (both functionality
and timing behavior).

As the proposed approach is based on run-time analysis, it
inherits the same limitations. The validation process depends
on the ability of the input stimulus (i.e. testbench or running
software) to activate the possible types of fault in the first
phase. However, this can be solved by manual or automated
test generation techniques (which is out of scope of this paper).

VI. CONCLUSION

In this paper, we presented a fast and easy-to-use solution to
validate a given SystemC-based VP against three main types
of fault. These fault types are related to the TLM-2.0 rules
and the VP’s specifications (functionality and timing behavior
of IPs’ communications). The approach is based on analyzing
the AST of the VP to extract static information and generate
instrumented version of the VP’s source code for run-time data
extraction. The extracted information is translated into set of
transactions’ lifetime and access paths to be validated against
the TLM-2.0 rules and the VP’s specifications, respectively.
We demonstrated the effectiveness and scalability of our ap-
proach on several standard VPs including a real-world system.

REFERENCES
[1] “IEEE Standard SystemC Language Reference Manual,” 2006, pp. 1–423.
[2] J. Aynsley, Ed., OSCI TLM-2.0 Language Reference Manual. Open SystemC Initiative

(OSCI)., 2009.
[3] A. Habibi and S. Tahar, “Design and verification of SystemC transaction-level models,”

VLSI, vol. 14, no. 1, pp. 57–68, 2006.
[4] D. Große, H. M. Le, and R. Drechsler, “Proving transaction and system-level properties of

untimed SystemC TLM designs,” in MEMOCODE, 2010, pp. 113–122.
[5] C. N. Chou, Y. S. Ho, C. Hsieh, and C. Y. Huang, “Symbolic model checking on SystemC

designs,” in DAC, 2012, pp. 327–333.
[6] P. Herber and S. Glesner, “A HW/SW co-verification framework for SystemC,” TECS,

vol. 12, pp. 61:1–61:23, 2013.
[7] V. Herdt, H. M. Le, D. Große, and R. Drechsler, “Verifying systemc using intermediate

verification language and stateful symbolic simulation,” TCAD, accepted 2018.
[8] M. Kallel, Y. Lahbib, R. Tourki, and A. Baganne, “Verification of SystemC transaction level

models using an aspect-oriented and generic approach,” in DTIS, 2010, pp. 1–6.
[9] D. Tabakov and M. Y. Vardi, “Automatic aspectization of SystemC,” in MISS, 2012, pp.

9–14.
[10] H. Sohofi and Z. Navabi, “Assertion-based verification for system-level designs,” in ISQED,

2014, pp. 582–588.
[11] L. Ferro and L. Pierre, “Isis: Runtime verification of TLM platforms,” in FDL, 2009, pp.

1–6.
[12] L. Pierre and M. Chabot, “Assertion-based verification for SoC models and identification of

key events,” in DSD, 2017, pp. 54–61.
[13] M. Goli, J. Stoppe, and R. Drechsler, “Automatic protocol compliance checking of SystemC

TLM-2.0 simulation behavior using timed automata,” in ICCD, 2017, pp. 377–384.
[14] W. Ecker, V. Esen, T. Steininger, M. Velten, and M. Hull, “Interactive presentation: Im-

plementation of a transaction level assertion framework in SystemC,” in DATE, 2007, pp.
894–899.

[15] T. C. Team, “Clang: a C language family frontend for LLVM,” https://clang.llvm.org/,
accessed: 2017-10-01.

[16] C. Lattner, “LLVM and Clang: Next generation compiler technology,” in BSD, 2008, pp.
1–2.

[17] M. Goli, J. Stoppe, and R. Drechsler, “Automated non-intrusive analysis of electronic system
level designs,” TCAD, accepted 2018.

[18] J. Aynsley, “TLM-2.0 base protocol checker,” https://www.doulos.com/knowhow/systemc/
tlm2, accessed: 2018-01-30.

[19] M. Goli, M. Hassan, D. Große, and R. Drechsler, “Automated analysis of virtual prototypes
at electronic system level,” in GLSVLSI, 2019, pp. 307–310.

[20] T. Schuster, R. Meyer, R. Buchty, L. Fossati, and M. Berekovic, “Socrocket - A virtual
platform for the european space agency’s soc development,” in ReCoSoC, 2014, pp. 1–7,
http://github.com/socrocket.

https://clang.llvm.org/
https://www.doulos.com/knowhow/systemc/tlm2
https://www.doulos.com/knowhow/systemc/tlm2

	Introduction
	Related Work
	Background and Motivation
	Background
	Motivating Example

	Methodology
	Overall Workflow
	Data Extraction
	Information Transformation
	Property Generation
	User constraints – (Functional Properties)
	User constraints – (Timing Properties)

	Error Trace
	TLM-2.0 Rules Validation
	User constraints Validation

	Experimental Results
	Case Studies
	Discussion

	Conclusion
	References-0.01cm

