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Abstract—The emergence of Virtual Prototypes (VPs) at the
Electronic System Level (ESL) has played a major role in mod-
ernizing the System-on-Chips (SoCs) design flow to raise design
productivity and reduce time-to-market constraint. Leveraging
VPs and extending their use-cases for early security validation
are shown as a promising direction. As the cost of fixing any
security flaws increases with the stage of development, VP-based
security validation can significantly avoid costly iterations.

In this paper, we propose VIP-VP, a novel VP-based dynamic
information flow analysis approach at the ESL.VIP-VP enables
designers to validate the information flow policies of a given VP-
based SoC against security threat models, such as information
leakage (confidentiality) and unauthorized access to data in a
memory (integrity). Experimental results including a real-world
VP-based SoC demonstrate the scalability and applicability of
the proposed approach.

I. INTRODUCTION

In order to reduce the design costs and meet the time-to-
market constraint, the modern System-on-Chip (SoC) design
flow has shifted from in-house development of Intellectual
Properties (IPs) to the use and reuse of existing commercial
IPs. By this, designers often leverage libraries, toolkits, and
components from third-party vendors. This decentralization
also raises the concern that legitimate commercial off-the-
shelf IPs may manipulate or assist in manipulating secret data
in such a way that their users do not expect. As a result,
modern SoCs are notoriously insecure where third-party IPs,
in particular, can be used as a vehicle for malice. To overcome
this problem and provide strong security for the entire SoC,
designers take advantage of the IP isolation technique based
on the notion of non-interference. This defines the information
flow policies in hardware which is based on the fact that for
a given SoC, certain parts of the system (considered as secure
zones) should never interfere with other parts (insecure zones).
Therefore, for security validation of a given SoC, a common
property that needs to be checked is non-interference.

Information Flow Tracking (IFT) [1] has been shown as
a powerful technique to help mitigate security vulnerabili-
ties that violate certain information flow policies and non-
interference properties (i.e., confidentiality and integrity). IFT
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works by monitoring how information propagates through a
system to see if secret information is leaking to an untrusted
subsystem or to ensure that the integrity of a critical subsystem
is not violated by an insecure one.

Since the cost of fixing any security flaws (e.g., information
flow policies) increases with the stage of development, the
validation process should be performed as early as possible.
For the early design entry, Virtual Prototype (VP) is being
increasingly adopted by the semiconductor industry. A VP is
an abstract and executable software model that is typically
implemented using SystemC [2], [3] and its Transaction Level
Modeling (TLM) [4] framework at the Electronic System
Level (ESL) [5]–[9]. In comparison to the Register Transfer
Level (RTL) designs, VPs provide designers with orders of
magnitude faster simulation speed. By this means, a system
can be implemented quickly and used as a reference model
for lower levels of abstraction. Hence, VP-based security
validation could be one promising direction to fix the security
vulnerabilities in the SoCs before they are refined and to avoid
costly design loops occur.

IFT methods have been developed to validate hardware
designs [10]–[13], or software models through the use of
source-level instrumentation [14], [15] and binary instrumen-
tation [16]. Most of the works for security validation of
digital hardware designs are only applicable at the abstraction
levels of RTL and below. At the ESL, there exist only a few
works [17]–[19] on security validation of VP-based SoCs.
While the results of their analysis are complementary to our
approach, they have some limitations in terms of scalability
issues [18], inability to identify leakage flow in the case of
dynamic variables [19], and low degree of automation [17].

In this paper, we focus on the security validation of VP-
based SoCs, in particular, helping system designers to detect
non-interference property violations and to pinpoint security
flaws caused by poor information flow policies in the early
stage of the SoC design process. We present VIP-VP, an Early
Validation of SoCs Information Flow Policies using SystemC-
based Virtual Prototypes. VIP-VP is based on the dynamic
IFT technique to identify security flaws of VP-based SoCs
and consists of three main phases: 1) information extraction,
2) property generation, and 3) security validation. In the
first phase, we build on the flexible Clang compiler [20] to
statically analyze the Abstract Syntax Tree (AST) of a given
SystemC-based VP and generate an instrumented version of
the VP for transactions extraction at run-time. In the second978-1-6654-1825-6/21/$31.00 ©2021 IEEE



phase, the extracted transactions which represent the entire
simulation behavior of the VP are translated into a set of
transaction flows. In the third phase, the information flow
policies which are given by designers are translated into
set of properties, then the translated run-time behavior of
the VP (transaction flows) is validated against the generated
properties.

The proposed approach is applied to two VP-based SoCs
including the real-world LEON3-based SoCRocket VP [21]
to show its scalability and applicability. VIP-VP is automated,
fast, and does not rely on any commercial tool for its analysis.

II. RELATED WORKS

Over the past few years, IFT techniques have been widely
used to create secure systems by detecting security defects or
enforcing security policies.

There exist several secure languages that provide design-
ers with modeling provably secure hardware. Caisson [22],
Sapper [23], SecVerilog [24], and VeriCoq-IFT [25] are hard-
ware security design languages that allow designers to label
and track information flow. For example, Caisson [22] and
Sapper [23] are both FSM-based languages that have been
developed by combining domain-specific abstractions common
to hardware design and type-based techniques used in secure
programming languages. Although the aforementioned meth-
ods enhance secure hardware design, their major drawbacks
are new language familiarity and needing to redesign the entire
hardware based on the new language syntax and semantics.

Several IFT-based methods have been developed for hard-
ware trustworthiness, targeting the RTL designs. Proof-
Carrying Hardware (PCH) [26], [27] verifies the equivalence
between the design specification and its implementation using
run-time Combinational Equivalence Checking (CEC). How-
ever, converting RTL code to a formal representation and
developing proofs for security properties, requires additional
knowledge of formal methods, theorem proving environments,
and proof-writing. This makes PCH-based methods very te-
dious and time-consuming which adopting them need a lot
of manual effort. RTLIFT [10] gives the flexibility to define
both implicit and explicit flows. It encodes security attributes
into the design for formal verification of hardware security
properties. However, the method is limited to single IP cores.
Moreover, all the aforementioned methods are only applicable
at RTL and do not support SystemC constructs.

The existing verification methods [28]–[30] at the ESL
are not able to detect security threat models as the design
functionality (and its related protocol rules) is not affected.
At the ESL, there are only a few works [17]–[19] on security
validation of VP-based SoCs. The method in [19] presents a
static VP-based IFT solution for security validation of given
SoC. However, the main drawback of the static approaches
is that if the address of transactions is defined at run-time,
e.g., generated either explicitly by initiator modules (based
on some dynamic computation) or implicitly by its running
software, they are not able to detect this security violation.

In [18], a dynamic VP-based IFT method is introduced
which overcomes the limitation of the static approaches. The
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Fig. 1: Example of explicit and implicit information flows.

method is based on the GNU Debugger (GDB) to extract the
run-time behavior of a given VP and validate it against a set
of security properties. As the method takes advantage of the
GDB to monitor the run-time behavior, the required time for its
analysis can be huge. It means that if the detection of security
flaws needs a long run-time trace of the VP’s behavior, the
method may fail.

Recently, [17] proposes a dynamic IFT of software binaries
targeting embedded systems. The method works by integrating
a dynamic IFT engine in combination with the security policy
into a given VP of the embedded system. However, this inte-
gration requires lots of manual effort that must be performed
by designers before using the approach (e.g., adapting the
memory interface and replacing the register type). Moreover,
as the method is built upon the assumption that the hardware IP
is secure, it cannot detect information leakage flow if the SoC
includes e.g., a synthesizable IP (integrated with the SoC using
a TLM-2.0 interface) containing malicious parts to exploit the
confidential data.

The method in [31] introduces a timing flow analysis
technique to validate SystemC HLS designs against timing-
based side channel attacks. However, it does not support TLM-
2.0 constructs.

III. SYSTEMC AND TLM FRAMEWORK

SystemC is a C++-based system level design language,
providing designers with an event-driven simulation kernel.
SystemC is considered as a de-facto standard for modeling
hardware/software co-design and creating VPs using its TLM
framework at the ESL. TLM-2.0 (as the current standard) in-
troduces the transaction concept allowing designers to describe
a model in terms of abstract communications (supporting both
Loosely-timed (LT), and Approximately-timed (AT) models)
using the base protocol, standard interfaces (e.g., b_transport
and nb_transport), initiator and target sockets, the generic pay-
load, and the utilities. A transaction is a data structure (i.e., a
C++ object), consisting of several attributes such as data,
address, and command (e.g., read or write). Transactions are
transmitted through TLM modules using function calls. TLM
modules may be implemented as initiators, interconnects, or



targets. An initiator module initiates new transactions through
the initiator socket, an interconnect acts as a transaction router
and forwards the incoming transactions without modifying
them. The target module is the endpoint for the transactions
and responds to the incoming transactions.

IV. THREAT MODELS AND INFORMATION FLOW

The threat models of leaking information with respect to the
notion of non-interference can be divided into two common
categories: confidentiality and integrity. The former refers to
information flow wherein data of secure IP (e.g., data stored
in a secure memory) is retrieved by an unauthorized IP. The
latter refers to information flow in which data of secure IP is
modified by an unauthorized IP.

With respect to the above threat models, secure assets can
be inferred through two general classes of information flow in
a given VP-based SoC: explicit and implicit. Explicit informa-
tion flow results from two modules directly communicating.
For example, an explicit flow can occur between an initiator
module and a target module that are directly exchanging
data through a shared interconnect. Fig.1 shows such a sce-
nario where module Master_IP3 access memory Slave_mem3
through the shared interconnect Shared-Bus. Implicit informa-
tion flows are much more subtle and generally leak informa-
tion through behavior. For example, an implicit flow can occur
between two modules where one belongs to the trusted zone
and the other to the untrusted zone through shared memory.
In Fig. 1, an implicit information flow causes sensitive data to
be read from the secure memory Slave_mem1 (step 1) by the
trustworthy initiator module Master_IP1 and then written to
the shared memory Slave_mem2 (step 2) which potentially is
accessible by initiator module Master_IP3 which belongs to
untrusted zone (step 3).

In both cases, the unwanted leakage flow can occur based
on one of the following security scenarios (or a combination
of them):
• The SoC includes a synthesizable IP core purchased from

an untrusted third-party vendor and integrated with the
shared interconnect using a TLM-2.0 interface. The IP
may contain malicious part to exploit the confidential data
e.g., the explicit leakage flow in Fig. 1.

• Malicious software running on the (trustworthy) hard-
ware IP may exploit hardware backdoors to cause mal-
functions or leak secret data. The first two steps of
implicit information flow in Fig. 1 show such a threat
model where an adversary software running on the secure
module Master_IP1 controls the IP to read secret data
from Slave_mem1 and write it to the shared memory
Slave_mem2. In this case, the stored secret data in the
shared memory can be accessible by unauthorized IPs.

• An incorrect initialization (either by an adversary in-
volved in the SoC design process or unintentionally) of
the SoC firmware (e.g., memory configuration file) can
cause an unauthorized IP to access the sensitive data
stored in the secure memory.

• The existing SoC is extended or modified but its in-
formation flow policies are not updated. Especially in
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Fig. 2: VIP-VP methodology overview.

case that the design team decides to improve the existing
SoC by adding new IPs (e.g., an accelerator, a processor
or a memory), the initial security policies may not be
sufficient to protect the sensitive data against leakage.
For example, designers add Slave_mem2 as shared mem-
ory to increase the overall performance of the system.
However, after this modification, they did not update the
information flow policies of the SoC.

The lack of well-implemented information flow (or access
control) policies makes the system susceptible to vulnera-
bility. For a given SoC, information flow policies specify
the authorized information flows in the system and how the
different combination of labeled data is computed when the
data propagates through the system. A strong security policy
in the SoC could prevent the access of unauthorized IPs to
sensitive data stored in secure memories and block leakage
flows. Therefore, for a given SoC, the information flow policy
validation is of utmost importance and must be performed to
ensure that the secure assets cannot be inferred either through
implicit or explicit information flows.

V. INFORMATION FLOW POLICY VALIDATION
METHODOLOGY

The overall workflow of VIP-VP is illustrated in Fig. 2,
consisting of three main phases which are 1) run-time behavior
extraction and 2) transaction transformation, and 3) security
validation.

In the first phase, we take advantage of the Clang compiler
to analyze the AST (generated by Clang) of VP to generate
an instrumented version of the VP source code for tracing
transactions at run-time (inspired by [32]). Next, a post-
execution analysis is performed on the extracted transactions to
transform them into a set of transaction flows which represents
the entire simulation behavior of the VP in a big-picture view.



Each transaction flow identifies the flow of information from
the source (where a transaction is created by an initiator IP)
to the sink (where the transaction is received by a target
IP). In the third phase, first, the information flow policies
of design are translated into a set of security properties w.r.t
the explicit and implicit information flow models. Second, the
generated transaction flows are validated against the generated
security properties to ensure that there is no flow between an
unauthorized source and a secure sink. The violated properties
are reported back to designers, allowing them to improve the
information flow policies of the SoC.

A. Run-time Behavior Extraction

In a given VP-based SoC, transporting the (sensitive) data is
performed through interconnects between different IP modules
by means of TLM transactions. Therefore, analyzing the
flow of information in the VP and monitoring its simulation
behavior can be done by extracting all transactions. In order to
trace a given VP’s transactions, we take advantage of the Clang
compiler to generate an instrumented version of the VP source
code. To do this, the Static Analyzer module (Fig. 2–phase 1)
analyzes the AST of VP (which is generated by Clang from
its source code) in two steps. First, the information related to
the VP’s structure is extracted by visiting the relevant node in
the AST. The static information that needs to be extracted is
as follows:
• The name of TLM IPs and their member functions and

processes to which a transaction object is referenced.
• Type of each TLM IP which is identified by analyzing

its socket(s) type. Due to the TLM-2.0 rules an initiator
module only has initiator socket(s), a target module only
has target socket(s) and an interconnect module has both
types of socket.

In the second step, we take advantage of the extracted infor-
mation to automatically generate an instrumented version of
the VP source code, including the Trans_Recorder statements.
The Trans_Recorder statement consists of the instructions
to extract run time information that is needed to trace flow
of transactions. This information is the reference address of
transactions(consider as transactions ID), the run-time value
of their attributes (address and command), and related pa-
rameters such as phase (e.g., BEGIN_REQ) and functions’
return status (e.g., TLM_COMPLETED). The simulation time
is also extracted to determine the time at which the transaction
is processed and the orders of different IPs communication.
The order of communication is required to detect the implicit
flow in the security validation phase. To trace the flow of
transactions when they are transmitted through different IPs,
the Trans_Recorder statements must be inserted into the
locations where 1) the transaction is defined (e.g., as function
arguments or local variables within the function’s body) and
2) the transaction object is used as an input argument for
transport interface (e.g. b_transport) calls.

For example, assume we want to trace the flow of trans-
actions generated by the Master_IP1 module of the SoC
in Fig. 1. A part of the Master_IP1 module is shown in
Fig. 3 where the transaction object is used as an input

1 struct Master_IP1: sc_module {
2 tlm_utils::simple_initiator_socket<Master_IP1> socket;
3 void thread1(){
4 /*...*/
5 socket->b_transport (*trans, delay);
6 Fout << "Master_IP1::thread1::trans_ID = " << trans <<

"data =" << trans->get_data_ptr << "cmd =" <<
trans->get_command << "addr =" << trans->
get_address << "sim_time ="<<sc_time_stamp() << "
IP_instance_name" << this->name() << endl;

7 /*...*/ }

Fig. 3: Part of the instrumented code of the Master_IP1.

argument for the b_transport interface call (Line 5). Hence,
the Trans_Recorder statement Fout (Line 6) is automatically
generated and inserted into the new source code by the Static
Analyzer module (Fig. 2–phase 1).

B. Transaction Transformation

After extracting the simulation behavior of a given VP-
based SoC, the next step is to transform the extracted trans-
actions into a well-structured format. Since the information
flow policies of the VP are defined based on abstract com-
munication between the initiator and the target modules, the
extracted transactions should be transformed in such a way that
describes the flow of data among different IPs w.r.t the abstract
communication. Hence, a complete simulation behavior of
the VP can be defined as a set of transaction flows STF

where each TF shows a connection (i.e., the flow of data)
between the source (initiator module) and sink (target module)
as follows:

STF = {TFi | TFi = {source → sink ::

(TID , addr , cmd ,ST )}, 1 ≤ i ≤ nTF} (1)

where TID denotes the transaction ID which is the transac-
tion reference address and used to distinguish the generated
transactions of different initiator modules. The addr and cmd
depict the transaction address and command attributes. They
are used to identify the type (read or write) and location
of memory in which the source IP accesses the sink IP.
The ST parameter represents the simulation time at which
the transaction is transmitted. The nTF parameter shows the
number of generated transaction flows.

As illustrated in Fig. 2–phase 2, the Trans Analyzer module
receives the Run-time Log file as an input and automatically
generates a set of transaction flows based on the definition
in (1). Each member of the STF stored in Trans Flows
specifies an explicit flow of information between source and
sink. The implicit information flow is not directly visible in
STF as it is created based on a combination of explicit flows
where an unauthorized initiator IP accesses the data of a secure
target IP which is implicitly inaccessible.

For example, Fig. 4 shows a part of transaction flows of
the VP-based SoC in Fig. 1 where TF1, TF2, ... and TF6
specify six explicit transaction flows. The combination of the
transaction flows TF2, TF4, and TF6 shows an implicit flow
of data between Master_IP3 and Slave_mem1. In TF2, the
Master_IP1 generates a transaction to read data from secure



TF1: {Master_IP3 −> Slave_mem3 :: (0x442C011_1, 0x04, read, 10 ns)}
TF2: {Master_IP1 −> Slave_mem1 :: (0x475B02C_1, 0x92, read, 45 ns)}
TF3: {Master_IP2 −> Slave_mem3 :: (0x512DA09_1, 0x46, write, 85 ns)}
TF4: {Master_IP1 −> Slave_mem2 :: (0x475B02C_2, 0x0B, write, 140 ns)}
TF5: {Master_IP2 −> Slave_mem1 :: (0x512DA09_2, 0x04, write, 160 ns)}
TF6: {Master_IP3 −> Slave_mem2 :: (0x442C011_2, 0x0B, read, 210 ns)}

Fig. 4: Part of the transaction flows of SoC in Fig. 1.

memory Slave_mem1. In FT4, Master_IP1 writes the read
confidential data into shared memory Slave_mem2, and finally
in TF6 the confidential data is read by Master_IP3. Therefore,
the Master_IP3 could access the confidential data by taking
advantage of Master_IP1.

Therefore, the goal of the next phase is to generate security
properties from information flow policies of a given SoC in
such a way that detects all implicit and explicit leakage flows.

C. Security Validation
The first step of performing security validation is to translate

the information flow policies of the SoC into a set of security
properties. The information flow policies are a set of rules
which ensure that no secret data is leaked through untrusted
channels and typically written in a textbook specification
(defined as reference model). Thus, designers use them to
implement the access control policies of the interconnect
module or other mechanisms to prevent information leakage.
To generate security properties that validate the system against
both the explicit and implicit leakage flows, we take the
following information from designers as inputs.
• List of secure IPs including both the initiator (source)

and target (sink) modules:

SIPsource = {IP1 , IP2 , ..., IPn}
SIPsink = {IP1 , IP2 , ..., IPm} (2)

• List of forbidden information flows between sourcei

and sinkj derived by the information flow policies of the
SoC:

Forbidflow = {sourcei → sinkj (addr_range) :: no flow } (3)

Each member of forbidflow in (3) specifies that there must
be no flow of information between sourcei and sinkj . The
addr_rang parameter is optional and use when a certain
part (address range) of the sinkj is secured. While this
specification, itself, can be considered as an explicit security
property, it cannot be used directly to check the implicit flow
of information. To cover explicit flows, we need to generate
properties that check no unauthorized IPs take advantage of
authorized IPs to access confidential data in secure memories
(the threat model illustrated in Fig. 1). Hence, we proposed
Algorithm 1 to automatically generate the implicit security
properties based on SIPsource , SIPsink , and forbidflow . For
each forbidden flow f in forbidflow , the algorithm generates
three transaction flows TFt , TFt+1 , and TFt+2 which are
required to shape an implicit channel (Lines 1-6). The index
parameter t depicts the order in which the explicit transaction
flows must occur. The TFt property specifies a transaction
flow where a secure IP reads secret data from the secure

memory (sink) specified in f (Line 3). The TFt+1 shows a
transaction flow where the secure IP writes the secret data in
an unauthorized memory (Line 5). The TFt+2 describes the
transaction flow where the unauthorized IP (source) specified
in f read the secret data from the unauthorized memory
(Line 6).

For example, consider the VP-based SoC in Fig. 1 where
designers want to check there is no flow of information
between Master_IP3 and secure memory Slave_mem1. The
inputs of the algorithm are as follows:

SIPsource = {Master_IP1 ,Master_IP2}
SIPsink = {Slave_mem1 ,Slave_mem3}
Forbidflow = {Master_IP3 → Slave_mem1 :: no flow } (4)

Based on the Algorithm 1, the following implicit security
properties are generated.

ISP = {p1 = {Master_IP1 → Slave_mem1 : read},
{Master_IP1 → Slave_mem2 : write},
{Master_IP3 → Slave_mem2 : read},

p2 = {Master_IP2 → Slave_mem1 : read},
{Master_IP2 → Slave_mem2 : write},
{Master_IP3 → Slave_mem2 : read}} (5)

The p1 and p2 properties in (5) ensure that the Mas-
ter_IP3 does not take advantage of authorized Master_IP1
or Master_IP2 to access confidential data in secure memory
Slave_mem1 via shared memory Slave_mem2.

In the next step, the transaction flows are validated against
the generated security properties by the Checker module
(Fig. 2–phase 3). To do this, each forbidden flow in the
Forbidflow is considered as an explicit property and the STF of
the SoC is traversed to find information flow policies violation
(i.e, the existence of an explicit information leakage flow).
Regarding the implicit information leakage flows, for each
property p in ISP the STF is traversed to find the sequence
of transaction flows (TFt ,TFt+1 ,TFt+2 ) specified in the
property p. If these three sequences are found, the property is
violated and the corresponding transaction flows are reported
back to designers. In addition to this scenario, there might
be a case that only the first two sequences of the property are
violated. It means that an authorized initiator IP reads sensitive
data from a secure memory and then writes the data to an
unauthorized memory. We consider this case as a suspect case
as it may lead to information leakage. Thus, the corresponding
transaction flows are also reported back to designers.

Coming back to the VP-based SoC in Fig. 1, analyzing
the transaction flows (Fig. 4) by Checker (Fig. 2–phase 3)
module shows that the first property p1 in the ISP is violated.
The transaction flows which reported back to designers are
TF2 ,TF4 , and TF6 .

VI. EXPERIMENTAL RESULTS

The proposed approach was evaluated by two VP-based
SoCs. The experiments cover both the generality and scal-
ability of the proposed approach. The former refers to the
information flow policies validation of designs implementing
various aspects of the TLM-2.0 standard (core-interfaces, the



Algorithm 1 Timing Flow Analyzer
Input: SIPsource , SIPsink , forbidflow

Output: Implicit security properties ISP

1: for each flow f ∈ forbidflow do
2: for each Sip ∈ SIPsource do
3: TFt ← (Sip → sink :: read)
4: for each ISmem /∈ SIPsink do
5: TFt+1 ← (Sip → ISmem :: write)
6: TFt+2 ← (source → ISmem :: read)
7: Pi ← {TFt ,TFt+1 ,TFt+2}
8: ISP ← Pi

9: i ← i + 1

base protocol, and coding styles) [33]. The latter refers to the
information flow policies validation of a real-word VP-based
SoC [21].

The Static Analyzer module is implemented using the
LibTooling library of the Clang compiler [20]. To access
relevant nodes in the AST (generated by Clang) of a given
VP, we use the primary node visitor RecursiveASTVisitor of
Clang. The Trans Analyzer, Checker, and the algorithm to
generate security properties of the second and third phases
of VIP-VP are implemented in C++. The analysis has been
performed on a PC equipped with 24 GB RAM and an Intel
core i7-8565U CPU running at 1.80 GHz.

A. Case Study 1: SoCRocket VP
In the first experiment, we applied our information flow

policies validation approach on the real-word LEON3-based
VP SoCRocket [21] and consider the first security scenario
introduced in Section IV where a third-party IP contains a
malicious part to exploit the confidential data. The VP consists
of more than 50,000 lines of code and several IPs working
together in master or slave mode which are connected to the
on-chip bus AMBA-2.0. The communication uses a 32-bit
address mode where the 12 most significant bits are used to
specify the memory address.

To model the above security scenario, we modified the
SoC by integrating three TLM-2.0 IPs with its AMBA-2.0
AHB (i.e., Advanced High-performance Bus). These IPs are
a synthesizable SystemC AES_core [34] used as a hardware
accelerator to implement AES-128 encryption algorithm, and a
secure memory Slave_mem1 initialized by cryptography keys
and plain texts, respectively. The AES_core works in cipher
block chaining mode, i.e., an initialization vector, and a plaint
text are given as inputs to the IP, and key is read from
Slave_mem1, and the IP generates a ciphertext. The IP uses
the generated ciphertext as the new initialization vector for the
next iteration.

The design team purchases the AES_core (third-party IP)
and integrates it with the AMBA-2.0 AHB using a TLM-
2.0 interface. Note that the synthesizable IP in this case can
be used to achive two goals: 1) to develop and test the
functionality of VP when all IPs are available, and 2) to reuse
it at the later stage of the SoC design flow (e.g., RTL). At the
beginning of execution, all initiator modules read the memory
configuration file to extract the range of memory addresses
(defined in SoCRocket as mem_addr) that they are allowed to
access. In the memory configuration file, the Slave_mem1 is
only accessible by AES_core with mem_addr = 0xB00. The

AHBMem (default memory of the VP) connected to AMBA-2.0
AHB bus is shared between IPs such as LEON3 processor and
ahbin input device with mem_addr = 0xA00.

The security scenario is that the AES_core contains a
malicious code that executes after every 5000 cryptography
text generations. It writes into AHBMem the secret key that
has already read from secure memory Slave_mem1. As all
master IPs read the memory configuration file, the AES_core
can extract the mem_addr of other memories for which it is not
defined. Due to the nature of secure memory Slave_mem1 (as
it stores cryptographic keys), the information flow policies are
that LEON3 processor and ahbin are not allowed to read (con-
fidentiality) or write (integrity) these keys from Slave_mem1.
Thus, a part of the information flow policies of the VP are
defined as follows:

SIPsource = {AES_core}
SIPsink = {Slave_mem1}
Forbidflow = {{LEON3 → Slave_mem1 :: no flow},

{ahbin → Slave_mem1 :: no flow}} (6)

Based on the aforementioned description, VIP-VP generates
two explicit and two implicit security properties. The results
of information flow policies validation report no explicit flow
but an implicit flow of information where LEON3 potentially
can access the secret keys stored in the secure memory
Slave_mem1 through the AES_core and AHBMem. The first
transaction flows related to the violated property are as fol-
lows:

FT712 : {AES_core → Slave_mem1 ::

(0x20AC109 _1 , 0xB0000010 , read , 1050ns)}
FT5401 : {AES_core → AHBMem ::

(0x20AC109 _5004 , 0xA0000A02 ,write, 11750ns)}
FT6721 : {LEON3 → AHBMem ::

(0x1DBCD00 _4026 , 0xB0000F90 , read , 13950ns)} (7)

The main reason for this security vulnerability is the weak
information flow policies of AMBA-2.0 AHB. The only pol-
icy implemented in AMBA-2.0 AHB is that for receiving
transactions generated by master IPs, it checks whether the
transactions’ address is in the range of memory addresses.
We fixed this security flaw in AMBA-2.0 AHB by adding
access control policies that restrict the access of unauthorized
master IPs (i.e., LEON3 and ahbin) to the secure memory
(Slave_mem1) as well as blocking the flow of transactions
from authorized master IPs (i.e. AES_core) to unauthorized
memories (i.e. AHBMem). All properties were satisfied on
the next analysis run. For this experiment, the number of
extracted transactions is 60,000 and the whole analysis took
about 48.3 seconds to report the results. We also applied the
security validation method in [18] to the SoCRocket VP with
the same security scenario, however, due to a large number of
transaction flows, the method failed to validate the VP in four
hours (considered as time-out).

To demonstrate the scalability of our approach, we re-
peated this experience for different benchmarks running on the
LEON3 processor of the VP. We also compared (Fig. 5) the
required analysis time of the VIP-VP to the pure compilation
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Fig. 5: Execution time of VIP-VP compared to [18] and CET
of SoCRocket VP for variuse benchmarks running on LEON3
processor.

and execution time (CET) of the VP (as a baseline) and the
method in [18]. As illustrated in Fig. 5, for each benchmark,
the number of extracted transaction flows is presented in the
parentheses. As can be seen in this figure, unlike [18], the
execution time of the VIP-VP grows smoothly and similar
to the CET when the software complexity increases. Since
the time-out was set to four hours, an estimation of the
execution time of [18] is shown in this figure. The estimation
is obtained based on the execution time of [18] to analyze
the SoCRocket VP for the running software on the LEON3
processor, generating up to 1000 transactions.

This also shows that VIP-VP can provide designers with
a long run-time trace of a given VP’s simulation behavior
which is necessary to detect the threat of this security scenario
as the malicious code in the IP may be activated under rare
conditions.

B. Case Study 2: AES128-SoC VP
In the second experiment, a VP-based SoC is implemented

by modification of the AT-example in [33]. The VP includes
four initiator IPs specified by type A to D (initA to initD),
an AT interconnect (AT-bus), five targets specified by type
A to E (memA to memE) and a memory configuration file
(specifying the memory address that each initiator is allowed
to access). The difference between type A to D initiators and
type A to E targets is based on various cases (9 of the 13
permitted phase transitions) of the TLM-2.0 base protocol [4].
The AT-bus is a generic interconnect that can support up to
four initiator and eight target modules. The communication
uses a 32-bit address mode as follows: 1) bits 0 to 11 – local
address inside a memory, 2) bits 12 to 15 – memory address,
3) bits 16 to 23 – initiator ID, and 4) bits 24 to 31 – unused.
The initA module executes the standard AES-128 encryption
algorithm using the initialized keys and plain texts stored in
secure memories memA and memB, respectively.

The security policies of the AT-bus are as follows:

• memA and memB are secure memories and only accessi-
ble by initA,

• memC and memD are regular memories and only acces-
sible by initB, initC and initD.

Initially, memory memE is not available and memory con-
figuration is defined based on the aforementioned security
policies. At the beginning of execution, initiator modules read
the memory configuration file to extract the range of memory
addresses that they are allowed to access.

Now, consider the scenario that the design team decides
to integrate memE with the AT-bus to increase the overall
performance of the system. To use the new memory by
other initiators, the memory configuration file needs to be
modified. The expected update from the design team for
memory configuration is as follows: in memE, memory blocks
• (0x000 to 0xBA4) are shared among initB, initC and

initD,
• (0xBA5 to 0xDE6) are only accessible by initA, and
• (0xDE7 to 0xFFF) are shared between initC and initD.
To evaluate the quality of VIP-VP, we considered a combi-

nation of the third and fourth security scenarios in Section IV
where the memory configuration file is incorrectly updated
(either by a malicious insider on the design team or uninten-
tionally) for the modified SoC as follows: in memE, memory
blocks
• (0x000 to 0xBC4) are shared among initB, initC and

initD,
• (0xBA5 to 0xDE6) are only accessible by initA, and
• (0xDE7 to 0xFFF) are shared between initC and initD.
The above incorrect update of the memory configuration

file potentially enables the unauthorized IPs initB, initC, and
initD to access a range of memory memE to which they are
not allowed. Hence, a part of the information flow policies of
the SoC is defined as follows:

SIPsource = {initA}
SIPsink = {memA,memB ,memE(0xBA5 − 0xDE6 )}
Forbidflow = {{initB → memA :: no flow},

{initB → memB :: no flow},
{initB → memE(0xBA5 − 0xDE6 ) :: no flow},

...

{initD → memE(0xBA5 − 0xDE6 ) :: no flow}} (8)

Our information flow policies approach generates 27 secu-
rity properties (nine explicit and 18 implicit) w.r.t (8). VIP-
VP detects three explicit and two implicit security property vi-
olations. For this experiment, the number of extracted transac-
tions is 33,000 and the whole analysis took about 21.7 seconds
to report the results. As an instance, the first corresponding
transaction flows of the violated explicit security property is
as follows:

FT469 : {initB → memE ::

(0x69C450 _0 , 0x00025BA7 , read , 660ns)}
FT1093 : {initC → memE ::

(0x6A9B20 _0 , 0x00035BB1 , read , 1150ns)}
FT2721 : {initD → memE ::

(0x6AC620 _0 , 0x00045BB5 ,write, 3470ns)} (9)



The main reason for this security flaw is that after integrat-
ing the new memory (memE) with AT-bus, the interconnect
information flow policies are not updated. A possible solution
is that the AT-bus blocks transactions of unauthorized initiator
IPs from accessing the secure memories. This can be done by
checking the address of the received transactions that whether
they satisfy the expected range of addresses declared in the
memory configuration file. A more general solution is to add
a memory management unit to the AT-bus.

In this experiment, we also applied the security validation
method in [18] to the AES128-SoC VP with the same security
scenario. However, due to a large number of transaction flows,
the method failed to validate the VP in four hours (considered
as time-out).

VII. CONCLUSION

In this paper, we proposed VIP-VP, an automated and
fast VP-based information flow policies validation approach.
At the heart of the approach is a dynamic IFT which is
performed by automatically extracting the run-time simulation
behavior (TLM transactions) of a given VP-based SoC. The
extracted transactions and the design information flow policies
are translated into a set of transaction flows and properties,
respectively. The generated transaction flows are validated
against the generated properties and potentially vulnerable
flows are reported back to designers for further inspection.
We have demonstrated the applicability and scalability of our
approach on two VP-based SoCs including the real-world
SoCRocket VP.
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