
Exploring the Potential of Decision Diagrams for Efficient
In-Memory Design Verification

Khushboo Qayyum
Cyber-Physical Systems, DFKI

Bremen, Germany
khushboo.qayyum@dfki.de

Abhoy Kole
Cyber-Physical Systems, DFKI

Bremen, Germany
abhoy.kole@dfki.de

Kamalika Datta
Institute of Computer Science,

University of Bremen
Cyber-Physical Systems, DFKI

Bremen, Germany
kdatta@uni-bremen.de

Muhammad Hassan
Institute of Computer Science,

University of Bremen
Cyber-Physical Systems, DFKI

Bremen, Germany
hassan@uni-bremen.de

Rolf Drechsler
Institute of Computer Science,

University of Bremen
Cyber-Physical Systems, DFKI

Bremen, Germany
drechsler@uni-bremen.de

ABSTRACT
In this paper we present the first Decision Diagrams (DDs) based
methodology for verifying the Resistive Random Access Memory
(ReRAM) synthesis process. In particular, we propose a methodol-
ogy which leverages Binary Decision Diagrams (BDDs), Multiplica-
tive BinaryMoment Diagrams (*BMDs), andKronecker Multiplicative
BMDs (K*BMDs) for verification. We introduce a synthesis tool for
ReRAM-compatible micro-operations and a DD generation process
for equivalence checking. Experimental results on a large set of
arithmetic adders demonstrate that our DD-based approach signif-
icantly outperforms SAT solvers in verification speed, offering a
more efficient and scalable solution.

KEYWORDS
In-memory Computing, Verification, Word Level Decision Dia-
grams (WLDD), Binary Decision Diagrams (BDDs)
ACM Reference Format:
Khushboo Qayyum, Abhoy Kole, Kamalika Datta, Muhammad Hassan,
and Rolf Drechsler. 2024. Exploring the Potential of Decision Diagrams
for Efficient In-Memory Design Verification. In Great Lakes Symposium on
VLSI 2024 (GLSVLSI ’24), June 12–14, 2024, Clearwater, FL, USA. ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3649476.3658766

1 INTRODUCTION
The explosive growth of deep learning and massive data genera-
tion is pushing the limits of traditional computational resources.
The sheer volume of data originating from sources like Internet-of-
Things (IoT) devices and data warehouses demands efficient storage
and rapid processing. As conventional computing struggles with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0605-9/24/06. . . $15.00
https://doi.org/10.1145/3649476.3658766

the “Memory Wall” and “Power Wall” challenges, alternative tech-
nologies are urgently needed.

Resistive Random Access Memory (ReRAM), or memristors, have
emerged as a promising solution for In-Memory Computing [7].
Their ability to perform computations offers advantages in modern
data processing. Researchers have employed logic design styles
(IMPLY, MAGIC, MAJ) to create ReRAM crossbar implementations
and corresponding micro-operations [6, 13, 16, 17, 20, 22] termed
synthesis process. Traditionally, verifying the correctness of this
synthesis process relied on manual inspection.

Recently, Boolean Satisfiability (SAT) techniques have been used
for automated equivalence checking of ReRAM logic designs [3,
8, 12, 19]. While SAT solvers are versatile, specialized techniques
like Decision Diagrams (DDs), including Binary DDs (BDDs) and
Word Level DDs (WLDDs) like Multiplicative Binary Moment Dia-
grams (*BMDs) and Kronecker Multiplicative BMD (K*BMDs), have
proven exceptionally efficient for verifying large arithmetic adder
circuits [2, 4, 5, 10, 14, 23] – a vital aspect of data processing. This
established success of DDs in arithmetic circuit verification sug-
gests their potential in the ReRAM context, a possibility yet to be
fully explored.

Contribution: In this paper, we propose, for the first time a
DD-based verification methodology to the best of our knowledge, to
verify the In-Memory designs. In particular, we propose a method-
ology which leverages BDDs, *BMDs, and K*BMDs for verification.
Our contribution is twofold: First, a synthesis tool is developed
which transforms a Majority-Inverter Graph (MIG) representation
of the circuit design into a micro-operations file, utilizing an in-
termediate form known as the Resistive Random Access Memory
Matrix (ReMAT) [1]. This necessitates to carefully select the matrix
which represents the ReRAM crossbar and consider the sequential
behavior of the ReRAM crossbars. Second, we detail the generation
of DDs from both the original MIG representation and the syn-
thesized micro-operation. This step is crucial for the subsequent
verification phase. By establishing an equivalence between the DD
derived from the original MIG representation and the one obtained
from the micro-operations, we ensure the fidelity of the synthesis
process and the functional correctness of the design. Our extensive

https://doi.org/10.1145/3649476.3658766
https://doi.org/10.1145/3649476.3658766

GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA Khushboo Qayyum, Abhoy Kole, Kamalika Datta, Muhammad Hassan, and Rolf Drechsler

experimental evaluation on various arithmetic adders (upto 128
bits) of different underlying architectures generated using Ariths-
Gen [15] show that DDs are 88× faster than SAT solvers in verifying
a diverse class of adder circuits.

2 PROPOSED VERIFICATION METHODOLOGY
In this section, we discuss about the proposed verification method-
ology using various DD based methods. The proposed DD based
verification methodology is shown in Figure. 1. The input to our
verification tool is the MIG representation of the function. The
initial MIG representation is given in the form of a Verilog file. The
task here is to verify the micro-operation file generated using a
ReRAM based synthesis tool against the initial file description pro-
vided using Verilog file. First, the tool takes Verilog file as input and
generates the micro-operations file required to be executed in the
crossbar. To realize this conversion, an intermediate representation
known as ReMAT is used to generate the micro-operation file. The
next step is to generate the clauses from the Verilog file and the
micro-operation file. As the micro-operation file cannot be directly
used to generate the clauses, the ReMAT is also used to generate
the clauses as shown in Figure. 1. From these two set of clauses we
generate the DDs, one for the original Verilog file and other for the
micro-operation file. Finally the methodology checks whether the
two DDs are equivalent or not. The next sub-section discusses the
synthesis process to generate the micro-operation file from MIG
representation.

2.1 Synthesis Process
The synthesis process comprises of two phases i.e. mirco-operation
file generation and clause generation.

2.1.1 Micro-operation File Generation. In this phase, the MIG
representation of a circuit is converted to a ReRAM crossbar com-
patible micro-operation representation. To realize the crossbar func-
tionality, the intermediate ReMAT representation is utilized. A Re-
MAT representation is a 2-D matrix with n rows and m columns,
where n depends on the number of operations in the MIG represen-
tation and m depends on the number of input variables. Initially, n
is 2 where first row contains the variables and second row contains
the first operation, new rows are added dynamically to process
further operations. Please note, this dynamic expansion shows the
scalability of ReMAT structure to handle the full complexity of the
MIG. Each operation of MIG file is analyzed for the corresponding
micro-operation representation and accordingly a number of slots
are reserved in the matrix. A majority operation is realized on a
crossbar only when a variable on a row is complemented. Therefore,
if an operand is available, that is complemented in the MIG repre-
sentation, it is used directly; otherwise any operand is selected to be
complemented. The operations along with their complement calcu-
lations andmajority operations, are both saved in a micro-operation
file and in the ReMAT structure. This dual construction ensures
the correct implementation and tracking of the operations. The
structure allows for the reuse of values from previous operations to
optimize the process. This reuse avoids unnecessary re-initialization
and leverages already computed values. This allows us to ensure
that the sequential behaviour of the crossbars is preserved. Every
operation in the MIG file is mapped on the ReMAT structure and

subsequently its micro-operation counter-part is generated. Once
all the MIG nodes are traversed in a sequential fashion, the re-
quired micro-operation file is generated that represents the original
functionality of the MIG file.

2.1.2 Clause Generation. In order to verify that the generation
of micro-operation representation is error-free, we have to convert
this representation into a format that can be processed by the subse-
quent DD-based tools. Therefore, using the micro-operation file and
MIG file, we generate the clauses that can be used later to perform
verification of the circuit. The generation of clauses from the MIG
representation is relatively straightforward but clause generation
from micro-operation file is complex. In the micro-operation file,
multiple steps represent a single operation therefore we need to
have a look-ahead mechanism to correctly generate the clauses. For
the clause generation from the MIG, each operation is read and its
clause is generated and saved in a file. In the case of micro-operation
file, the process works in the following way. Based on the header
information present in the micro-operation file, a ReMAT structure
is initialized and for every step, the ReMAT structure is updated and
the clauses are generated. When the ReMAT structure is used for
clause generation, the size of the ReMAT remains the same as that
in the header of the micro-operation file header. Using the ReMAT
structure for clause generation prevents unnecessary clause to be
added up, as compared to the previous works [8]. Our approach en-
sures that the number of clauses generated using micro-operation
file are comparable to that of the number of clauses generated by
MIG files. This is due to the fact that for converting the MIG file into
micro-operation file and to convert the micro-operation file into
clauses we use the same ReMAT structure. This structure enables
to retain the previous information for clause generation.

2.2 DD Generation
While the SAT-solvers can use the generated clauses without further
processing, our DD-based tool requires further processing in-order
to proceed. Therefore, once the ReMAT and MIG clauses are gener-
ated, they need to be processed to extract circuit level information
out of the clauses in order to generate the respective DDs. With
the help of a parsing script, the circuit information is extracted and
saved in a Bench format. This Bench format file is used by the DD
generation tool to form a netlist of the circuit contained within
the bench file. Once the netlist is ready, the DD framework starts
with initializing the Principal Inputs (PI). With the PIs initialized,
the construction of the DD commences one output at a time. That
is, the netlist for each Principal Output (PO) is traversed one at
a time, and the DD is created starting with the PIs. The process
terminates when all the intermediate nodes between the PIs and
POs have been traversed and the final DDs for all the POs have
been completed and assigned to their respective POs. In case of the
WLDDs (i.e., *BMDS and K*BMDs) an extra step of grouping of the
output is performed, as opposed to the BDD based construction.
Since WLDDs represent function output at word level, therefore
grouping of outputs plays an important role in WLDD construc-
tion. Hence after generation of all WLDDs for individual POs, the
POs are further grouped based on which bit they represent in the
word-level functionality of the circuit. Once the construction is
concluded and where necessary output are grouped, the DDs of the

Exploring the Potential of Decision Diagrams for Efficient In-Memory Design Verification GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA

Micro-operation
Representation

Synthesis Tool

ReMAT

Clause Generation

ReMAT

Golden
MIG Representation

(.v)

Clause Generation

DD Generation

DD Generation

BDD

*BMDK*BMD

BDD

*BMDK*BMD

Equivalence
Checking

Equivalent /
Not Equivalent

Figure 1: DD based verification methodology

circuit generated from the micro-operation representation and the
MIG can be checked for equivalence.

2.3 Verification Process
To compare SAT-based methods with the DD-based methods, we
perform equivalence checking using the DDs. Once the DD’s are
generated for the golden response (MIG) and for the design un-
der verification in this case ReMAT, then the verification process
follows. Since the DDs that we selected are also canonical in na-
ture therefore, if the underlying functionality of two circuits is
same, then the DDs generated from these circuits will remain same
provided the input variable ordering used for generating the DDs
are identical. This canonicity of the DDs simplifies the process of
verifying the circuits and also it is an essential factor which helps
in minimizing the verification effort. If the DD of a given circuit is
same as the golden circuit, the functionality of the circuit is correct.
In the DD packages, this verification can be performed using a
pointer comparison of the DD of the given circuits with the DD of
the golden circuits (in our case the MIG and ReMAT).

3 EXPERIMENTAL EVALUATION
In this section, we summarize the results of the various arithmetic
adder designs for both SAT and DD based verification methods. For
our experiment we generated 13 different types of adders ranging
from 8 bit upto 128 bit width with the help of ArithsGen Tool [15].
For the SAT based verification, we use Z3 solver in Python envi-
ronment. To perform DD based verification, we use a framework
with CUDD andWLDD package at its heart. We restrict K*BMDs
decomposition to only negative Davio for these experiments. The
mockturtle library was used to convert the Verilog files of adders to
MIG representation [21]. In Z3 solver the miter is used for the veri-
fication where outputs of the golden adder circuit and the Design
Under Verification (DUV) are Xor’ed. To construct the BDDs, we
select the interleaved variable ordering but for the WLDD based
approaches we ordered the inputs in the same sequence as given in
the circuit files. This is due to the fact that for WLDD’s the input
variable order has minimal effect [5]. All the experiments were
performed on a AMD EPYC 7302P 16-Core Processor server with
512GB RAM.

3.1 Run-time Analysis
Figure 2 shows the time taken to verify all the considered 13 differ-
ent types of adders of 8-bit size using all the DD based approaches
(i.e., BDD, *BMD and K*BMD) and the Z3 solver. Along the y-axis

the time in seconds is represented and the different types of adders
are plotted in the direction of the x-axis. Please note the bottom
half of the y-axis is zoomed-in to get a better insight into the per-
formance of the BDDs and Z3 solver. It can be easily seen how
BDDs perform better for almost all the different types of adders.
For the CSA, all the methods show higher runtime except the BDDs
which have better performance for this type of adders too. Here
we also see that Z3 timings are generally up to 5× times slower
than the BDD timings. As BDDs clearly outperformed among other
DD based methods, we next compare the Z3 solver timings against
BDDs for verification of adders of increasing size.

10

20

30

40

50

BKA CIA LA CSA
CSK

A
CLS

A
HCA KA KS

A LFA

RC
A PG RC

A SA

Adder

0.00

0.05

0.10

0.15

0.20

Ti
m

e
(s

)

Z3
BDD
*BMD
K*BMD

Figure 2: Timings to verify different 8-bit Adders: DDs Vs Z3

3.2 Scalability Analysis
For the comparison we have specifically selected three different
adder architecture categories i.e. a simple RCA, a Carry and Propa-
gate Adder i.e., CLA and a parallel-prefix adder i.e., KA of size 8 to
128 bit. In Figure 3, the verification time of these adders are plotted
for both BDD based approach and Z3 solver. Due to experiencing
higher run-time for increasing adder size, results for WLDD based
approaches are omitted. While the behaviour of Z3 solver for all
three adders is very similar, the BDDs perform much better with
very little increase in verification time. The highest verification
time for Z3 with 128 bit was for the KS at 3.3𝑠 and lowest timings
were for the RCA at 1.2𝑠 . In case of BDD, with 128 bit width the
largest reading was for KA at 0.1𝑠 which was still 10× smaller than
the lowest Z3 value. Figure 4 shows the average time to perform
for all the adders at different bit-sizes. Like the Figure 2, y-axis of

GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA Khushboo Qayyum, Abhoy Kole, Kamalika Datta, Muhammad Hassan, and Rolf Drechsler

Figure 4 has been zoomed-in in the bottom half to better visualize
the BDD values. The average of the BDDs at 128-bit is about 30×
smaller than the values of the Z3 average. BDDs also have a better
standard deviation as compared to the Z3 which means BDDs have
more consistent verification timings. The standard deviation for
Z3 with 128 bit is 1.53𝑠 which shows the spread of values of Z3
verification for 128-bit adders of different types.

8 16 32 64 12
8

Bit Width

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m

e
(s

)

CLA Z3
KA Z3
RCA Z3
CLA BDD
KA BDD
RCA BDD

Figure 3: Time to verify: BDDs Vs Z3

1

2

3

4

x =0.109
 =0.028

x =0.235
 =0.083 x =0.51

 =0.229 x =1.118
 =0.594

x =2.475

 =1.528

8 16 32 64 128
Bit Width

0.00

0.02

0.04

0.06

0.08

0.10

Ti
m

e
(s

)

x =0.003
 =0.006

x =0.006
 =0.007 x =0.016

 =0.005
x =0.033
 =0.01

x =0.08
 =0.02

Z3
BDD

Figure 4: Average time to verify all adders: BDDs Vs Z3

3.3 Benchmarking Verification
Table 1 shows the verification results of various adders considered
for evaluation. The first two columns show the type of the adders
and their corresponding bit width. The third and fourth column
represent the number of clauses and time taken to generate the
clauses for a MIG file, respectively. Similarly the fifth and sixth
column depict the clauses and the time required to generate clauses
from a micro-operation file. The seventh column presents the time
taken by the Z3 solver to verify the files. The eighth and ninth
columns show the final number of nodes of a BDD and time required
to verify the adder with the help of BDDs, respectively. The tenth
column shows the final size of *BMD followed by the eleventh
column shows the time taken to verify adder using *BMDs. The
column twelve and column thirteen show the final node size of
K*BMDs and time taken to verify the selected adders, respectively.
The last column represents the improvement ratio of the best DD
based method with Z3, which in our case is BDDs, w.r.t Z3.

It is evident from Table 1 that the BDD is significantly faster than
the today’s most advanced SAT solver for verification of arithmetic
adder circuits. The construction time of BDDs are heavily dependent
upon the underlying structure and when we convert the Verilog file
to MIG structure and MIG to micro-operation file, the underlying
structure of adders is vastly changed but even after that, BDDs
still perform better as compared to SAT solvers[18]. We get with
upto 88× faster verification time with 128 bit for CLA with the help
of BDDs and smallest improvement is for RCA PG at 15×. This
shows that BDD based verification is consistent in performance
w.r.t. the adder structure. In Table 1, the values with * denote such
a small value that we disregard the values for BDDs as they do
not provide much insight into performance. For the other DDs we
could only construct Adders upto 8 bit width. The package used
for WLDDs is considerably old and thus less optimized as opposed
to construction using Z3 and CUDD. It is important to note that
the better Z3 timings in comparison to [8] can also be attributed to
reduced number of clauses generated by the synthesizer with the
help of the ReMAT structure. In the previous works, the number
of clauses generated from micro-operation file are significantly
higher than clauses generated from the MIG file with an average
2× increase [8].
4 CONCLUSION
In this paper, we presented the first DD-based methodology for
verifying ReRAM synthesis process. In particular, we proposed
a methodology which leverages BDDs, *BMDs and K*BMDs for
verification. We developed a synthesis tool to translate MIG rep-
resentations into ReRAM-compatible micro-operations and a DD
generation process for equivalence checking. By generating DDs
from the original MIG and synthesized micro-operations, and sub-
sequently demonstrating their equivalence, we ensured the correct-
ness of the synthesis process and the overall In-Memory design.
Our experimental results on arithmetic adders demonstrated a sig-
nificant speedup (up to 88×) when using our DD-based approach
compared to SAT solvers. As a future work, we plan to extend this
work towards polynomial formal verification [9, 11]. In particular,
the efficiency of our methodology for polynomial upper bounds.

ACKNOWLEDGEMENT
This work was supported by the German Research Foundation
(DFG) within the Project PLiM (DR 287/35-1 and DR 287/35-2) and
in part within the Reinhart Koselleck Project PolyVer (DR 287/36-1).

REFERENCES
[1] L. Amaru, P-E Gaillardon, and G. D. Micheli. 2014. Majority Inverter Graph: A

novel data-structure and algorithms for efficient logic optimization. DAC.
[2] B. Becker, R. Drechsler, and R. Enders. 1997. On the representational power of

bit-level and word-level decision diagrams. ASP-DAC.
[3] K. Bhunia, A. Deb, K. Datta, M. Hassan, S. Shirinzadeh, and R. Drechsler. 2023.

ReSG: A Data Structure for Verification of Majority based In-Memory Computing
on ReRAM Crossbars. TECS.

[4] R. E. Bryant. 1986. Graph-based algorithms for boolean function manipulation.
Computers, IEEE Transactions on.

[5] R. E. Bryant and Y. Chen. 2001. Verification of arithmetic circuits using binary
moment diagrams. STTT.

[6] S. Chakraborti, P.V. Chowdhary, K. Datta, and I. Sengupta. 2014. BDD based
Synthesis of Boolean Functions using Memristors. IDT.

[7] C. Chen, K. Li, A. Ouyang, Z. Zeng, and K. Li. 2018. GFlink: An in-memory
computing architecture on heterogeneous CPU-GPU clusters for big data. TPDS.

[8] A. Deb, K. Datta, M. Hassan, S. Shirinzadeh, and R. Drechsler. 2023. Automated
Equivalence Checking Method for Majority based In-Memory Computing on
ReRAM Crossbars. ASP-DAC.

Exploring the Potential of Decision Diagrams for Efficient In-Memory Design Verification GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA

Table 1: Experimental Results of the Adders for Z3 and DDs

TYPE BIT SIZE MIG MICRO OPERATION Z3 BDD *BMD K*BMD Improvement
Z3 vs BDDCLAUSES Time(s) CLAUSES Time(s) Time(s) Nodes Time(s) Nodes Time(s) Nodes Time(s)

BKA

8

88 0.08 88 0.13 0.096 39 0.02 16 3.96 16 14.33 4.81
CIA 92 0.08 92 0.13 0.195 39 0.01 16 4.14 16 14.01 10.02
CLA 111 0.09 111 0.16 0.397 39 ∼0 16 6.74 16 22.77 *
CSA 188 0.13 188 0.21 0.829 39 ∼0 16 10.2 16 44.63 *
CSKA 88 0.08 88 0.13 1.910 39 ∼0 16 4.06 16 14.91 *
CLSA 109 0.09 109 0.16 0.100 39 ∼0 16 4.03 16 12.77 *
HCA 91 0.08 91 0.13 0.209 39 0.01 16 5.3 16 13.18 10.01
KA 104 0.09 104 0.05 0.418 39 ∼0 16 3.97 16 12.57 *
KSA 100 0.08 100 0.15 0.851 39 ∼0 16 4.03 16 18.17 *
LFA 88 0.08 88 0.17 1.728 39 ∼0 16 4.48 16 13.57 *

RCA PG 76 0.07 76 0.12 0.121 39 ∼0 16 4.66 16 11.87 *
RCA 76 0.07 76 0.17 0.249 39 ∼0 16 4.5 16 15.25 *
SA 91 0.08 91 0.13 0.503 39 ∼0 16 6.92 16 12.13 *
BKA

16

189 0.12 189 0.23 1.037 79 0.01 - T.O - T.O 19.47
CIA 204 0.13 204 0.21 2.112 79 ∼0 - T.O - T.O *
CLA 237 0.15 237 0.22 0.193 79 ∼0 - T.O - T.O *
CSA 481 0.18 481 0.22 0.485 79 0.02 - T.O - T.O 24.23
CSKA 184 0.12 184 0.22 1.190 79 ∼0 - T.O - T.O *
CLSA 255 0.17 255 0.18 2.873 79 0.01 - T.O - T.O 25.71
HCA 207 0.14 207 0.17 7.057 79 0.01 - T.O - T.O 21.34
KA 254 0.15 254 0.18 0.097 79 0.01 - T.O - T.O 26.55
KSA 249 0.15 249 0.18 0.188 79 ∼0 - T.O - T.O *
LFA 192 0.09 192 0.18 0.371 79 ∼0 - T.O - T.O *

RCA PG 156 0.11 156 0.09 0.742 79 0.01 - T.O - T.O 15.64
RCA 156 0.11 156 0.17 1.506 79 ∼0 - T.O - T.O *
SA 207 0.13 207 0.18 0.119 79 0.01 - T.O - T.O 21.25
BKA

32

400 0.18 400 0.23 0.257 159 0.01 - T.O - T.O 39.69
CIA 428 0.19 428 0.23 0.546 159 0.01 - T.O - T.O 41.82
CLA 489 0.17 489 0.06 1.123 159 0.02 - T.O - T.O 25.14
CSA 1182 0.17 1182 0.24 2.327 159 0.02 - T.O - T.O 59.49
CSKA 376 0.16 376 0.21 0.100 159 0.01 - T.O - T.O 37.05
CLSA 547 0.12 547 0.17 0.213 159 0.02 - T.O - T.O 27.28
HCA 463 0.18 463 0.17 0.464 159 0.02 - T.O - T.O 23.21
KA 604 0.17 604 0.18 1.029 159 0.02 - T.O - T.O 31.65
KSA 598 0.17 598 0.18 2.249 159 0.02 - T.O - T.O 31.12
LFA 412 0.18 412 0.17 0.115 159 0.02 - T.O - T.O 20.72

RCA PG 316 0.16 316 0.17 0.265 159 0.02 - T.O - T.O 15.15
RCA 316 0.17 316 0.17 0.633 159 0.01 - T.O - T.O 30.16
SA 463 0.16 463 0.17 1.477 159 0.01 - T.O - T.O 46.61
BKA

64

849 0.16 849 0.24 3.373 319 0.04 - T.O - T.O 20.74
CIA 876 0.17 876 0.23 0.111 319 0.03 - T.O - T.O 28.37
CLA 993 0.17 993 0.24 0.263 319 0.02 - T.O - T.O 51.84
CSA 2819 0.18 2819 0.26 0.622 319 0.04 - T.O - T.O 71.82
CSKA 760 0.13 760 0.24 1.455 319 0.02 - T.O - T.O 37.12
CLSA 1131 0.17 1131 0.19 3.295 319 0.02 - T.O - T.O 56.14
HCA 1023 0.17 1023 0.17 0.097 319 0.05 - T.O - T.O 20.57
KA 1402 0.17 1402 0.20 0.201 319 0.04 - T.O - T.O 36.92
KSA 1395 0.18 1395 0.20 0.414 319 0.05 - T.O - T.O 29.10
LFA 876 0.18 876 0.18 0.886 319 0.03 - T.O - T.O 29.54

RCA PG 636 0.17 636 0.17 1.851 319 0.03 - T.O - T.O 19.71
RCA 636 0.14 636 0.17 0.084 319 0.03 - T.O - T.O 19.95
SA 1023 0.16 1023 0.18 0.156 319 0.03 - T.O - T.O 34.55
BKA

128

1816 0.18 1816 0.04 0.303 639 0.1 - T.O - T.O 19.10
CIA 1772 0.18 1772 0.26 0.591 639 0.1 - T.O - T.O 17.28
CLA 2001 0.15 2001 0.27 1.228 639 0.07 - T.O - T.O 30.17
CSA 6568 0.22 6568 0.34 0.085 639 0.08 - T.O - T.O 88.21
CSKA 1528 0.17 1528 0.26 0.160 639 0.06 - T.O - T.O 25.11
CLSA 2299 0.18 2299 0.22 0.302 639 0.07 - T.O - T.O 33.24
HCA 2239 0.18 2239 0.21 0.598 639 0.11 - T.O - T.O 20.45
KA 3192 0.15 3192 0.24 1.236 639 0.1 - T.O - T.O 33.73
KSA 3184 0.19 3184 0.24 0.100 639 0.07 - T.O - T.O 47.07
LFA 1852 0.18 1852 0.20 0.213 639 0.09 - T.O - T.O 20.56

RCA PG 1276 0.20 1276 0.18 0.466 639 0.08 - T.O - T.O 15.35
RCA 1276 0.17 1276 0.18 1.036 639 0.04 - T.O - T.O 30.89
SA 2239 0.18 2239 0.20 2.310 639 0.07 - T.O - T.O 33.00

BKA = Brent Kung Adder CIA= Carry Increment Adder CLA= Carry Lookahead Adder CSA = Conditional Sum Adder
CSKA = Carry Skip Adder CLSA = Carry Select Adder HCA = Hans Carlson Adder KA = Knowles Adder
KSA = Kogge Stone Adder LFA = Ladner Fischer Adder RCA PG = Ripple Carry adder with Propagate / Generate
RCA = Ripple Carry Adder SA = Sklansky Adder

[9] R. Drechsler. 2021. PolyAdd: Polynomial Formal Verification of Adder Circuits.
DDECS.

[10] R. Drechsler, B. Becker, and S. Ruppertz. 1997. The K*BMD: A verification data
structure. IEEE Design & Test of Computers.

[11] R. Drechsler and A. Mahzoon. 2022. Polynomial Formal Verification: Ensuring
Correctness under Resource Constraints : (Invited Paper). ICCAD.

[12] S. Froehlich and R. Drechsler. 2022. Generation of Verified Programs for In-
Memory Computing. DSD.

[13] R. Gharpinde, P. L. Thangkhiew, K. Datta, and I. Sengupta. 2018. A Scalable
In-Memory Logic Synthesis Approach Using Memristor Crossbar. TVLSI.

[14] S. Höreth and R. Drechsler. 1999. Formal verification of word-level specifications.
DATE.

[15] J. Klhufek and V. Mrazek. 2022. ArithsGen: Arithmetic Circuit Generator for
Hardware Accelerators. DDECS.

[16] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman, A. Kolodny,
and U. C. Weiser. 2014. MAGIC—Memristor-aided logic. TCAS-II.

[17] F. Lalchhandama, M. Sahani, V. M. Srinivas, I. Sengupta, and K. Datta. 2022.
In-Memory Computing on Resistive RAM Systems Using Majority Operation.
JCSC.

[18] K. Qayyum, A. Mahzoon, and R. Drechsler. 2022. Monitoring the Effects of Static
Variable Orders on the Construction of BDDs. MESIICON.

[19] F. Shirinzadeh, A. Deb, S. Shirinzadeh, A. Kole, K. Datta, and R. Drechsler. 2024.
In-Memory SAT-Solver for Self-Verification of Programmable Memristive Archi-
tectures. VLSID.

[20] S. Shirinzadeh, M. Soeken, P.-E. Gaillardon, and R. Drechsler. 2016. Fast logic syn-
thesis for RRAM-based in-memory computing using Majority-Inverter Graphs.
DATE.

[21] M. Soeken et al. 2018. The EPFL logic synthesis libraries. arXiv preprint
arXiv:1805.05121.

[22] P. L. Thangkhiew, R. Gharpinde, and K. Datta. 2018. Efficient mapping of Boolean
functions to memristor crossbar using MAGIC NOR gates. TCAS-I.

[23] R. Wille, G. Fey, D. Große, S. Eggersglüß, and R. Drechsler. 2009. SWORD: A SAT
like prover using word level information. VLSI-SoC.

	Abstract
	1 Introduction
	2 Proposed Verification Methodology
	2.1 Synthesis Process
	2.2 DD Generation
	2.3 Verification Process

	3 Experimental Evaluation
	3.1 Run-time Analysis
	3.2 Scalability Analysis
	3.3 Benchmarking Verification

	4 Conclusion
	References

