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Abstract—High-level Synthesis (HLS) using system-level mod-
eling language SystemC at the Electronic System Level (ESL) is
being increasingly adopted by the semiconductor industry to raise
design productivity. However, errors in the high-level design can
propagate down to the low-level implementation and become very
costly to fix. Thus, SystemC HLS verification and debugging are
necessary and important. While monitoring simulation behavior
is a straightforward solution to debug a given design in the
case of an error (results of verification), it can become a very
time-consuming process as a large amount of data that is not
necessarily relevant to the source of error is analyzed.

In this paper, we propose a fast and automated debugging-
aware visualization approach, enabling designers to monitor the
portion of a given SystemC HLS design’s simulation behavior
that is related to the erroneous output(s). Experimental results
including an extensive set of standard SystemC HLS designs show
the effectiveness of our approach in localizing the designs’ sim-
ulation behavior in terms of the number of visualized variables.
In comparison to traditional visualization methods, our proposed
approach obtains up to 96% and 91% reduction in the search
space for single and multiple faulty outputs, respectively.

I. INTRODUCTION

The emergence of High-level Synthesis (HLS) at the Elec-
tronic System Level (ESL) [1], [2] has significantly re-
duced time-to-market constraints and boosted design produc-
tivity [3]–[5]. HLS designs are being increasingly adopted by
the semiconductor industry as an alternative design entry for
the traditional Register Transfer Level (RTL). HLS designs
are typically implemented using SystemC language (a de-facto
standard at the ESL) [6] and can be automatically synthesized
into RTL. Due to the aforementioned advantages, SystemC
HLS designs are used as a reference model for lower levels
of abstraction. Hence, verification and debugging of HLS
designs are of the utmost importance, as undetected faults
may propagate to lower levels of abstraction and become very
costly to fix.

The most widely used and scalable SystemC verification
approaches [7]–[13] are based on simulation. In this case, the
typical simulation-based verification flow consists of stimuli
generators where designers simulate a design over a set of
concrete test cases and check the final outputs to detect the
errors [14]. However, in the case of an error, the subsequent
debugging process is still very time-consuming, in particular,
as the number of variables and the corresponding lines of
code in the design (search space) that must be traced by

designers are usually huge. In general, the debugging process
consists of two main steps which are 1) fault localization,
i.e., the identification of possible faulty locations that can
cause erroneous state transitions which eventually lead to
design failures and 2) fault correction, i.e., local modification
of the identified portion’s functionality. The fault localiza-
tion is considered as the most time-consuming step in the
debugging process and its quality affects the following fault
correction step [15]. Particularly, localization of timing-based
(e.g., incorrect delay) and functional faults (e.g. false state
transition, incorrect assignment, and incorrect operator) is very
challenging as they can occur on numerous locations such as
local variables, module ports, and global signals.

In the case of an error in one of the outputs of a Sys-
temC HLS design, the straightforward and typical debugging
solution is to monitor the simulation behavior of the design
and check the run-time values of signals and variables from
the point of error (faulty output) back to the primary inputs
of the design. However, even for a simple design, using this
solution requires a highly manual effort to distinguish the
related part of the design code corresponding to the faulty
output(s) from non-relevant parts (i.e., fault localization). The
lack of analysis or poor results of the first step can put a
heavy burden on designers as they have to monitor the whole
simulation behavior containing a large amount of data that is
not necessarily relevant to the source of error. This can be
a very tedious and time-consuming process which makes the
HLS debugging a bottleneck in the design flow.

In this paper, we focus on enhancing the SystemC HLS
debugging by providing an efficient visualization technique,
empowering designers to monitor the detailed simulation be-
havior of the design related to the erroneous output(s). This can
effectively help designers when performing debugging tasks
by reducing the initial search space (i.e., all design variables
and the corresponding lines of code).

The proposed approach consists of two main phases which
are fault localization and localized data visualization. In the
first phase, we build on the flexible Clang compiler [16] to
statically analyze the Abstract Syntax Tree of SystemC HLS
designs to extract the structural information, a data dependency
graph (representing the design based on variables depen-
dency), and to generate an instrumented version of the design
for run-time information extraction. In the second phase, we



1 struct stage1 : sc_module {
2 sc_in <bool> clk;
3 sc_in <double> din1, din2;
4 sc_out <bool> ctl1;
5 sc_out <double> dout1, dout2, dout3;
6 double varA, varB;
7 void prc1();
8 /*...*/};
9 struct stage2 : sc_module {

10 sc_in<double> din1, din2, din3;
11 sc_in<bool> clk;
12 sc_in<bool> ctl2;
13 sc_out<double> result1, result2;
14 void prc2();
15 /*...*/};
16 void stage1::prc1(){
17 double temp1, temp2, temp3;
18 if (varA < varB){

19 temp1 = din1.read()*varA + varB;
20 ctl1.write(0);}
21 else
22 temp1 = din1.read() * varA;
23 temp2 = varA - varB;
24 temp3 = din2.read()*varB;
25 dout1.write(temp2);
26 dout2.write(temp2 * temp1);
27 dout3.write(temp3);}
28 void stage2::prc2(){
29 double sum, mul;
30 mul = din1.read() * din1.read();
31 sum = din2.read() + din3.read();
32 result1.write(sum);
33 if (ctl2.read())
34 result2.write(mul);
35 else
36 result2.write(-mul);}

Fig. 1: A part of the motivating example source code.

perform a dynamic analysis by executing the instrumented
model of the design to extract the run-time value of all
design variables and signals. Then, a post-execution analysis
is performed to translate the simulation behavior of the design,
which is localized with respect to the erroneous output(s), into
the Value Change Dump (VCD) file. As a result, instead of
monitoring and tracing the whole simulation behavior of the
design, only a portion of the run-time behavior (including all
value changes of local and global variables and signals) is
visualized for designers to find the source of error.

The experimental results, including several standard Sys-
temC HLS designs, demonstrate the advantage of our proposed
approach in localizing the design’s simulation behavior into
a subset related to the faulty output(s) in a short execution
time which can effectively reduce designers’ effort during the
debugging process. In comparison to traditional visualization
approaches, our proposed approach obtains up to 96% and
91% reduction in the search space for single and multiple
faulty outputs, respectively.

II. RELATED WORKS

There is a large amount of literature on program debugging
and visualization at different levels of abstraction which are
related to our proposed approach, thus they are discussed in
this section.

The method in [17] proposes a manual SystemC debugging
environment which is built on the GNU debugger (GDB) [18].
It provides designers with a set of GDB user commands
w.r.t SystemC constructs. Thus, designers can set breakpoints
iteratively, analyze the program status, and backtrack to the
error origin. However, the method does not provide any fault
localization mechanism to reduce the search space, meaning
the entire debugging process is manual that puts lots of effort
on designers, and can be very time-consuming. Moreover, to
use the method, the SystemC kernel needs to be modified by

designers which may cause compatibility issues for several
approaches in parallel and reduces the degree of automation.

In [19], a scalable bug localization tool is presented which
relies on combining statistical analysis with HDL slicing.
The debugging method in [20] takes advantage of formal
techniques such as ranking error candidates where a prob-
abilistic confidence score for each candidate is calculated.
Similarly, [21] presents a formal debugging method based on
static slicing which provides designers with a reduced ordered
set of potential error locations. However, these methods are
only applicable at RTL and do not support SystemC constructs.

The method presented in [15] enables designers to debug
software programs implemented in C language. It provides
designers with a set of potential error locations based on
the dynamic program slicing technique. However, it cannot
be used to debug SystemC designs as it does not support
the SystemC constructs (e.g., module, process, interface, and
ports). The methods in [22]–[24] propose formal debugging of
software programs described in C language. For example, the
method presented in [23] takes an incorrect program and its
corresponding specification as inputs and performs symbolic
execution and model-based diagnosis for fault localization.
However, the aforementioned debugging methods are at the
algorithmic level and hence do not support SystemC constructs
(e.g., module, process, interface, and ports). Moreover, a
missing formal semantics for the SystemC language restricts
the application of formal debugging techniques for SystemC
designs at the ESL.

There are several SystemC designs visualization environ-
ments [25]–[32] as well as commercial tools [33], [34] that
help designers to debug a given SystemC design by moni-
toring its simulation behavior. For example, [25], [35] provide
designers with an accurate trace of the simulation behavior of a
given SystemC HLS design in the form of VCD. However, the
generated VCD file contains the entire simulation behavior of
the design (that can be huge) and not the portion that is related



to the erroneous output(s). Moreover, as the method takes
advantage of GDB to extract run-time information, the analysis
time can be enormous especially in the case of complex
designs. Although the aforementioned methods help designers
in understanding various aspects of a SystemC design and
monitoring its behavior, they do not reduce the search space
and the number of fault candidates.

In [36], a simulation-based debugging environment for
SystemC designs is proposed. It is based on calculating the
minimal differences between a passing and a failing process
schedule using a set of test cases. However, the method
only focuses on process scheduling and does not consider
functional faults. The method modifies the SystemC scheduler
to handle process activations. This may cause compatibility
issues for several approaches in parallel and reduces the degree
of automation.

The method in [37] proposes a semi-formal fault localiza-
tion method for SystemC HLS designs. While the results of
its analysis can be complementary to our approach, it does not
provide designers with any facilities to monitor the simulation
behavior of the design which could significantly help them in
the fault correction step of the debugging process.

Our proposed approach is fast and automated and targets
the entire debugging process where 1) by generating the data
dependency graph helps designers in localizing the faults
candidates, and 2) by visualizing only the related simulation
behavior to the faulty output(s) facilitates the correction step.
Moreover, the proposed approach does not rely on any com-
mercial tools.

III. MOTIVATING EXAMPLE

In this section, using a simple motivating example, we ex-
plain the necessity of using an efficient visualization approach
for SystemC HLS designs.

Consider the simple SystemC design in Fig. 1 inspired by
the standard SystemC design in [38], however, it provides
other functionality to support our motivating example. The
design includes two modules stage1 and stage2, and performs
a set of algebraic operations to generate the final results
(result1 and result2 of module stage2) in two steps. Here
also we assume that the only reference that is available for
designers is the value of the final outputs (as reference results)
for a specific benchmark that they can use to validate and
debug the design. Now consider the scenario that designers
incorrectly implemented the definition of local variable temp1
of process prc1 of module stage1 (line 19, Fig. 1). After
executing the design, they found that the value of the final
output result1 of module stage2 is incorrect and against the
expected output given as the reference results. Since this type
of fault is not related to the C++ or SystemC syntax and is a
semantic fault, the C++ compiler cannot detect it. Moreover,
as neither a reference model nor a (basic) specification of the
design is available, monitoring the simulation behavior would
be the straightforward solution. This requires to access the
detailed behavior of the design, including the run-time values
of local and global variables. However, designers can only see
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Fig. 2: Overview of the proposed approach.

the incorrect final output of the design (i.e., result1 of module
stage2) and have no information about how other variables
associate to generate the final result. Another important point
that should be taken into account is that as only one of the final
output result1 is faulty, many variables (and the corresponding
lines of code) of the design are not related to it. Therefore,
pruning the value changes of those non-relevant variables and
signals when visualizing the design simulation behavior can
significantly decrease the amount of data that need to be
monitored by designers.

In the case of motivating example (Fig. 1), the initial search
space includes all variables and the corresponding lines of
code of the design which are 19 variables and more than 40
lines of code (as only a part of the design is represented). In
the absence of an efficient visualization approach, designers
need to either consider the whole simulation behavior of the
design to find the source of fault or first manually analyze
the source code to realize that they need to only monitor the
simulation behavior of 9 variables (out of 19) associated to the
faulty output result1. However, in both cases, the debugging
process can be very time-consuming especially when the
design complexity increases. In the following, we show how
our debugging-aware visualization approach can enhance the
debugging process.

IV. DEBUGGING-AWARE VISUALIZATION METHODOLOGY

A top-level overview of our proposed debugging-aware
visualization approach is illustrated in Fig. 2 which consists
of two main phases:

1) Fault localization by performing a static analysis on the
AST of the design in order to
• extract the static information to build a data depen-

dency graph,
• perform cone analysis, and
• generate an instrumented model of the design for run-

time information retrieval.
2) Localized data visualization by performing a dynamic

analysis where
• the instrumented model of the design is executed to

extract the run-time value of all design’s variables and
signals, and



• a post-execution analysis is performed to translate the
simulation behavior of the design, which is localized
with respect to the erroneous output(s), into the Value
Change Dump (VCD) file.

In the following, each phase of the proposed approach
is explained in detail and illustrated using the motivating
example (Fig.1).

A. Fault Localization

The goal of the fault localization phase is to provide a set
of variables and signals (and the corresponding lines of code)
which is only related to the erroneous output(s).

1) Generating Data Dependency Graph: In order to know
how different elements (i.e., variables, modules’ ports, and
signals) of a given SystemC HLS design are related to each
other, we perform a data dependency analysis where for each
module of a design, the relation of its (global and local)
variables is extracted. The first step of this analysis is to
identify and access the node types of the AST which are
corresponded to the top-level entities of the SystemC designs
(e.g. a SystemC module). Then, we recursively traverse the
child nodes of the parent node to reach the other constructs
(modules’ attributes such as ports or signals) which are defined
in the top-level entity. This process is performed for all
modules and global functions of the design to generate a data
dependency graph w.r.t the following definition.

Definition 1. The data dependency graph is a structure
(N ,E ,O), where N is a set of nodes, E is a set of edges,
and O ⊆ N is set of output variables. The edge from node ni
to node nj shows that nj is dependent to ni .

Each node of the data dependency graph is a variable or
signal of the design which is tokenized by the name of module
and function (for local variable) to which the variable or signal
belongs. For a given SystemC HLS, this graph identifies how
the primary inputs and global variables are connected to the
final outputs using the intermediate variables and signals. In
this graph, the nodes without any input arrows (gray nodes)
show the primary inputs or global variables while the nodes
without any output arrows (black nodes) indicate the primary
outputs of the design. As illustrated in Fig.2 (phase1), Static
Analyzer module analyzes the generated AST of the design by
Clang Compiler and builds up the data dependency graph.

2) Cone Analysis: After generating the data dependency
graph, the generated graph and the list of faulty output(s) are
sent to Cone Analyzer module to identify those nodes located
on the cone of the faulty output(s). The cone of output X
is a set of all nodes in the data dependency graph on which
X is dependent. This cone is extracted by backtracking the
nodes starting from X and ending in primary inputs or global
variables. By this, the initial search space is pruned and a
reduced set of variables are generated w.r.t the faulty output.

In the case of multiple faulty outputs e.g., X1 and X2,
a further analysis step is performed by the Cone Analyzer
module to identify each variable belongs to which cone of the
faulty outputs. Therefore, variables are classified in such a way
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Fig. 3: Part of the generated data dependency graph of the
motivating example (Fig. 1).

that they either belong to cone X1 (C1) or cone X2 (C2) or the
common cone X1 and X2 (C12). We use this information when
generating the VCD file of the design to provide designers with
a classified representation of the simulation behavior w.r.t the
cone of faulty outputs.

For example, the data dependency graph of the motivating
example (Fig. 1) is illustrated in Fig. 3. In this figure, nodes
n0 , n1 , n2 , and n3 show the primary inputs while n17 and
n18 indicate the final outputs of the design. Assume that the
output signal result1 of the stage2 module (node n17 in Fig. 3)
is faulty. In this case, the Cone Analyzer module receives node
n17 as input and identifies those nodes located only on the
cone of node n17 (C1). These nodes are n15 , n14 , n13 , n10 ,
n9 , n7 , n6 , n3 , and n2 . Please note that nodes n5 , n1 , and
n0 are in the cone of both outputs. Since only one of the
outputs is faulty, nodes in the intersection of output cones
must be free of bugs. Although it is possible that the bug on a
common node is masked for one of the outputs, we assume that
there are enough test cases that eliminate this behavior. Thus,
w.r.t the initial search space (all variables of the design), a
53% reduction is achieved. Instead of monitoring all variables
(nodes) of the design, only a limited number of variables needs
to be traced. This can effectively reduce the effort of SystemC
designs debugging.

3) Instrumented Code Generation: In this step, results of
the Cone Analyzer module (stored in Candidate Variables
file) are used by the Static Analyzer module to generate an
instrumented version of the design’s source code including
Recorder statements to trace the run-time simulation behavior
of the candidate portion in the next phase. The Recorder
statements are defined based on a hierarchical structure where
for tracing a variable, its run-time value, name, the root, and
instance name of the module to which the variable belongs



1 void stage1::prc1(){
2 double temp1, temp2, temp3;
3 if (varA < varB){
4 temp1 = din1.read()*varA + varB;
5 Fout<<"stage1::prc1::temp1 = "<<temp1<<"

instance_name_module: "<<this->name()
<<"simulation_time: "<< sc_time_stamp
()<<endl;

6 /*...*/}

Fig. 4: A part of the instrumented code of the motivating
example (Fig. 1) which is automatically generated.

are extracted. For local variables of a module’s function or
process, we extract the name of function or process. This
enables designers to trace the variable or signal with a unique
identifier that includes hierarchical information about its parent
components. The simulation time is also extracted to notify the
exact time of the variable’s value changes.

In order to accurately trace the run-time value of variables
after any changes, the Recorder statements are inserted into
locations in the source code where

• the variable is defined or declared (e.g. as function,
process arguments, or local variables within the function’s
or process’s body),

• the variable is used at the left-hand side of an assignment
statement (e.g. expression or function calls), and

• a module port read or write data. This is related to the
module ports (e.g. signals with type sc_in or sc_out)
as they use the read() or write() interfaces to access or
modify data.

Coming back to our motivating example (Fig. 1). Assume
that we want to trace the local variable temp3 of the prc1
process. To do this, the AST of design is analyzed by the Static
Data Analyzer module to find locations in the source code
where the variable is declared, defined, or used (based on
the above explanation). For example, consider the location
(line 19, in Fig. 1) where variable temp1 is used in the
left-hand side of an assignment expression. The variable is
labeled with the name of its parent process (prc1) and module
(stage1). From the extracted information, the Recorder state-
ment (Fig. 4, line 5) is automatically generated and inserted
after the aforementioned location in the new source code. The
instructions this->name() and sc_time_stamp() are added into
the Recorder statement to identify that the variable belongs
to which instance of module stage1 and the simulation time
when a new value is assigned to the variable, respectively.

B. Localized Data Visualization

By executing the instrumented version of the SystemC
design, the run-time value of all variables which are related
to the faulty output(s) is extracted and stored in the Run-time
Trace file. This includes a time-line presentation of all value
assignments to every signal and variable w.r.t the program
execution order. In order to distinguish variables of different
module instances, a unique signature is added to each variable

Fig. 5: A part of generated VCD of the motivating example
(a screenshot).

or signal name, including the root and instance name of
the module. For local variables of a module’s function or
process, the name of function or process is also added into
the signature of the variable’s name. This enables designers
to trace a variable or signal with a unique tag that includes
hierarchical information about its parent components. We also
take advantage of the cone analysis results (see Section IV-A2)
to label the variables in the VCD based on the cone of faulty
outputs.

As illustrated in Fig. 2 (phase 2), the Run-time Log is
analyzed by the Dynamic Analyzer module to extract the
value of all variables at each simulation time stamp and
store all information in the Time-line Log file. By this, each
simulation time stamp is considered as a time unit in which
the state of variables that was extracted at this time is stored.
One important point that must be taken into account is the
presentation of the right value at each time unit for the
SystemC primitive data types such as sc_out and sc_signal.
The aforementioned data types have two storage locations for
data synchronization. These locations are the current value
and the new value. When a process writes to a signal channel,
the process stores the data into the new value rather than into
the current value. The value that is stored in the new value
location of a signal channel is the right and stable value within
a specific delta-cycle. The new value is copied into the current
value at the end of the delta-cycle (when the update phase
is performed and simulation time advances). Therefore, in a
given time unit, the Dynamic Analyzer module takes the actual
value of SystemC primitive data types from the next time unit
(i.e., with one simulation time delay).

After translating the extracted information, the next step
is to present this information in such a way that designers
can easily trace the states of variables to locate errors in
running systems. To visualize the value of SystemC signals,
the standard SystemC API (i.e., using sc_trace) uses the VCD
format for SystemC HLS designs. Although this method works
well for SystemC data types which are defined as signals of



modules, it comes with several drawbacks as follows.
• It lacks precision for base type variables (e.g. C++ data

type) that may change several times during simulation.
• It fails for user-defined datatypes that are not supported

at all unless the designers alter their code.
• It cannot trace the values of local variables of modules

and functions.
• It requires further programming effort by designers to

manually modify the source code and include all signals
that need to be traced.

As we take advantage of Clang for the information extraction
phase, the extracted run-time data includes all value changes
of variables (either global or local or user-defined) during the
execution time. Moreover, this process is performed automat-
ically, thus no effort by designers is required.

The generated VCD file includes:
• the cone of faulty output to which the variable belongs,

the name of modules, their instances, and the global
functions in form of the Signal Search Tree (SST),

• the state of the design’s variables, and
• the value of each variable, assigned during run-time in

the shape of a waveform w.r.t the simulation time.
For example, Fig. 5 shows a part of the generated VCD

file of the motivating example where the extracted behavior
is shown in three windows: The SST window illustrates the
name of modules, their instances, and the global functions
(e.g. sc_main function). The Signal window presents the state
of the design’s variables after the simulation. As an instance,
the expression C1->sage1->ins0->prc1->temp1 shows that
the process prc1 of instance ins0 of module stage1 has a local
variable temp1. This variable is in the cone of faulty output
result1 which is labeled by C1. The value of this variable is -
8.621 at 20 ns. Finally, the Waves window shows the value
of each variable that is assigned during run-time w.r.t the
simulation time.

With the help of the generated VCD, designers can directly
refer to the simulation time when for the first time the primary
output result1 is failed. The data dependency graph not only
reduces the search space for designers but also provides them
with a backtracking facility. By this, designers can start from
the faulty output and trace back through the path specified by
the cone of the faulty output and monitors the values of the
variables in the VCD to find the source of the bug.

V. IMPLEMENTATION DETAILS

The Static Analyzer module is implemented in C++ lan-
guage using the LibTooling library of Clang compiler [16].
To access relevant nodes in the AST (generated by Clang) of
a given design, we use the primary node visitor RecursiveAST-
Visitor of Clang. It provides the designer with a recursive
mechanism on the entire AST to visit each node based
on Depth-First Search (DFS). The VisitCXXRecordDecl (as
SC_MODULE is defined based on class or struct in SystemC),
VisitFunctionDecl and CXXMethodDecl are used to find the
declaration nodes of modules, functions and SystemC process

TABLE I: The relationship between different node types in
the AST and the corresponding SystemC constructs

AST node type SystemC constructs
CXXMethodDecl SystemC Process
FieldDecl SystemC Ports
CXXMemberCallExpr SystemC Interface (e.g. sc_out)
CXXOperatorCallExpr Function and Process Call
DeclRefExpr Local and Global Variable
FuncDecl Local and Global Function
CXXRecordDecl SystemC Module
IfStmt, ForStmt, WhileStmt Control Flow

in the AST, respectively. The information (i.e. name and
type) of modules’ signals (or ports) and variables is extracted
by accessing node’s type FieldDecl. The local variables of
functions are retrieved by visiting node’s type DeclRefExpr. In
order to extract the relation of designs’ variables from different
statements of the design, the following node types are visited
in the AST.

• The AssignmentOp node type to retrieve the variables
dependency (for both local and global variables) in as-
signment statements.

• The CXXMemberCallExpr and CXXOperatorCallExpr
node types to find function call and to access modules’
ports of types e.g. sc_in and sc_out, respectively.

• The compound statements node type such as IfStmt,
ForStmt,WhileStmt and SwitchStmt to extract the depen-
dency of variabes through the control flow of the design
(including condition and loop statements).

We use the Rewriter interface of Clang to insert the Recorder
statements in the corresponding design’s lines of code and
generate its new instrumented version. In summary, the most
important Clang constructs (that were used to build the Static
Analyzer module of the proposed approach) are presented
in Table. I. This table also provides a connection between
different node types in the AST of SystemC designs and the
corresponding SystemC constructs that need to be extracted
for our debugging-aware visualization approach. The Cone
Analyzer and Dynamic Analyzer modules are implemented in
C++.

VI. EXPERIMENTAL RESULTS

The proposed approach was applied to several standard Sys-
temC HLS designs from various domains which are provided
by OSCI [38], [39], and [40]. All the experiments were carried
out on a PC equipped with 24 GB RAM and an Intel core i7
CPU running at 1.8 GHz.

We evaluated the quality of the proposed approach in re-
ducing the search space and localizing the design’s simulation
behavior for two cases of single and multiple faulty outputs.
The erroneous output(s) can be caused by different types of
faults including functional faults (such as false state transition,
incorrect assignment, and incorrect operator), timing-based
fault, as well as incorrect locations of variables or instructions
in the source code. With the help of the data dependency graph
(as it provides localization and backtracking mechanisms) and



TABLE II: Experimental results for all SystemC HLS benchmarks with single and multiple erroneous outputs

Benchmark LoC #Vars #Outputs Single Faulty Output Multiple Faulty Outputs Execution Time (s) CET (s)#VisVar(B–W) VarR(B–W) #VisVar(B–W) VarR(B–W) Phase1 Phase2 Total
4-stage pipe1 90 36 3 8 – 11 74% – 69% 18 – 29 50% – 19% 5.41 0.11 5.52 3.21

Uart2 468 55 3 6 – 22 81% – 60% 31 – 43 43% – 21% 9.76 0.15 9.91 3.71
FFT-flpt1 586 56 4 9 – 14 86% – 75% 26 – 39 53% – 30% 10.62 0.16 10.78 3.92

FFT-fixed2 625 71 4 9 – 19 87% – 73% 21 – 60 70% – 19% 12.07 0.17 12.23 4.22
IDCT2 725 64 4 6 – 15 84% – 76% 19 – 46 70% – 28% 11.49 0.14 11.63 3.69
VGA2 821 81 7 4 – 19 91% – 75% 28 – 51 65% – 37% 17.22 0.18 17.04 3.84

Pkt-switch1 1053 72 4 5 – 17 93% – 76% 22 – 43 69% – 40% 17.51 0.17 17.68 6.13
RISC-CPU1 1960 345 14 13 – 19 96% – 94% 31 – 97 91% – 71% 38.04 0.21 38.25 11.21

LZW-encoder3 5132 422 16 21 – 44 96% – 89% 49 – 151 88% – 64% 43.52 0.32 43.84 24.68

1Provided by [38] 2Provided by [39] 3Provided by [40] LoC: Lines of Code #VisVar: number of Visualized Variables VarR: Variable Reduction
B: Best-case W: Worst-case CET: Compilation and Execution Time without instrumentation

generated VCD file (as it contains timing information), the
proposed approach can facilitate the debugging process of a
given SystemC design for all aforementioned fault types.

Table II shows the results of applying the proposed approach
to different types of SystemC HLS designs to localize their
simulation behavior w.r.t single and multiple faulty outputs.
The first two columns list the names and lines of code for
each design, respectively. Column #VisVar presents the number
of candidate variables that are visualized by the proposed
approach. The #VarR column indicates the percentage of
reduction on the number of candidate variables in comparison
to the traditional visualization methods such as [25] where
the whole design’s variables (the initial search space) are
visualized. As the search space reduction can be varied based
on which output(s) of a given design is faulty, we reported the
obtained results for the best (column B) and worst (column W)
reduction cases. Regarding the single faulty output, we assume
that each of the design’s outputs can be faulty. Thus, we
performed the experiment to cover all cases and report the best
and worst reduction cases in the table. In the case of multiple
faulty outputs, we assume that a given design with Nout

can have Nfout faulty outputs where 1 < Nfout ≤ Nout − 1 .
Since performing the experiment to cover all combinations of
faulty outputs could be huge in terms of time and state space,
we performed up to 10 experiments (w.r.t Nout ) where we
randomly created the faulty output combinations.

As illustrated in Table II, the worst-case reduction results
are related to 4-stage pipe, Uart, and FFT-fixed benchmarks,
especially in the case of multiple faulty outputs. The main
reason for the low reduction results is the low number of their
primary outputs and also the high dependency of the local
and global variables in generating the final results. Thus, in
the case of multiple faults, all variables and signals are almost
in the cone of the faulty outputs which decreases the impact
of cone analysis on reducing the search space. On the other
hand, the best-case reduction results (in terms of candidate
variables) are related to the Pkt-switch, RISC-CPU, and LZW-
encoder benchmarks where up to 96% and 91% reduction
in search space were achieved for single fault and multiple
faults, respectively. This also shows that our approach can
significantly reduce the search space for complex designs with
a large number of primary outputs.

Please note that in the case of multiple faulty outputs where
the reduction is low, designers can take advantage of the divide
and conquer strategy by breaking down the debugging process
into smaller steps. With the help of the cone classification
of our proposed approach, they can localize the design’s
simulation behavior for each cone separately. By this, each
cone is treated independently results in a significant reduction
in the number of variables that are analyzed in each step.
Using this strategy, designers can avoid the complex task of
analyzing the whole search space at once, and instead they
debugging a smaller portion in each step.

The execution time of the proposed approach is illustrated
(in seconds) in Table. II, column Execution Time, followed
by the required time for information extraction and fault
localization (column Phase1), localized data visualization (col-
umn Phase2), and the total execution time (column Total).
Column CET shows the pure compilation and execution time
of each design by GCC without any instrumentation. Please
note that the execution time is reported for the average of
all experiments w.r.t single fault and multiple faults. In com-
parison to CET, the execution time of the proposed approach
is in the same range and in orders of seconds. The major
time-consuming part of the approach is the first phase where
the AST, the instrumented version of the source code and
data dependency graph are generated, and the cone analysis is
performed.

Limitation: Although our proposed approach is an overall
sound analysis, it comes with a limitation. In the case that a
given SystemC HLS design only has one primary output and
it becomes faulty, the data dependency graph cannot reduce
the search space as all variables of the design are in the cone
of faulty output. Please note that this limitation is a common
issue for all debugging methods [15], [20], [21], [37] which
are based on pruning technique. However, designers can still
take advantage of the generated VCD file to accurately trace
and monitor the design’s simulation behavior.

VII. CONCLUSION

In this paper, we proposed a fast and automated debugging-
aware visualization approach for SystemC HLS design at
the ESL. Our approach takes advantage of a combination
of static and dynamic analysis to efficiently visualized the
portion of a design’s simulation behavior that is related to



the faulty output(s). Our experiments with an extensive set of
SystemC HLS designs demonstrate that the proposed approach
is efficient and scalable. In particular, even a design with
more than 400 variables and 5, 000 lines of code (e.g. LZW-
encoder), which are the initial search space in debugging
process, can be reduced significantly and visualized in less
than a minute with high accuracy.
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