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Abstract—Motivated by physical realization of hexagonal ar-
chitectures, in this paper we have introduced the hexagonal
neighborhood structure for a set of qubits in a two-dimensional
(2-D) plane along with a simple measure for estimating neigh-
borhood distance. As compared to the traditional layout of
qubits on a 2-D Cartesian plane, the hexagonal arrangement
offers greater flexibility in mapping the logical qubits from a
quantum circuit into an array of physical qubits. In most of
the prior works, the neighborhood cost is estimated as number
of Swap operations required to ensure that all 2-qubit quantum
gates operate on physically adjacent qubits. However, in recent
times, CNOT Templates have been used to execute 2-qubit gates
where the interacting qubits are not adjacent to each other.
In this paper we exploit the benefits of CNOT Templates in
mapping quantum circuits to hexagonal 2-D arrays. We propose
an evolutionary algorithm to obtain a good placement of qubits
in the hexagonal structure. We also show the benefits of this
approach over a simple greedy qubit placement method. We have
carried out experiments on a set of benchmark suites to evaluate
the efficiency of the proposed approach. The results show an
average improvement of 42.9% over a very recent state-of-the-
art method.

Index Terms—Quantum circuits, nearest neighbor architec-
ture, hexagonal structure, quantum cost

I. INTRODUCTION

We have witnessed steady progress in the field of quantum
computing over the last 30 years, more so with the demonstra-
tion of physical quantum computing machines in recent years.
Essentially it is based on the principles of quantum mechan-
ics [1], supporting inherent parallelism and the potential to
solve many computationally difficult problems [2]. In partic-
ular, problems on searching, optimization, new drug analysis,
public-key cryptosystem, number theory, etc. can benefit from
quantum computing. During the last two decades extensive
mathematical foundations have been built for designing quan-
tum algorithms. But the most important challenge has been
to built large-scale reliable quantum computers that can run
scalable applications. In recent years lots of efforts have been
put in for building quantum computers, and various industry
giants like IBM, Microsoft, Intel, and Google have come up
with medium-scale demonstrable quantum computers.

In quantum computing, quantum bits (or qubits) are the fun-
damental unit of computation that have the unique properties

of superposition and entanglement. Various operations can be
performed on one or more qubits (called quantum gate opera-
tions) that change their states. In terms of implementation, the
qubits can be considered as the basic unit of hardware while
the quantum gates as the logical operations that work on them
in the axis of time. Various physical architectures have been
proposed [3], [4], which are primarily classified in terms of
how the qubits are physically laid out and the constraints that
limit their interactions. One major challenge is the effect of
noise in quantum gate operations, which restricts operations
to be among neighboring qubits only [5]. This is referred to
as Nearest-Neighbor (NN) Constraint.

Prior works have explored various qubit architectures like
one dimensional (1-D) [6]–[9], two dimensional (2-D) [10]–
[12], and also three dimensional (3-D) [13], which assume
that the qubits are arranged regularly in terms of Cartesian
co-ordinate system. The cost metric for evaluation has been
typically the number of qubit Swap operations (or Swap gates)
required. In a recent work, qubit interactions in hexagonal grid
on a 2-D plane have been demonstrated [14]. Motivated by
the results, we propose a flexible arrangement of qubits in the
hexagonal 2-D plane, and present experimental results on its
suitability for nearest neighbor gate operations. A modified
2-D Cartesian coordinate system has been used to enable
efficient identification of neighbors and the distance between
any pair of qubits. In this work we use CNOT templates [15]
instead of Swap gates for making the qubits nearest neigh-
bor. We propose a Genetic Algorithm (GA) based mapping
technique for mapping the qubits in the hexagonal grid. The
cost of CNOT templates for NN-compliant operations is used
as the fitness function. To show the efficiency of the GA-
based engine we also implemented a greedy algorithm for
placing qubits in a hexagonal grid. The results show that GA
based qubit placement is far more efficient than the greedy
approach. The proposed hexagonal architecture can also be
used for mapping qudits in a multi-valued quantum system.

The rest of the paper is organized as follows. Section II
presents the fundamentals of quantum computing and nearest
neighbor quantum gate operations. Section III and IV discuss
the proposed hexagonal architecture, and the algorithm for
mapping quantum circuits for minimizing the nearest neigh-
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borhood cost. Here we discuss both the GA based mapping
method and the greedy mapping approach. We also show the
various operations that are performed during the GA based
mapping. Section V presents and analyzes the experimental
results. Section VI presents how this present work can be
extended to multi-valued logic. Finally, section VII provides
the concluding remarks and some pointers for future works.

II. LITERATURE SURVEY

In this section we briefly discuss about quantum com-
putation, nearest-neighbor quantum gate operations, nearest-
neighbor controlled-NOT (CNOT) gate templates, and prior
works on nearest neighbor architectures.

A. Quantum Computation

The fundamental entity in quantum computation is the
quantum bit (or qubit). A qubit can exist in a number of states
that can be represented as linear combination or superposition
of computational basis states, like |0〉 and |1〉. This is charac-
terized by the state vector |ψ〉 = α|0〉+ β|1〉, where α and β
are complex coefficients or amplitudes, and |α|2 + |β|2 = 1.
A quantum circuit consists of a cascade of quantum gates as
shown in Fig. 1, which shows three qubits q0, q1 and q2 on
which various quantum gate operations are carried out in the
axis of time.

Fig. 1. An example quantum circuit

We perform circuit operations by evaluating the gates from
left to right that change the states of the interacting qubits.
The gate operations are inherently reversible, and the qubits
can be in states of superposition or entangled. A physical
quantum computer typically supports 1-qubit and 2-qubit gate
operations. Some of the logical quantum gate libraries that
are commonly used are NCV [16] and Clifforf+T [17]. In this
paper, we are mainly concerned with 2-qubit gate operations
irrespective of the gate library being used, which is equally
applicable for multi-valued quantum systems as well.

B. Nearest-Neighbor Compliant Quantum Circuits

With respect to physical realization, experiments reveal that
when two qubits interact, they must be in close proximity
for limiting the error during computation [18]. This is an
important issue in promising quantum technologies like ion
trap [19] and superconducting [20], also referred to as Nearest-
Neighbor (NN) Constraint.

Fig. 2(a) shows a 4-qubit quantum circuit with five gates.
The vertical lines between solid dots in the figure represent
arbitrary 2-qubit gates. The second and third gates are NN-
compliant, while the remaining three are not. The states of

(a) (b)

(c)

Fig. 2. (a) An example quantum circuit, (b) Swap gate realization, (c) Nearest-
neighbor realization using Swap gates.

two qubits can be exchanged using a Swap Gate – Fig. 2(b)
shows a realization of Swap gate using three back-to-back
CNOT gates. A Swap gate is typically represented by two ‘X’
on the qubit lines with a solid vertical bar between them. If
we want to execute the circuit of Fig. 2(a) in a reliable way,
we need to insert Swap gates as shown in Fig. 2(c) to make
the circuit NN-compliant.

In order to estimate the cost of making a quantum circuit
NN-compliant, most prior works have used the number of
Swap gates required as the cost metric. As an alternative, some
of the works (e.g. [15]) have used CNOT Templates. As shown
in Fig. 3(b), we need 4 Swap gates (i.e. NNC cost of 12) to
make the gate in Fig. 3(a) NN-compliant. But using CNOT
template we need only 8 CNOT gates [15] with NNC cost of
8 (see Fig. 3(c)).

(a) (b) (c)

Fig. 3. (a) Gate with NNC = 2, (b) NN realization using Swap gate, (c) NN
realization using CNOT gate templates [15].

C. Related Works

Several works exist in the literature for making a quantum
circuit NN-compliant, based on both linear (1-D) and multi-
dimensional (2-D and 3-D) architectures [6]–[8], [10]–[13],
[21], [22]. The dimension determines the maximum number
of neighbors a physical qubit can have. Fig. 4(a) shows a 1-D
architecture for a 5-qubit circuit. The qubits at the two ends
(q2 and q4) have one neighbor each, while the others have
two neighbors. Fig. 4(b) shows a conventional 2-D architecture
where 5 qubits are mapped. The qubit in the middle (q0) has
four neighbors, qubits at the corners have two neighbors, and
all other qubits have three neighbors. It is clear that higher
dimensions can lead to better qubit mapping with less cost for
NN-compliance.

Many approaches for mapping quantum circuits to 1-D
architectures have been proposed. Chakrabarti et al. [6] used
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Fig. 4. (a) 1-D NN architecture, (b) 2-D NN architecture.

a graph-based method for reordering the qubits, and demon-
strated the benefits that can be achieved. Hirata et al. [7]
proposed a similar approach for mapping arbitrary quantum
circuits to 1-D architecture; however, the method incurs high
time complexity. In [23], Shafaei et al. have used an approach
where they first partition the circuit into sub-circuits and then
apply qubit ordering. In [10], Wille et al. used a SAT-based
approach to optimally map circuits to linear qubit architecture,
which can be used for small-sized circuits only.

Researchers have also explored higher dimensional 2-D
architectures [11]–[13], [22]. Shafaei et al. [11] used mixed
integer programming approach to map qubits to 2-D archi-
tectures. In [12], Shrivastwa et al. have used an innovative
approach to speedup the process. In [24], Wille et al. have
used a lookahead method for inserting Swap gates in both 1-D
and 2-D architectures. Marbaniang et al. [22] proposed a look-
ahead mechanism during mapping, and have also considered
the frequency of occurrence of the gates in a circuit. Another
important concept in the context of NN-compliant circuits is
Global Ordering and Local Ordering of qubits, as mentioned
in [10] and used in many other subsequent works.

In [15], the authors proposed an approach using quantum
gate templates rather than Swap gates to execute a CNOT gate
with non-local control and target qubits. Essentially, a template
consists of a set of NN-compliant CNOT gates. A CNOT gate
with nearest neighbor distance of k (i.e., k intermediate qubits
in the shortest path between the control and the target) can be
executed by a template consisting of no more than 4k NN-
compliant CNOT gates. This is clearly cheaper as compared
to Swap gate insertion. This concept has been used in many
recent works for mapping quantum circuits to various qubit
architectures [25] [26] [27].

In the present work we propose a qubit mapping technique
in hexagonal 2-D architecture and use CNOT template cost as
the metric. We explain the hexagonal neighborhood structure
in the next section.

III. THE HEXAGONAL NEIGHBORHOOD STRUCTURE

We consider a hexagonal architecture for arranging the
qubits that can be conveniently laid out on a 2-D plane. This
is in contrast to previous works, where qubits are assumed
to exist in a regular arrangement with respect to 1-D, 2-D or
3-D Cartesian coordinate system. From the point of view of
fabrication, 1-D and 2-D arrangements are most suitable. The
proposed architecture offers the advantage of extended qubit
neighborhood (maximum 6).

Fig. 5. The six neighbors of a central cell (x, y) in hexagonal array

The qubits are assumed to be laid out on a 2-D plane
as shown in Fig. 5, conceptually as hexagonal tiles. Each
qubit can have six neighbors corresponding to the six faces
of the hexagon. The figure shows the proposed co-ordinate
numbering convention used for a central cell with co-ordinates
(x, y). As shown, the cells are placed in rows that are
numbered sequentially (x−1, x, x+1, etc.). The columns are
numbered as shown, where the diagonal neighbors are placed
in columns y − 1 or y + 1, while the horizontal neighbors in
columns y−2 or y+2. Following this convention, it is easy to
check whether two qubits are neighbors, and also to determine
the shortest distance between any pair of qubits.

Proposition 1: Consider two qubits q1 and q2 with co-
ordinates (x1, y1) and (x2, y2) respectively. The two qubits
are said to be hexagonal neighbors if |x1−x2|+ |y1−y2| = 2,
provided y1 6= y2.
Proof: With respect to Fig. 5, the six neighbors of the central
cell (x, y) have co-ordinates (x− 1, y− 1), (x− 1, y+1), (x,
y+2), (x+1, y+1), (x+1, y−1), and (x, y−2). For all the
neighbors, the proposition |x1−x2|+ |y1−y2| = 2 is found to
be true, except the case when y1 = y2 and x1 = x2± 2. Also
for any other cells beyond the hexagonal neighborhood, the
value of the expression will be 4 or more. Hence the proof.

A. Hexagonal Neighborhood Coordinate Convention

Fig. 6(a) shows how we can arrange the qubits in a 2-D
plane using the coordinate convention mentioned in Fig. 5.
We also show the co-ordinates of the qubits in the mapped 2-
D Cartesian plane. It may be verified that Proposition 1 holds
for all neighborhood relations in the 2-D arrangement of the
cells. As a matter of convention, the top-left cell is assigned
the co-ordinates (0, 0), simply to ensure that the x and y co-
ordinates of all the other cells are non-negative.

Fig. 6(b) shows the actual qubit positions in the hexagonal
array, and the way they are interconnected. The interconnec-
tion depicts a unique planar triangulated structure, as a union
of equilateral triangles. It can be observed that for any qubit,
the Euclidean distance to each of its six neighbors are all equal.

Algorithm 1 presents the procedure to compute the neigh-
borhood distance between two qubits at co-ordinates (x1, y1)
and (x2, y2) on the hexagonal array. The detailed explanation
is not provided here.
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Fig. 6. (a) Hexagonal cells in a 2-D array, (b) Qubit interactions: Red circles
indicate qubits, and blue lines their interactions

Algorithm 1 Distance between qubits (x1, y1) and (x2, y2)
Input: Qubit co-ordinates (x1, y1) and (x2, y2)
Output: Distance d on hexagonal grid
d← 0;
while (true) do

if (x1 = x2) then
return d+ |y1 − y2|/2;

end if
if (y1 = y2) then

return d+ |x1 − x2|;
end if
if (|x1 − x2| 6= 1 ) then

if (x1 < x2) and (y1 < y2) then
x1 = x1 + 1; y1 = y1 + 1; d = d+ 1;

end if
if (x1 < x2) and (y1 > y2) then

x1 = x1 + 1; y1 = y1 − 1; d = d+ 1;
end if
if (x1 > x2) and (y1 < y2) then

x1 = x1 − 1; y1 = y1 + 1; d = d+ 1;
end if
if (x1 > x2) and (y1 > y2) then

x1 = x1 − 1; y1 = y1 − 1; d = d+ 1;
end if

end if
if |x1 − x2| = 1 then

return d+ (|x1 − x2|+ |(y1 − y2)|)/2;
end if

end while

Example 1: Consider two cells A (4,2) and B (1,9) as shown
in Fig. 6(a). Here, the distance D(A,B) = 4. We have to
traverse through four intermediate cells to move from A to
B (e.g., right, right, diagonal-up, diagonal-up; or diagonal-up,
diagonal-up, diagonal-up, right, etc.). Multiple such paths may
exist between a pair of qubits.

In order to specify the size of the hexagonal array of qubit
cells, we follow a simple convention. A cell array of dimension
m×n shall include all the cells with co-ordinates (x, y), such
that x < m and y < n. Some example cell-array dimensions
are illustrated in Fig. 7.

B. Nearest-Neighbor Mapping of Qubits

For a quantum circuit with n logical qubits {q1, q2, . . . , qn},
the first step is to map them to a physical qubit architecture.
As per the NN-constraint, all 2-qubit gates must operate on
physically adjacent qubits. If a gate operates on the qubit pair
(qi, qj), where qi and qj are not physically adjacent, we insert
CNOT templates for NN-compliance.

(a) 4× 5 (b) 5× 5 (c) 5× 8

Fig. 7. Cell arrays of given dimensions.

(a)

(b) (c)

(d) (e)

Fig. 8. (a) A quantum circuit with 5 logical qubits and 15 2-qubit gates, (b)
Mapping of qubits on 2-D array, (c) NN gate evaluation on 2-D array with
6 swap operations, (d) Mapping of qubits on hexagonal array, (e) NN gate
evaluation with zero NN cost

Example 2: The mapping of gate operations for 2-D and
hexagonal architectures are illustrated in Fig. 8. We consider a
quantum circuit with 15 2-qubit quantum gate operations, each
of which is represented by a vertical bar between two solid
dots (indicating the interacting qubits). Assuming the qubits
are mapped to a 2-D physical qubit architecture as shown in
Fig. 8(b), for NN-compliance we need to insert CNOT gate
templates or Swap gates (on neighboring pairs of qubits) as
shown in Fig. 8(c). However, when the qubits are mapped to a
2-D hexagonal architecture, all gate operations are on adjacent
qubits with no additional overheads (see Fig. 8(d) and 8(e)).

IV. PROPOSED NN-MAPPING FOR HEXAGONAL
ARCHITECTURE

In this section we discuss the mapping of qubits of a given
quantum circuit to the hexagonal architecture. For generating
the initial qubit placement, many earlier methods used the
interaction graph data structure to capture the number of
operations between every pair of qubits. This is referred to
as Global Ordering. To reduce the number of Swap gates for
NN-compliance, another step called Local Ordering is also
used. This latter step often requires looking ahead in the gate
netlist and as such is a relatively time consuming process. It
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has been demonstrated in prior works that combining both
global ordering and local ordering gives better solutions.

In the proposed work, we have totally done away with the
local ordering step, and have created a global ordering of the
qubits only. We observe later in the experimental results that
incorporating only global ordering for hexagonal architecture
provides substantial improvement over existing approaches.
We formulate the qubit placement problem on 2-D hexagonal
grid as a search problem, and use an evolutionary algorithm
(viz. Genetic Algorithm or GA) to find a good ordering of the
qubits [28]. GA is considered as a meta-heuristic approach
influenced by natural selection process. In the proposed GA
implementation, we define the solution representation, the
fitness function, and the crossover/mutation operations in a
suitable way. The method is found to be simple and effective
in terms of computation overhead.

Algorithm 2 Qubit mapping on hexagonal grid
Input: Quantum gate netlist QG

Output: Qubit map and NNC for best solution obtained
QN ← Read QG from file;
P ← Random initial population; . Required for GA
iter ← 0;
while iter 6=MAXITER do

Compute Fitness (P,QN );
P ← Perform Crossover (P ); . With probability pcross
P ← Perform Mutation (P ); . With probability pmut

Save best solution;
iter ← iter +1;

end while
NNC ← NN-cost of best solution;
Print qubit map and NNC of best solution;

The basic steps of the GA-based qubit mapping are pre-
sented in Algorithm 2. We start with an initial random mapping
of qubits on a given hexagonal grid, and then run GA to
progressively improve the fitness values across generations.
Every generation comprises of a set of solutions, called the
population. The solution with the lowest cost (i.e. fitness
function value) is retained as the final solution. Initially, we
read a quantum circuit description from a file and populate
in-memory data structures. The various aspects of the GA
implementation are explained below with examples.

a) Solution Representation: The qubit placement solu-
tion on a 2-D hexagonal grid is represented as an
1-D integer array in row-major order, with proper
co-ordinate mapping. The entries in the array indi-
cate the qubit number (if assigned), or −1 if empty.
Considering Fig. 9(a), the solution representation will
be (q3, q0,−1, q1,−1, q2, q4), which is illustrated in
Fig. 9(b).

b) Initial Population: A population consists of N num-
ber of solutions, where each solution represents some
arrangement of the qubits. The solutions in the initial
population are generated randomly, which is refined
across iterations. Across the iterations we move towards
better solutions.

c) Fitness Function: For estimating the fitness or NN-cost
(NNC) of a solution, we observe that for implementing
a CNOT operation on a pair of qubits that are distance

(a) (b)

Fig. 9. (a) Given qubit mapping, (b) Mapping to 1-D array.

k apart, 4k CNOT gates are required in the CNOT
template for NN-compliance [15].
For a quantum gate netlist with gates {g1, g2, . . . , gng},
where ki is the inter-qubit distance of gate gi, the NNC
can be directly computed as

NNC =

ng∑
i=1

(4ki) (1)

The time complexity for computing NNC is linear in
terms of the number of gates, i.e. O(ng). This simple
fitness functions is found to be effective in terms of qubit
placement in the hexagonal 2D grid.

d) Crossover and Mutation Functions: Crossover and mu-
tation are two important steps in the GA formulation.
To move from current generation Geni to the next
generation Geni+1, we perform crossover and mutation
operations with probabilities pcross and pmut respec-
tively, as per the following procedures.

i) Retain best solutions: We copy the best m solutions
from Geni to Geni+1. This way, the best solutions
are retained across generations.

ii) Crossover operation: We choose a pair of solutions
Sx,i, Sy,i ∈ Geni based on their fitness values
(using roulette wheel method [28]), and perform
crossover with a probability pcross. The process of
crossover is illustrated in Fig. 10(a). We choose
the crossover point randomly, and copy the first
parts of the solutions Sx,i and Sy,i to the first
parts of the new solutions Sx,i+1 and Sy,i+1. The
second parts of the solutions Sx,i+1 and Sy,i+1

are generated by filling up the missing qubits in
the same order as they appear in Sy,i and Sx,i

respectively. Additional entries, if any, are filled
with −1. This ensures that a qubit appears only
once in a solution.

iii) Mutation operation: We carry out mutation on
the solutions as they are copied from Geni to
Geni+1 with a probability pmut. We randomly
select one of several methods, like swap positions
of two randomly selected qubits, move a randomly
selected qubit to a vacant adjacent position, move
a qubit to a randomly selected vacant position, etc.
This is illustrated in Fig. 10(b).

The parameters of the GA have been selected through
experimentation. We use a population size N = 30 , and the
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(a) Crossover example

(b) Mutation example

Fig. 10. Illustration of crossover and mutation operations.

number of generations is 200. The crossover and mutation
probabilities are pcross = 0.70 and pmut = 0.20 respectively.

To compare the efficacy of the proposed GA-based qubit
ordering, the results are compared with a greedy qubit ordering
approach as depicted in Algorithm 3. In this greedy approach,
the qubits are placed on a given hexagonal grid in descending
order of qubit interactions. The choice of placement is made
to ensure that the NNC cost is minimized at every step of the
iteration. The results of the greedy algorithm are discussed in
the next section.

Algorithm 3 Greedy approach for qubit mapping
Input: Quantum gate netlist QG

Output: Qubit map and NNC for best solution obtained
Qint ← get qubit-interactions from netlist QG;
Q← order qubits from Qint in descending order of interactions;
Place first element of Q in central grid position;
for (all remaining q ∈ Q) do

Place q in the grid position that minimizes NNC;
end for
Print qubit map and NNC of final solution;

V. EXPERIMENTAL RESULTS

The proposed approach for qubit mapping on hexagonal
neighborhood architecture has been implemented in C and run
on an Intel i7 processor with 8 GB of memory. Experiments
are carried out on various quantum circuit benchmarks, which
consist of 1-qubit and 2-qubit gates only. The circuits are
synthesized using technology mapping with NCV gate library.
The program is general and can be used for other quantum
gate libraries also; however, for comparing with previous
works, we have used the NCV library. The program takes
a quantum gate netlist in .real format [29], determines the
required dimension of the hexagonal array, and provides as
output the best solution found. As mentioned in the previous
section, the GA initially generates a random solution, which
passes through various iterations across generations where the
solutions are progressively improved through crossover and
mutation operations.

Table I summarizes the results of experimentation on the
benchmark circuits. The first three columns of the table shows
the names of the benchmark circuits, number of qubits (Nq)
and number of quantum gates (Ng) respectively. The next
column shows the cost (NNC) of making the circuit NN-
compliant according to [30] – obtained by multiplying the
number of Swap gates required by three.1 The next column
shows the NNC value for the Greedy algorithm on the hexag-
onal array. The last four columns depict the results obtained
using the proposed GA-based approach, consisting of the
hexagonal array dimension (Dim.), the NN-cost using CNOT
gate templates (NNC)2, the percentage improvements (Imp.)
in NN-cost over [30], and also the run time in seconds. The
run times for most of the benchmarks have been observed to
be < 1 second, with the highest run time of 9.14 seconds
observed for the benchmark hwb7_62.

It is observed from the table that with the exception of
six benchmarks, the proposed method shows significant im-
provements over the best known method for 2-D qubit archi-
tecture [30]. In the earlier reported works (including [30]),
various optimization heuristics have been used incorporating
both global ordering and local ordering techniques. In contrast,
the proposed method uses global ordering only, and as such no
Swap gate insertions have been carried out. This establishes
the advantage of the hexagonal qubit architecture in terms of
making a circuit NN-compliant. Hence by just incorporating
global ordering we are able to achieve better results compared
to the state-of-the-art mapping methods on 2-D Cartesian
architectures. Also, the results of the greedy approach show
lower performance for all the benchmarks as compared to the
proposed GA-based method. We can also observe that the
greedy approach is even worse as compared to mapping for 2-
D architecture [30] in most of the cases. Out of 38 benchmarks
considered for experimental evaluation, the greedy hexagonal
approach generates worse results for 24 benchmarks. This
also gives us a clear indication that the proposed GA-based
mapping is effective. In the present work we have used CNOT
templates, but as a future work, various heuristics combining
CNOT templates with Swap gate insertion shall be explored.
This is expected to provide further reductions in cost.

Experiments have also been run on larger benchmark cir-
cuits with 20 qubits or more, and the results are summarized
in Table II. For each of the benchmarks (with parameters Nq

and Ng), the table shows the hexagonal array dimensions,
the NN-costs using CNOT gate templates, and the run times.
The results show that even for circuits with higher number of
qubits, the run times are reasonably low with the highest value
of 12.69 sec reported for the benchmark f51m_233.

VI. EXTENSION TO MULTI-VALUED QUANTUM SYSTEMS

The proposed gate mapping approach on hexagonal quan-
tum computing architecture can be easily extended to multi-
valued quantum systems where the cells represent qudits. For
instance, in ternary quantum computing [31], gate operations

1Every Swap gate requires three CNOT gates for implementation.
2A CNOT gate with control and target at distance k apart, will require 4k

CNOT gates for NN-compliance.
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TABLE I
COMPARATIVE RESULTS ON BENCHMARK CIRCUITS

Benchmark Circuits NNC Proposed GA-based Approach
Name Nq Ng [30] Greedy Dim. NNC % Imp. over [30] Time (sec)
3 17 13 3 14 12 0 2 × 3 0 100.0 0.08
4 49 17 4 32 27 16 2 × 4 12 55.6 0.04
hwb4 52 4 23 21 8 2 × 4 8 61.9 0.03
rd32-v0 67 4 8 6 4 2 × 4 0 100.0 0.00
4gt11 84 5 7 3 0 3 × 3 0 100.0 0.01
4gt13-v1 93 5 17 6 8 3 × 4 0 100.0 0.01
4mod7-v0 95 5 40 27 48 4 × 4 12 55.6 0.03
4gt5 75 5 22 21 12 3 × 4 8 61.9 0.02
aj-e11 165 5 60 54 56 3 × 4 4 92.6 0.03
4gt10-v1 81 5 36 45 20 3 × 4 12 73.3 0.06
4mod5-v1 23 5 24 24 20 3 × 5 8 66.7 0.02
alu-v4 36 5 32 24 24 3 × 4 8 66.7 0.02
hwb5 55 5 109 132 112 3 × 4 40 69.7 0.06
QFT5 95 5 10 12 12 3 × 5 12 0.0 0.03
4gt4-v0 80 6 44 45 40 3 × 4 4 91.1 0.03
4gt12-v1 89 6 53 45 32 3 × 4 8 82.2 0.03
hwb6 58 6 146 168 192 3 × 4 140 16.7 0.08
mod5adder 128 6 87 84 64 3 × 4 52 30.1 0.05
QFT6 6 15 84 24 3 × 4 24 71.4 0.01
mod8-10 177 6 109 111 116 3 × 4 72 35.1 0.06
hwb7 62 7 2663 3798 4356 4 × 5 3996 -5.2 1.45
QFT7 7 21 42 44 4 × 5 36 14.3 0.02
rd53 135 7 78 117 84 4 × 5 56 52.1 0.05
ham7 104 7 87 87 96 4 × 5 56 35.6 0.17
hwb8 118 8 16610 20526 31360 6 × 6 25768 -25.5 9.15
QFT8 8 28 57 68 5 × 5 64 -12.3 0.02
QFT9 9 36 84 104 5 × 6 96 -14.3 0.03
QFT10 10 45 129 140 4 × 6 132 -2.3 0.05
sym9 148 10 4452 6592 6624 4 × 5 5048 23.4 2.28
sys-v0 144 10 62 96 84 5 × 6 32 66.7 0.05
Shor3 10 2076 4035 3664 5 × 7 2560 36.6 1.37
rd73 140 10 76 78 128 5 × 5 56 28.2 0.07
cycle10 2 110 12 1212 1728 2996 5 × 6 2008 -16.2 1.05
Shor4 12 5002 10368 12492 6 × 8 7500 27.7 3.68
Shor5 14 10265 22269 26824 5 × 6 17904 19.6 5.28
ham15 108 15 458 672 876 6 × 6 628 6.5 0.35
rd84 142 15 112 174 316 6 × 6 128 26.4 0.12
cnt3-5 180 16 125 192 436 6 × 6 116 39.6 0.10

Nq : Number of qubits, Ng : Number of gates, NNC: neareat-neighbor cost,
Dim.: dimension of hexagonal array, Imp.: % improvement

TABLE II
RESULTS ON LARGE BENCHMARK CIRCUITS

Benchmark Circuits Proposed GA-based Approach
Name Nq Ng Dim. NNC Time (sec)
add16 174 49 148 10 × 10 808 0.20
add32 183 97 292 14 × 14 3440 0.69
add32 185 97 192 14 × 14 2380 0.57
add64 184 193 576 20 × 20 13048 2.21
add64 186 193 384 20 × 20 7888 1.52
alu1 198 20 189 7 × 7 488 0.20
apla 203 22 2051 7 × 7 4648 1.53
arb8 323 24 522 7 × 7 1764 0.38
bw 291 87 719 14 × 14 7304 1.53
c2 181 35 328 9 × 9 1396 0.36
cm151a 211 28 639 7 × 8 2076 0.58
cu 219 25 752 7 × 7 1320 0.46
decod 217 21 845 6 × 7 1160 0.46
f51m 233 22 19724 7 × 7 65968 12.69
ham15 298 45 196 9 × 10 1092 0.22
hwb5 300 28 217 7 × 8 912 0.18
hwb7 302 73 709 12 × 13 7936 1.24
hwb9 304 170 1753 19 × 19 36492 5.58
in0 235 28 11297 7 × 8 31800 6.76
mod5adder 306 32 227 8 × 8 1040 0.21
rd73 312 25 169 7 × 7 604 0.14
rd84 313 34 225 8 × 9 1056 0.26

are defined on three basis states of qudits (called qutrits), |0〉,
|1〉 and |2〉. There are various 1-qutrit and 2-qutrit gate opera-
tions that are defined [32]. For implementing these operations
in hexagonal architecture will also demand nearest-neighbor
constraints for efficient computations. Although several works
have been reported on the synthesis of ternary quantum
circuits [31], [33]–[35], very little efforts has been made for
mapping the qutrits to 1-D and 2-D architectures. However,
in the context of the present work, the qutrits of a ternary
quantum circuit can be efficiently mapped to the hexagonal
architecture, where each cell represents a qutrit.

Example 3: Fig. 11(a) shows an example ternary quantum
circuit with four qutrits q0, q1, q2 and q3, with five 2-qutrit gate
operations. If the qutrits are assumed to be linearly arranged in
1-D, the first and fifth gates shall operate on non-neighbor pair
of qutrits. However, if the qutrits are mapped to a hexagonal
grid as shown in Fig. 11(b), all the gate operations become
NN-compliant. It may be noted that in general some of the
2-qutrit gate operations may not be NN-compliant on the
hexagonal grid, and one or more qutrit Swap operations may
be required in such cases.
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(a) (b)

Fig. 11. Qutrit mapping in a ternary quantum circuit: (a) An example ternary
quantum circuit, (b) NN-mapping of qutrits to hexagonal grid.

VII. CONCLUSION

We present a 2-D placement algorithm for mapping qubits
in hexagonal NN architecture using GA. The formalism of the
coordinate system makes the task of estimating NN distance
computationally efficient. The fact that every qubit has six
neighbors makes the architecture beneficial compared to prior
2-D works based on Cartesian coordinates. The GA-based
approach for finding a suitable global ordering of qubits is
found to be fast and efficient as compared to greedy approach.
The greedy approach is found to show worse results compared
to 2-D works based on Cartesian coordinates. We also observe
that the use of CNOT templates is beneficial as compared to
Swap gates for making the circuit NN-complaint. We have
carried out experiments on various benchmarks. The results
show an average improvement of 42.9% over a very recent
work based on 2-D Cartesian coordinates. We have not used
local ordering in this approach, and hence one of the future
works can be to use local ordering using Swap gates in
addition to CNOT templates to further improve the NNC cost.
The proposed hexagonal architectures can also be used for
multi-valued quantum systems.
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[18] H. Häffner, W. Hänsel, C. Roos, J. Benhelm, M. Chwalla, T. Körber,
U. Rapol, M. Riebe, P. Schmidt, and C. Becher, “Scalable multiparticle
entanglement of trapped ions,” Nature, vol. 438, pp. 643–646, Dec 2005.

[19] C. Monroe and J. Kim, “Scaling the ion trap quantum processor,”
Science, vol. 339, pp. 1164–1169, Mar 2013.
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