
Early Validation of SoCs Security Architecture
Against Timing Flows Using SystemC-based VPs

Mehran Goli Rolf Drechsler
Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{mehran, drechsler}@uni-bremen.de

Abstract—Modern System-on-Chips (SoCs) have been increas-
ingly deployed in critical aspects of our lives. As a consequence,
they have access to a large number of secret assets that must be
protected against unauthorized access. In order to provide sound
security guarantees, an SoC typically has a security architecture
as authentication mechanisms to control the access of different
Intellectual Properties (IPs) to secret assets. Since the SoC’s
security architecture cannot be changed after production, it is
of utmost importance to detect any security flaws in the design
phase. Moreover, to prevent costly fixes in later stages, security
validation should start as early as possible.

In this paper, we propose a novel approach to validate the
security architecture of a given SoC against timing flows using
SystemC-based Virtual Prototype (VP) and static information flow
tracking technique at the system level. Experimental results on
two real-world VP-based SoCs demonstrate the scalability and
applicability of the proposed approach in identifying timing flows.

I. INTRODUCTION

The increasing deployment of computing devices in a large
number of highly personalized activities and critical aspects
of our lives (e.g., medical devices, automobiles, flight control,
and banking systems) has raised their requirements on security
significantly. Modern computing systems are typically imple-
mented as system-on-chip (SoC) designs, namely a single
integrated circuit containing the system functionality [1]. An
SoC design involves the composition of a large number of
Intellectual Properties (IPs) such as memories, processing
units, I/O interfaces, and other various hardware accelera-
tors (e.g., hardware encryption units). These IP blocks are
integrated through a number of on-chip interconnects (buses)
to implement the system functionality. Since data (includ-
ing secure assets) in such a system is transferred via the
shared interconnects across different IPs, access control or
information flow requirements are defined by a collection of
security policies. The policies specify the conditions under
which a secret asset can be accessed at any point in the system
execution. Thus, an SoC needs a security architecture [2] to
ensure that the system enforces and manages these policies
e.g., a mechanism of authentication or managing access to
shared resources.

A common property that often needs to be guaranteed in
these systems is non-interference [3], where certain parts of
the system should never interfere with other parts. However,
guaranteeing non-interference in a given SoC is a non-trivial
and crucial task as depending on security architecture (the

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project VerSys under contract
no. 01IW19001, and by the University of Bremen’s graduate school SyDe,
funded by the German Excellence Initiative.

access control policies) implemented in the SoC, information
can flow through difficult-to-detect side channels. The IPs
through which secret data leaks are called side channels,
and attacks exploiting this information are called side-channel
attacks. Among the existing side-channel security attacks,
timing-based attacks are more interesting for attackers as they
only need to measure the completion time of the victim process
without physical access to the design. Thus, attackers can
access secret data at a very low cost and effort.

Information Flow Tracking (IFT) [3] has been shown as
a powerful technique to help mitigate security vulnerabili-
ties that violate certain information flow policies and non-
interference properties. IFT works by monitoring how infor-
mation propagates through a system to see if secret informa-
tion is leaking to an untrusted subsystem or to ensure that the
integrity of a critical subsystem is not violated.

Since the cost of fixing any security flaws increases with
the stage of development, the validation process should be
performed as early as possible. For the early design entry,
Virtual Prototype (VP) is being increasingly adopted by the
semiconductor industry [4]. A VP is an abstract and exe-
cutable software model that is typically implemented using
SystemC [5] and its Transaction Level Modeling (TLM) [6]
framework at the Electronic System Level (ESL) [7]–[9]. In
comparison to the Register Transfer Level (RTL) designs, VPs
provide designers with orders of magnitude faster simulation
speed. By this means, a system can be implemented quickly
and used as a reference model for lower levels of abstraction.
Hence, VP-based security validation could be one promising
direction to fix the security vulnerabilities in the SoCs before
they are refined and to avoid costly design loops occur.

While there are some VP-based IFT security validation
methods [10]–[12] at the ESL that focus on functional infor-
mation flows (ensuring that data does not move among isolated
IPs), the timing flows validation (certifying that the timing
footprints of the isolated IPs do not form a communication
channel) has not been considered yet.

In this paper, we focus on the security validation of
SoCs security architecture (access control or information flow
policies) against timing flows, in particular, helping system
designers to detect non-interference property violations and to
pinpoint security flaws caused by a poor security architecture
implementation in the early stage of the SoC design process.
We propose a VP-based security validation approach that uses
the static IFT technique and consists of two main phases:
1) static data extraction, and 2) timing flow analysis. In the
first phase, we build on the flexible Clang compiler [13]–[15]

to formally represent the behavior of a given VP-based SoC
in terms of data and control flows w.r.t the given security
properties. This is done by statically analyzing the Abstract
Syntax Tree (AST) of the VP through several intermediate
steps such as connectivity analysis, access control extraction,
call-graph analysis, and data dependency analysis. In the
second phase, we perform a static taint tracing and path
analysis on the formal representation of the VP’s behavior to
identify all paths that violate the specified security properties.
The violated paths are reported back to designers, allowing
them to improve the security architecture of the SoC. The
proposed approach is applied to two real-world VP-based
SoCs namely LEON3-based SoCRocket VP [16] and RISC-V
VP-based SoC [17] to show its scalability and applicability.

II. RELATED WORKS

Over the past few years, IFT techniques have been widely
used to create secure systems by detecting security defects or
enforcing security policies.

There exist several secure languages that provide designers
with modeling provably secure hardware. Caisson [18], Sap-
per [19], SecVerilog [20], and VeriCoq-IFT [21] are hardware
security design languages that allow designers to label and
track information flow. For example, the Caisson [18] and
Sapper [19] are both FSM-based languages that have been
developed by combining domain-specific abstractions common
to hardware design and type-based techniques used in secure
programming languages. Although the aforementioned meth-
ods enhance secure hardware design, their major drawbacks
are new language familiarity and needing to redesign the entire
hardware based on the new language syntax and semantics.

Several IFT-based methods have been developed for hard-
ware trustworthiness, targeting the RTL designs. Proof-
Carrying Hardware (PCH) [22], [23] verifies the equivalence
between the design specification and its implementation using
run-time Combinational Equivalence Checking (CEC). How-
ever, converting RTL code to a formal representation and
developing proofs for security properties, requires additional
knowledge of formal methods, theorem proving environments,
and proof-writing. This makes PCH-based methods very te-
dious and time-consuming which adopting them need a lot
of manual effort. RTLIFT [24] gives the flexibility to define
both implicit and explicit flows. It encodes security attributes
into the design for formal verification of hardware security
properties. However, all the aforementioned methods are only
applicable at RTL and do not support SystemC constructs.

At the ESL, there are only a few works [10]–[12] on
security validation of VP-based SoCs. These methods use the
IFT technique to validate a given VP-based SoC against the
security violations related to the confidentiality and integrity
threat models. While these methods are able to analyze the
functional information flows (i.e., information does not move
among isolated IPs), they cannot detect any timing flows. The
method presented in [25] introduces a timing flow analysis
technique to validate SystemC HLS designs. Similarly, [26]
detects and reports information flow violation in accelerator
designs implemented in C language. However, these methods
are limited to single IP blocks and do not support TLM-2.0
constructs.

MPU1

SharedBus

Secure_mem

Shared_memMPU2

authentication

decode_addr

Fig. 1: Architecture of motivating example.

III. TIMING FLOW THREATS AND MOTIVATING EXAMPLE

In this section, we first describe the threats of timing flow
in VP-based SoCs at the ESL. Second, using a motivating
example, we explain how timing variations are generated
and represented at the VP level and what are the necessary
conditions for blocking them.

A. Timing Flow Threats

In an SoC, transporting (secret) data among different IP
components is typically performed through shared intercon-
nects (buses). For a given VP-based SoC, TLM communica-
tion by means of transactions is used to model transporting
data among IP blocks at the ESL. Since all data (transactions)
is transported through shared interconnects, designers imple-
ment different access control or information flow policies (se-
curity architecture) to protect the secret data from unauthorized
access. A common property that often needs to be checked in
these systems is non-interference [27]. In this context, there
are three general security properties:
• Confidentiality: an IP creates an unwanted information

flow from a target IP in retrieving secret data which this
IP is not allowed to access,

• Integrity: an IP presents itself as a different IP to create
an information flow to some target IP to modify some
data, and

• Availability: an IP may use some shared resource to the
extent that other IPs cannot use it

With respect to the notion of non-interference, secure assets
can be inferred through two general classes of information
flow: explicit and implicit. Explicit information flows result
from two modules directly communicating. Implicit infor-
mation flows are very subtle and generally leak secret data
through behavior. In a given SoC, typical implicit information
flows show up in the form of timing, where information can
be extracted from the time difference of operations.

Assume that part of the interconnect module in an SoC
that is responsible for the authentication (controlling access to
secure parts) implemented in such a way that the time takes
for performing the authentication process (e.g, checking key)
is dependent on the key value of the incoming transactions. In
this case, an unauthorized IP (attacker) can extract sensitive
data (i.e., the key) by observing and analyzing the variations in
the completion time of the authentication unit. Once the key is
leaked, the unauthorized IP can use it to read (confidentiality)
or modify (integrity) secret data stored in the secured memory.

Another source of timing flows in an SoC with a shared
interconnect arises when IP blocks that are supposed to be
isolated can covertly communicate by modulating the access
patterns to a shared resource (e.g., memory) and affecting

1 struct MPU1 : sc_core::sc_module {
2 /*...*/
3 void thread_process(){
4 /*...*/
5 key_extension* ext = new key_extension;
6 ext->sec_key = "A1B2C3D4";
7 trans.set_extension(ext);
8 /*...*/
9 socket->b_transport(*trans, delay);

10 /*...*/};
11 struct SimpleBus : sc_core::sc_module {
12 const char* Skey = "A1B2C3D4";
13 tlm_utils::simple_initiator_socket_tagged<SimpleBus>*

init_socket[2];
14 tlm_utils::simple_target_socket_tagged<SimpleBus>*

targ_socket[2];
15 /*..*/
16 int decode_addr(sc_dt::uint64 addr, sc_dt::uint64&

masked_addr) {
17 unsigned int id = static_cast<unsigned int>((addr >> 8)

& 0x3);
18 masked_addr = addr & 0xFF;
19 return id;}
20 /*..*/

21 bool authentication (char* trans_key) {
22 size_t i = 0;
23 while (i < strlen(Skey)){
24 if (trans_key[i] != Skey[i])
25 return false;
26 i++;}
27 return true;}
28 /*..*/
29 virtual void b_transport(tlm::tlm_generic_payload&

trans, sc_time& delay){
30 sc_dt::uint64 address = trans.get_address();
31 sc_dt::uint64 masked_address;
32 unsigned int mem_id = decode_addr(address,

masked_address);
33 security_extension* ext = new security_extension;
34 ext = trans.get_extension();
35 bool permission = authentication(ext->key);
36 trans.set_address(masked_address);
37 if (mem_id == 0)
38 if (permission == 1)
39 (*init_socket[0])->b_transport(trans, delay);
40 else if (mem_id == 1)
41 (*init_socket[1])->b_transport(trans, delay);
42 /*..*/};

Fig. 2: A part of the motivating example source code.

the time when other IP blocks can use the same resource.
Moreover, if the access control policy implemented e.g., based
on priority-based messaging, an unauthorized IP (attacker)
can generate transactions with high priority to access the
shared resource and block the other transactions generated by
authorized IPs (availability).

As the VP is used as a reference model, the access control or
information flow policies (security architecture) of the SoC are
translated into lower levels of abstraction in the SoC design
flow. Thus, the abstract timing model of the SoC’s security
architecture at the VP level is mapped onto the cycle-accurate
model where the completion time of operations depends on
clock cycles or their latency. Hence, the main goal of our
VP-based timing flows analysis is to early detect the potential
timing-based security flaws in a given SoC caused by a weak
implementation of the security architecture.

B. Motivating Example

We present here a simple VP-based SoC implemented in
SystemC TLM-2.0 (Fig. 1) that will be used to showcase
the main ideas of our approach throughout this paper. The
VP consists of a trusted microprocessor (MPU1), a regular
microprocessor (MPU2), a regular memory (Regular_mem),
and a confidential memory (Secure_mem). The modules are
connected to the shared interconnect SharedBus (which routes
transactions) where the MPUs act as initiators and the mem-
ories as targets. Fig. 2 shows a part of the VP source code
including the MPU1 (Lines 1 to 10) and SharedBus (Lines 11
to 42) modules. The communication uses a 16-bit address
mode where bits 0 to 7 are used for local address inside mem-
ory and bits 8 to 15 for memory address. The MPUs execute
instructions that initiate transactions (i.e., read or write) to
access memories. For a transaction generated by an initiator
module, the SharedBus module receives the transaction and
checks its address attribute to route it to the corresponding
memory. As illustrated in Fig. 2, this process is implemented
as decode_addr unit in the interconnect (Lines 16 to 19).
Moreover, the SharedBus module contains an authentication

unite (Lines 21 to 27) which is implemented as the access
control policy of the SoC to authenticate any access of initiator
modules to the secured memory Secure_mem. The authenti-
cation process is performed by comparing the authentication
key (shortened for simplicity) Skey (Line 12) which is only
available for the SharedBus and the authorized initiator module
(MPU1). In order to access the secured memory Secure_mem,
an initiator module needs to create transactions that contain the
memory address and the authentication key. The address filed
of transactions contains the memory address of Secure_mem
while the authentication key is stored in their extension filed.
In the case that both conditions (memory address and authen-
tication) are satisfied (Lines 37 to 39), the initiator module is
allowed to access the secured memory.

Now consider the scenario that the authentication algorithm
is implemented as a loop over all characters of the authen-
tication key (Lines 21 to 27). Once the two keys differ in
a character, the comparison function returns with false, and
when only all characters are identical, is true returned. In this
case, as long as the characters in both trans_key and Skey
(Line 24) are equal, the next character is compared. As soon
as one differs, the function returns. Since each additional com-
parison takes extra time, an unauthorized IP (MPU2) can take
advantage of this time difference to brute-force the character
(by generating transactions) for each position one at a time.
In comparison to a regular brute-force attack, this requires
an effort that is linear in the length of the authentication key
instead of exponential.

A possible solution to block this timing-based information
leakage flow is to fully control the update on the result of the
authentication unit with a non-sensitive variable. Fig. 3 shows
a safe implementation of the authentication unit where the key
comparison is always performed for the total length of the
secret key and is not dependent on the value of trans_key. In
this case, the final result is fully controlled by a loop condition
(Fig. 3, Line 4) with non-sensitive variables i and Skey. Thus
the final result flag is generated at constant time steps.

As it has been proven in [28], detecting conditional updates

1 bool authentication_blockage (char* trans_key) {
2 size_t i = 0;
3 bool flag = 1;
4 while (i < strlen(Skey)){
5 if (trans_key[i] != Skey[i])
6 flag = false;
7 i++;}
8 return flag;}

Fig. 3: Safe implementation of the authentication unit of the
SharedBus module.

caused by sensitive data captures all timing flows. Thus, in
order to detect timing flows in a given VP-based SoC, we need
to determine whether or not the updates made to the results of
the access control or information flow policies implemented
in the SoC occur at constant time steps. This can be addressed
by detecting variations in the update time of the transaction’s
attributes and the corresponding variables in the VP labeled as
sensitive and tracking them to the final results that supposed
to be generated in constant time.

IV. TIMING-BASED FLOWS DETECTION METHODOLOGY

The overall workflow of the proposed approach is illustrated
in Fig. 4, consisting of two main phases which are 1) static
data extraction and 2) timing flow analysis.

In the first phase, we take advantage of the Clang compiler
to analyze the AST (generated by Clang) of VP to formally
represent its behavior in terms of Correlation Graph (CG) and
Control Flow Graph (CFG) w.r.t the given security properties.
The security properties are defined by users and consist
of two main elements which are 1) the source with High
Security (HS) tag and 2) the sink that must be generated in
Constant Time (CT) or be isolated.

In the second phase, we take advantage of the aforemen-
tioned data structures (i.e., CG and CFG) to perform an
information flow analysis based on the security properties to
identify all timing-based flows from source to sink.

The violated paths are reported back to designers, allowing
them to improve the security architecture of the SoC.

A. Static Data Extraction

In this section, we first describe how the security properties
for our timing flow analysis are defined. Then, we explain
how the data and control flows of a given VP-based SoC are
extracted w.r.t the defined security properties.

1) Security Properties Definition: The first step of our
timing-based information flow analysis is to read the security
properties defined by designers. Each property must contain
two main elements which are source and sink. For a given
design, the former contains the part of the design with high
security tag while the latter refers to the part of the design
in which the time taken for it to reach its final value must
be constant as the source changes. These properties need to
be defined in a way to capture the complete flow without
missing out on any information. For a given VP-based SoC,
the classical property specification does not work as it always
considers an input port and an output port of the system as
untrusted/trusted information sources. Whereas different IP

Clang

AST

VP Source
.cpp

Security
Properties

Pass/Fail
Properties

CFG CG

1

2

Static
Analyzer

CG Extraction
Binding Info
Call Graph

CFG Extraction

Timing-flow Analyzer

Taint Analysis
CFG Analysis

Fig. 4: Methodology overview.

blocks in a VP interact through transactions, hence, the prop-
erty specifications and definitions need to adapt. Therefore, we
define security properties as follows:

SP = {Pi : (source, csrc , sink , csnk) |
source = HS , sink = CT} (1)

Please note that source can be a transaction generated in
a VP, an attribute of the transaction or an internal variable
related to the transaction. The sink in each property acts as the
final destination. The csrc and csnk parameters are predicates,
describing under which condition is the data valid at source
and sink, respectively. These parameters can be set to ∅, if
source or sink is valid for all cases. The index i indicates the
number of security properties in SP .

For example, in the case of the motivating example (Fig. 1),
the security property is defined as follows:

SP = {P1 : (source, ∅, sink , csnk) |
source ← MPU1 :: thread_process() : sec_key ,
sink ← SharedBus :: b_transport() : permission

csnk ← SharedBus :: b_transport() : mem_id = 0} (2)

In the security property P1 , variable sec_key is an attribute
of the transaction which is defined in its extension filed to
hold the authentication data for all generated transactions by
the MPU1 module in the thread_process(). The permission
variable belongs to the access control policy of the SharedBus
in its b_transport function and holds the authentication result.
The property ensures that the permission variable must obtain
the result in constant time as sec_key changes.

2) Creating Correlation Graph (CG): By analyzing the
security properties, we build a correlation graph (CG) for each
property. The CG is a data structure that describes the relation
of different design variables from source to sink including all
modules’ ports, transactions, and global and local variables.
The formal definition of the CG is as follows:

Definition 1. A Correlation Graph (CG) is a structure
(source, N, E, sink), where N is a set of nodes, E is
a set of edges, and source ∈ N is the starting node while
sink ∈ N is the ending node. The edge from node X to node
Y shows that Y is dependent to X .

n
1

n
2

n
3

n
5

n
4

n
7

n
6

n
0
: trans.get_address

n
0
: address

n
1
: mask_address

n
2
: mem_id

n
3
: ext

n
0
: trans.get_extension

n
4
: permission

n
5
: key

n
6
: init_socket[0]

n
7
: init_socket[1]

n
0

n
8

n
0
: addr

n
1
: mask_addr

n
2
: id

n
3
: ext

b_transport

decode_addr

n
0

n
1

n
2

n
3

n
4

n
5

n
6

authorization(...)

n
1

n
7

n
3

n
4

n
5

n
6

authorization_
blockage(...)

n
2

n
0

n
1
: ext

n
2
: permission

n
3
: key

n
4
: trans_key

n
5
: i

n
6
: Skey

n
7
: falg

SimpleBus::b_transport(...)

n
0
: sec_key

MPU1::thread_process()

CG-BlockageCG

Fig. 5: A part of the generated CG of the motivating example.

In order to build the CG for each property in SP , a static
analysis on the AST of the VP is performed. Since the first
node of the CG is source, we perform a recursive analysis
on the AST from the point where the source is declared for
the first time and extract all variables of the VP to reach
the sink . The extracted variables are tokenized by a unique
string including the name of module, function/process (for
local variable), and variable. The recursive analysis includes
visiting the computational, compound statements, and module
binding information.

The computational statements are usually defined as assign-
ments in the VP where updates on transactions’ related param-
eters and variables occur. Due to the transaction construct, the
update on a transaction’s attributes is performed by calling
its corresponding member function such as set_address() and
set_extension(). Moreover, if a statement includes a function
(or SystemC process) call, we recursively extract the relation
of the function’s variables with the left-hand side variable.
Thus, in our analysis, we extract all the aforementioned
constructs.

The compound statements are defined the control flow
of the system and consist of blocks such as if-else, for-
loop, or while statements. After analyzing the computational
statements and extracting the relation of their input operands
with their result variable, the analysis is performed for all
compound statements in which these computational statements
are defined. All variables of the compound statements which
consist of a computation statement are also added into the
dependency list of the result variable of the computational
statement. Please note that multiple occurrences of the same
variable are represented with a single node in the CG in order
to reduce the size of the graph as much as possible. It should
be taken into account that in our framework, we keep the
correspondence between nodes in the CG and variables in the
statements of the VP code so when a node in CG is selected,
the related statement in the VP code is easily determined.

In a VP-based SoC, transporting data is performed by
means of transactions using SystemC TLM-2.0 interfaces
(e.g. b_transport). In our analysis, we consider a connection
between two IPs when their corresponding sockets (initiator
socket and target socket) are connected using SystemC TLM-
2.0 b_transport function call. In the initiator modules, the
initiator socket calls the b_transport function to sent trans-

actions, and the corresponding target socket in the shared
interconnect for which the b_transport function is registered
receives the transactions and after routing analysis sends them
to the related target module. By this, the b_transport function
is the common hub in the VP, connecting two IPs through
initiator and target sockets. Thus, the binding information is
extracted by building the call graph for the b_transport which
is called by the initiator socket of initiator modules and goes
through the interconnect to reach the target modules.

Fig.5 illustrates a part of the generated CG and CG-blockage
of the motivating example w.r.t security property in (2). Each
node of the CG is a transaction’s attribute, its related parameter
or a variable of the VP which is tokenized by the name
of module and function (for local variable) to which the
transaction or variable belongs. The dot-box in the CG shows
the function calls graph, started from initiator module MPU1
by calling thread_process() and goes through the b_transport()
function of the SharedBus. Thus, this graph identifies how the
source (node n0) is connected to sink (node n2) through the
intermediate variables.

3) Creating Control Flow Graph (CFG): As mentioned
earlier, the main reason to form timing flows is conditional
updates caused by sensitive data. Using CG we can understand
how sensitive data flows from source to sink. In order to know
whether conditional updates caused by sensitive data, we need
to extract the control flow of a given VP. The formal definition
of CFG is as follows:

Definition 2. A Control Flow Graph (CFG) models the flow
of control between the basic blocks in a program. A CFG is a
structure (N,E) where N is a set of nodes and E is a set of
edges. Each node n ∈ N corresponds to a basic block. Each
edge e = (ni, nj) ∈ E corresponds to a possible transfer of
control from block ni to block nj .

The CFG is generated by analyzing the AST of the VP.
We visit all nodes in the AST which are related to both
computational and control flow statements. To do this, a
Depth-First Search (DFS) algorithm is performed within the
top-level entity where the source is defined to visit all nodes
of the statement’s type (computational and control flow). We
take advantage of modules binding information from CG to
build the connection between two modules in CFG. Moreover,
function calls within the modules process are extracted by
visiting the relevant nodes in the AST to understand how lower
hierarchies in a module (i.e., local function and process) are
connected to each other. Please note that each statement of the
design is tokenized by the line of code where the statement is
defined.

Fig. 6 demonstrates a part of the generated CFG and CFG-
Blockage of the motivating example (Fig. 1) w.r.t security
property in (2). The gray nodes show the control flow state-
ments (condition node type e.g., if-else) while the white nodes
indicate the computational statements.

B. Timing Flow Analysis

After generating a formal representation of a given VP-
based SoC behavior, we perform a timing flow analysis to
detect all conditional updates caused by the sensitive data.
Algorithm 1 shows this analysis where for a given security

L33 L34

L*
5

CFG

L35

Begin
CFG-Blockage

L*
2L*

3

L*
4

L*
6L*

7

L*
8

L33 L34

L24

L35

Begin

L22

L23

L26 L25

L27

Fig. 6: A part of the generated CGF and CFG-blockage of the
motivating example. L and L* indicate line of code in Fig. 2
and Fig. 3, respectively.

property Pi , a taint analysis is performed on the corresponding
generated CG and CFG. The taint analysis identifies how the
sensitive data (source) affects or taints other transactions and
variables inside a system. The taint analysis is performed by
a forward tracing on the CG from the source node to the sink
node. All nodes in this trace that are related to the source get
the HS tag and are added into the list of source taints Lst

(Line 1). In the case of the motivating example, the Lst of the
VP after tracing its CG (Fig. 5) is {n1 ,n3 ,n4}.

In the next step (Lines 2–14), the CFG of the VP is analyzed
to find all control statements including sensitive variables,
transaction’s attributes or its related parameters (stored in Lst)
that control the occurrence of updates on sink. To do this,
each condition node type of the CFG (e.g., if-else) is visited
and its control variables nctrl are extracted (Lines 3–4). If the
intersection of the extracted control variables of the condition
node nctrl and Lst is not empty, further analysis is performed
on the child nodes of the condition node n (Lines 5–14). The
goal of this analysis is to find whether the condition node
n which includes sensitive variable(s) controls the update on
sink. To do this, we perform a DFS analysis on the child nodes
of the condition node n to find a direct path from n to sink
where no condition node is visited. The existence of a direct
path indicates that condition node n has an explicit impact on
the update of sink. If there is at least one path that meets this
condition (Lines 11–14), a timing flow exists in the VP. Thus,
the condition node and the related path (corresponding lines
of code in the VP source code) are stored in TF and reported
to designers.

In the case of our motivating example, the first condition
type node in the CFG of the VP (Fig. 6) is L23 whose control
variables are {i ,SKey} which are not in Lst . Therefore,
the analysis continues to the next condition node which is
L24 whose control variables are {trans_key ,SKey}. Since
trans_key is in Lst , further analysis is performed on the
child nodes of L24 . The result of DFS analysis shows
that there are two paths p1 = {L24 → L25 → L35} and

Algorithm 1 Timing-flow Analyzer
Input: Pi , CG , CFG
Output: Timing Flow TF

1: Lst ← ForwardTraverse (source,CG)
2: for each node n ∈ CFG do
3: if n.type() == condition then
4: nctrl ← Extract list of variables from n
5: if nctrl ∩ Lst 6= ∅ then
6: Lpath ← DFS (n,CFG, sink)
7: for each path p ∈ Lpath do
8: for each node np ∈ p do
9: if np .type() == condition then

10: remove(p,Lpath)
11: if Lpath 6= ∅ then
12: for each node np ∈ p do
13: if sink ∈ np then
14: TF ← (n,np)

15: return TF

p2 = {L24 → L26 → L23 → L27 → L35}. As p2 includes a
condition type node (L23), it is eliminated from Lpath . Thus,
p1 is the only member of Lpath whose L35 includes sink. In
this case, L24 and path p1 are stored in TF and reported back
to designers.

On the other hand, analyzing the CFG-Blockage shows that
there is no timing flow in the VP as there is no explicit
path from conditional node L∗5 (which its control variable
{trans_key} is in Lst) to the sink. The only available path
(p1 = {L∗5 → L∗7 → L∗4 → L∗8 → L35}) is through the con-
dition node L∗4 which is eliminated from Lst . Thus, the Lst for
this condition node (L∗5) is empty. As illustrated in Fig. 6, the
update on sink (node L35) is fully controlled by the condition
node L35 which does not have any sensitive variables.

C. Implementation Details

The Static Analyzer module is implemented using the
LibTooling library of the Clang compiler [13]. To access
relevant nodes in the AST (generated by Clang) of a given
VP, we use the primary node visitor RecursiveASTVisitor of
Clang. It provides designers with a recursive mechanism on
the entire AST to visit each node based on the DFS algorithm.
The VisitCXXRecordDecl (as SC_MODULE is defined based
on class or struct in SystemC) and VisitFunctionDecl are used
to find the deceleration nodes of modules and functions in the
AST, respectively. The information (i.e., name and type) of
modules’ ports are extracted by accessing node type FieldDecl.
The member functions of VP’s modules are retrieved by
visiting node type CXXMethodDecl. We extract the locations
where transactions are defined as function arguments or local
variables within the function’s body by finding the node type
DeclRefExpr in the AST. We take advantage of the node
type CXXMemberCallExpr in the AST to extract the function
calls and tracing the transaction object which is used as
input arguments for the transport interfaces. The Timing-flow
Analyzer is implemented in C++ based on Algorithm 1.

V. EXPERIMENTAL RESULTS

The proposed approach was applied to two standard real-
world VP-based SoCs namely LEON3-based SoCRocket
VP [16] and RISC-V VP-based SoC [17]. For each case study,
we briefly discuss the architectural features that cause timing
flows, the attack model for exploiting, the possible mitigation
technique, and the results of our timing flow analysis.

The analysis has been performed on a PC equipped with
24 GB RAM and an Intel core i7-8565U CPU running at
1.80 GHz.

A. Case Study 1: SoCRocket VP

In the first experiment, we consider a common source of
timing flow in a given SoC (timing-based covert channel)
where different IPs can access a shared resource (e.g., mem-
ory). Depending on the access control policies implemented in
the SoC, timing flow between IPs when accessing the shared
resource may exist. In this case, IPs that are supposed to be
isolated can secretively communicate by modulating the access
patterns to the shared resource and impacting the time when
other IPs can use it.

In order to model this security scenario, we used the
LEON3-based SoCRocket VP. The VP itself consists of more
than 50,000 lines of code and several IPs working together
in master or slave mode which are connected to the on-chip
bus AMBA-2.0 AHB (Advanced High-performance Bus). The
communication uses a 32-bit address mode where the 12 most
significant bits are used to specify the memory address.

We modified the LEON3-based SoCRocket VP by integrat-
ing three TLM-2.0 IPs with its AMBA-2.0 AHB which are
1) two initiator modules ahbin1 and ahbin2 (act as master),
and 2) one shared memory ahbMem (act as slave). We also
implemented a Memory Management Unit (MMU) inside of
the AMBA-2.0 AHB to control the access of master IPs to
the shared memory. The MMU unit is based on the Round
Robbin (RR) access policy, providing master IPs with an equal
priority to access the shared memory ahbMem. To access the
shared memory over the bus architecture, master IPs need to
create transactions that contain the memory address and the
access request. The address attribute of transactions contains
the memory address of ahbMem while the access request is
stored in their extension filed (access_req). When AMBA-2.0
AHB receives the first transaction of a given master IP that
contains the address of ahbMem and its access_req is true,
MMU grants access to the master IP for a specific quantum
time QT. Thus, other IPs are not able to access the shared
memory within QT.

The access control policy of the VP can be validated by
defining a security property to check whether access of a given
IP to the shared memory is dependent on the access request
of other IPs. The security property is defined as follows:

SP = {P1 : (source, csrc , sink , csnk) |
source ← ahbin1 :: gen_frame() : access_req ,
csrc ← AHBCtrl :: b_transport() : master_id = 1 ,

sink ← AHBCtrl :: mmu() : access_grnt2 ,
csnk ← AHBCtrl :: b_transport() : mem_id = 2} (3)

The security property P1 ensures that the access grant
access_grnt2 which is issued by MMU of the AMBA-2.0
AHB for the ahbin2 must not be dependent on the access_req
of the ahbin1 module. Based on the given security property,
our timing flow validation approach could detect a path in
the CFG of the VP where access_grnt2 is a child node of a
condition node (else-if statement) which its condition variable
is in the list of source taint (Lst). This confirms the existence of
a timing flow between access_req (source) and access_grnt2

(sink) variables, thus, the corresponding lines of code in the
MMU and path in the CFG are reported.

In order to block this timing flow, we replaced the RR
algorithm of the MMU with a Time Division Multiple Ac-
cess (TDMA) algorithm where the access grant is issued
based on a counter which is a non-sensitive variable. We have
analyzed the VP again, and in this case, no timing flow was
detected as the grant access is fully controlled by a counter
variable (which is non-sensitive). The analysis took 41.72
seconds to report the results.

B. Case Study 2: RISC-V VP
In the second experiment, we consider the case of a timing-

based attack in a given SoC where secret data stored in the
secured memory is protected by encryption and authentication
process (which is commonly used in SoCs to maintain data
privacy and integrity [29]). In the case that the authentication
process is dependent on the sensitive data (e.g., secret key),
the timing behavior may leak information about the sensitive
data.

To model this security scenario, we used the open-source
RISC-V VP-based SoC [17] that is implemented in Sys-
temC TLM-2.0. The VP designed as an extensible and config-
urable platform around a RISC-V RV32IM CPU core with a
generic bus system SimpleBus. The communication uses a 32-
bit address mode where the 16 least significant bits are used
to specify the memory address while the four most significant
bits are dedicated to initiator module identifications.

We have modified the VP by integrating three TLM-2.0
IPs which are 1) two initiator modules init1 and init2 (act
as masters) and 2) one secured memory sec_mem (act as a
slave). The init1 module contains an RSA unit to encrypt and
decrypt secret data when writes to and reads from the secured
memory sec_mem, respectively. To protect sec_mem from
unauthorized access, an authentication process is performed
on any incoming transactions to the SimpleBus as the access
control policy. The authentication process is implemented in
the SimpleBus based on the asymmetric key encryption tech-
nique using the RSA algorithm. To access sec_mem, the init1
module needs to generate transactions whose data attribute
is encrypted by the RSA unit, the address attribute includes
the sec_mem memory address, and the authentication element
is stored in its extension filed. The RSA unit of the init1
module uses the private key to encrypt the transactions data,
and the public key and transactions address to generate the
authentication element. The private key is also shared with the
SimpleBus to perform the authentication process by decrypting
the authentication element of the incoming transactions and
checking whether the decrypted authentication element is
matched the address of transactions. In the case that these
two elements are matched, SimpleBus routes the incoming
transactions to the sec_mem memory.

The security property that must be ensured is that the time
for the authentication process (as the access control policy of
the SoC) in SimpleBus should not be dependent on the private
key (sec_key). The security property is defined as follows:

SP = {P1 : (source, ∅, sink , ∅) |
source ← SimpleBus :: sec_key ,
sink ← SimpleBus :: authentication() : decrypt_elmn} (4)

The security property P1 ensures that, for a given incoming
transaction to the SimpleBus, the decryption process of its
authentication element decrypt_elmn is not dependent on
the private key sec_key which is shared with init1 . Based
on the given security property, our timing flow validation
approach could detect a path in the CFG of the VP where in
modular_exp function, the decryption process is controlled
by a condition node (if statement) whose condition variable is
in the list of source taint (Lst) and directly connected to the
sec_key . This confirms the existence of a timing flow between
sec_key (source) and decrypt_elmn (sink) variables, thus, the
corresponding lines of code in the SimpleBus and path in the
CFG are reported.

The main reason for this timing flow vulnerability is that the
RSA decryption is implemented with the square and multiply
algorithm to perform fast exponentiation (which is a common
implementation). In this case, the bits in the private key are
checked one by one, and a modulo operation is performed only
when the bit is “1”. It means that the required time to perform
the RSA algorithm is directly dependent on the number of “1”
bits, or the hamming weight of the private key sec_key . In the
timing attack scenario, an IP (attacker) can continuously send
transactions to SimpleBus and measure the time to finish those
requests. It means that the attacker can estimate the number
of “1” bits in the private key by simply measuring its own
execution time. Once, the attacker could extract the private
key, it can also access sensitive data in sec_mem memory.

In order to block this timing-based leakage flow, we have
added a counter variable into the modular_exp function of
the RSA unit to eliminate the dependency of generating
decrypt_elmn to the value of sec_key . The value of the
counter has been defined based on two techniques which are
delaying until the worst-case execution time and randomiza-
tion. We have analyzed the access policy of the SimpleBus
again, and in this case, no timing flow was detected as the
decrypting process is fully controlled by the counter variable
which is non-sensitive. For this experiment, the analysis took
34.09 seconds to report the results.

VI. CONCLUSION

In this paper, we proposed a novel VP-based IFT approach
to validate a given SoC’s security architecture against tim-
ing flows. The proposed approach contains a scalable static
information flow analysis that operates directly on the AST
representation of VPs. In the first phase, the behavior of a
given VP is formally represented in terms of data and control
flows w.r.t the given security properties. In the second phase,
a static taint tracing and path analysis are performed on the
formal representation of the VP’s behavior to identify all paths
that violate the given security properties. The violated paths
are reported back to designers, allowing them to improve the
security architecture of the SoC. We have demonstrated the
applicability and scalability of our approach on two real-world
VP-based SoCs. The proposed approach is automated, fast,
non-intrusive, and does not rely on any commercial tool.

REFERENCES

[1] S. Ray and J. Bhadra, “Security challenges in mobile and IoT systems,”
in SOCC, 2016, pp. 356–361.

[2] S. Ray and Y. Jin, “Security policy enforcement in modern SoC designs,”
in ICCAD, 2015, pp. 345–350.

[3] D. Hedin and A. Sabelfeld, “A perspective on information-flow control,”
Software safety and security, vol. 33, pp. 319–347, 2012.

[4] M. Goli and R. Drechsler, “Automated design understanding of
SystemC-based virtual prototypes: Data extraction, analysis and visu-
alization,” in ISVLSI, 2020, pp. 188–193.

[5] I. S. A. et al, “IEEE standard for standard SystemC language reference
manual,” IEEE Std 1666-2011 (Revision of IEEE Std 1666-2005), pp.
1–638, 2012.

[6] J. Aynsley, Ed., OSCI TLM-2.0 Language Reference Manual. Open
SystemC Initiative (OSCI)., 2009.

[7] G. Martin, B. Bailey, and A. Piziali, ESL Design and Verification: A
Prescription for Electronic System Level Methodology. CA, USA:
Morgan Kaufmann Publishers Inc., 2007.

[8] M. Goli, J. Stoppe, and R. Drechsler, “Automated nonintrusive analysis
of electronic system level designs,” IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 39, no. 2, pp. 492–505, 2020.

[9] M. Goli and R. Drechsler, Automated Analysis of Virtual Prototypes at
the Electronic System Level: Design Understanding and Applications.
Springer Nature, 2020.

[10] P. Pieper, V. Herdt, D. Große, and R. Drechsler, “Dynamic informa-
tion flow tracking for embedded binaries using SystemC-based virtual
prototypes,” in DAC, 2020, pp. 1–6.

[11] M. Goli, M. Hassan, D. Große, and R. Drechsler, “Security validation
of VP-based SoCs using dynamic information flow tracking,” it Inf.
Technol., vol. 61, no. 1, pp. 45–58, 2019.

[12] M. Hassan, V. Herdt, H. M. Le, D. Große, and R. Drechsler, “Early
SoC security validation by VP-based static information flow analysis,”
in ICCAD, 2017, pp. 400–407.

[13] C. Lattner, “LLVM and Clang: Next generation compiler technology,”
in BSD, 2008, pp. 1–2.

[14] M. Goli, M. Hassan, D. Große, and R. Drechsler, “Automated analysis
of virtual prototypes at electronic system level,” in GLSVLSI, 2019, pp.
307–310.

[15] M. Goli and R. Drechsler, “Through the looking glass: Automated design
understanding of SystemC-based VPs at the ESL,” IEEE Trans. on CAD
of Integrated Circuits and Systems, (accepted) 2021.

[16] T. Schuster, R. Meyer, R. Buchty, L. Fossati, and M. Berekovic,
“Socrocket - A virtual platform for the european space agency’s soc
development,” in ReCoSoC, 2014, pp. 1–7, http://github.com/socrocket.

[17] V. Herdt, D. Große, P. Pieper, and R. Drechsler, “RISC-V based virtual
prototype: An extensible and configurable platform for the system-level,”
J. Syst. Archit., vol. 109, 2020.

[18] X. Li, M. Tiwari, J. K. Oberg, V. Kashyap, F. T. Chong, T. Sherwood,
and B. Hardekopf, “Caisson: a hardware description language for secure
information flow,” in PLDI, 2011, pp. 109–120.

[19] X. Li, V. Kashyap, J. K. Oberg, M. Tiwari, V. R. Rajarathinam,
R. Kastner, T. Sherwood, B. Hardekopf, and F. T. Chong, “Sapper: a
language for hardware-level security policy enforcement,” in ASPLOS,
2014, pp. 97–112.

[20] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware design
language for timing-sensitive information-flow security,” in ASPLOS,
2015, pp. 503–516.

[21] M.-M. Bidmeshki and Y. Makris, “Toward automatic proof generation
for information flow policies in third-party hardware IP,” in HOST, 2015,
pp. 163–168.

[22] X. Guo, R. G. Dutta, and Y. Jin, “Eliminating the hardware-software
boundary: A proof-carrying approach for trust evaluation on computer
systems,” IEEE Trans. Inf. Forensics Secur., vol. 12, no. 2, pp. 405–417,
2017.

[23] E. Love, Y. Jin, and Y. Makris, “Proof-carrying hardware intellectual
property: A pathway to trusted module acquisition,” IEEE Trans. Inf.
Forensics Secur., vol. 7, no. 1, pp. 25–40, 2012.

[24] A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner, “Register transfer
level information flow tracking for provably secure hardware design,”
in DATE, 2017, pp. 1691–1696.

[25] M. Goli and R. Drechsler, “ATLaS: Automatic detection of timing-based
information leakage flows for SystemC HLS designs,” in ASP-DAC.
ACM, 2021, pp. 67–72.

[26] Z. Jiang, S. Dai, G. E. Suh, and Z. Zhang, “High-level synthesis with
timing-sensitive information flow enforcement,” in ICCAD, 2018, pp.
1–8.

[27] J. A. Goguen and J. Meseguer, “Security policies and security models,”
in Symposium on Security and Privacy, 2012, pp. 11–20.

[28] A. Ardeshiricham, W. Hu, and R. Kastner, “Clepsydra: Modeling timing
flows in hardware designs,” in ICCAD, 2017, pp. 147–154.

[29] F. Hou, H. He, N. Xiao, F. Liu, and G. Zhong, “Efficient encryption-
authentication of shared bus-memory in SMP system,” in CIT, 2010, pp.
871–876.

