
Automatic Protocol Compliance Checking of
SystemC TLM-2.0 Simulation Behavior Using

Timed Automata
Mehran Goli1 Jannis Stoppe1,2 Rolf Drechsler1,2

1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

{mehran jstoppe drechsle}@informatik.uni-bremen.de

Abstract—The increasing complexity of todays digital circuit
designs led to the increased usage of abstract models. In partic-
ular, the Electronic System Level (ESL) has emerged as an area
of active research. For ESL design, SystemC and its Transaction
Level Modeling (TLM) framework have become the standard
tools for abstract modeling. The resulting models represent
both, an executable specification and a reference model for the
hardware design. The correctness of these designs is important
as undetected errors may propagate to less abstract levels in the
design process, increasing the potential amount of work required
to fix them.

To quickly ensure that implementations and reference emit
the same behavior, the comparison between these abstractions
needs to be both, flexible and automated. This paper presents a
method to verify the simulation behavior of a given System TLM-
2.0 design against TLM-2.0 protocols. The system’s structural
description and its run-time behavior are translated to a single,
consistent formal model. This is then used to verify that a simu-
lation run adheres to a given protocol. The protocol compliance
checks are performed using the UPPAAL model checker and
applied to several TLM models.

I. INTRODUCTION

One possible solution to cope with the ever increasing
complexity of electronic circuits (and their design) is designing
them on higher levels of abstraction, e.g. via the Electronic
System Level (ESL). In ESL, the C++-based, standardized
SystemC [1] library has become the de-facto standard [20]
modeling language.

One important advantage of SystemC is the support of
different levels of abstraction via Transaction-Level Modeling
(TLM). The TLM-2.0 standard is widely used for early system
validation by supplying reference models for less abstract
levels of the design process (such as Register Transfer Level
(RTL) implementations). It allows designers to describe a
model in terms of abstract communications using a set of
rules (the base protocol) and standard interfaces. Ensuring
the validity of these abstract TLM models is vital as the
cost of fixing undetected protocol violations are increasingly
expensive in later design steps.

The TLM-2.0 standard comes with more than 150 rules that
must be adhered to when a TLM model is implemented [5] and
which define the expected behavior of a TLM-2.0 compliant
model. A small part of these rules specify limitations concern-
ing the structure of TLM models (e.g. an initiator socket must
be connected to a target socket). This set is called the static
rules and is checked during compilation. A larger part of these
rules (the dynamic rules) determines restrictions on the TLM

communication and transaction attributes – and as such define
a set of protocols TLM designs should adhere to.

Neither the SystemC compiler nor the TLM library detect
TLM protocol violations that occur during execution. Manu-
ally verifying all rules and detecting the source of any given
error is error-prone and expensive even for simple models and
thus practically impossible for complex designs. Therefore,
automated verification techniques that verify the compliance of
a given ESL model with at least the base protocol are needed.

Generally, SystemC verification has been studied in two
scopes: formal verification and simulation-based verification.
Formal methods refer to model checking techniques [6]. They
require the designers to specify the model in formal semantics
(e.g. abstract state machines). As SystemC lacks formal se-
mantics [25], translating SystemC models to a formal language
is not a trivial task. It restricts formal methods to verify
a limited range of SystemC models as several assumptions
need to be imposed on a given input design (as e.g. function
pointers, recursion or templates cannot easily be described for-
mally). Moreover, state space explosion is another well-known
technical restriction of model checking, preventing it to verify
complex SystemC models. In simulation based verification, the
behavior of SystemC models is verified during simulation. In
order to trace transactions during simulation time, they usually
rely on intrusive techniques that either manipulate the original
source code (by inserting additional modules to the original
model) [7], [4], the SystemC kernel [23] or the SystemC
library [21]. Intrusive techniques either rely on expensive
manual processes or have compatibility issues that reduce the
degree of automation.

This paper presents a hybrid automated approach to for-
mally verify the simulation behavior of a given SystemC TLM-
2.0 model against TLM-2.0’s dynamic rules. The simulation
behavior of the model is automatically extracted using the
GNU debugger (GDB) [22] and transformed into a finite state
machine both non-intrusively and without any restrictions con-
cerning the original source code. This formal model is checked
against most standardized TLM-2.0 rules by a model checker.
To illustrate the effectiveness of the proposed methodology,
an approximately-timed (AT) model, based on the TLM-2.0
standard, is used as an application example and several designs
are tested with the given approach.

II. RELATED WORK

As mentioned in the previous section, the approaches for
verifying SystemC models are mostly divided in two main
categories: formal and simulation based methods.

Formal Methods: Many approaches [15], [14], [16], [17]
have been introduced to formally verify SystemC models.
They rely on translating the models to formal semantics
such as state machines and verify them by checking safety
properties. In [15], SystemC models are transformed into
the Abstract State Machine Language (AsmL) and properties
are formulated using the Property Specification Language
(PSL). The translated model is verified using a model checker.
In [14], a SystemC-TLM design is translated to a sequential
C model and the properties are defined using PSL. Then, a
monitoring logic which is based on C assertions and finite state
machines is utilized to verify the properties. In [16], [17], a
transformation of a given SystemC design to a timed automata
model is created. The translated model is then checked by
model checkers such as UPPAAL and BLAST. The method
proposed in [8] formalizes the semantics of SystemC designs
in terms of Kripke structures and verifies it using symbolic
model checking. The authors of [19] present an approach
to translate SystemC models to an Intermediate Verification
Language (IVL). Then, they provide a symbolic simulator to
verify the IVL.

For all of the aforementioned methods, translation of Sys-
temC designs to formal semantics is the main challenge
confining them to verify only a sub-set of SystemC models.

Simulation-based Methods: Several works [18], [10], [24]
have been proposed to verify SystemC models using Aspect
Oriented Programming (AOP). The idea of AOP is based
on a source-to-source translation enabling designers to add
additional code (aspects) at specific points of the original
source code. In [18] the AOP technique is utilized to in-
strument the source code of SystemC-TLM models to trace
its simulation. The traced information is checked against the
properties implemented as a C++ class. In [10] SystemC
source code and properties written as aspect description in
XML format by users are parsed. A weaver module is used
to reassemble the parsed source code and aspects. Then, a
SystemC formatter module is utilized to generate SystemC
source code from the woven syntax tree to check the properties
during the simulation time. In [24] user code primitives are
defined in property specifications by users. Then, AOP is
used to instrument the SystemC source code by generating
a monitor for each property to be check during the execution.

The AOP-based methods mostly depend on user interaction
to define the aspects and design primitives. Additionally, the
difficulty of defining and debugging AOP setups, this renders
the method rather hard to use.

There are also several attempts [21], [11], [9] to verify Sys-
temC models by Assertion-based Verification (ABV). In ABV,
properties are specified as assertions (written in languages like
PSL or System Verilog) and checked during simulation time.
However, the methods have several disadvantages. Property
formulation requires complex specification – which is done
manually by the user and is challenging to be applied during
simulation time. Most require the design’s original sources to
be changed, making ABV as an intrusive solution.

GDBExecutable
model

21

Debug
symbol

GDB
command

Run-time
log UPPAAL

List of
pass/fail

properties

Run-time Information Retrieval Information Translation 3 Compliance
Checking

Template
 properties

TLM2.0
rules

Time
automata

model

Trans.
lifetime

Fig. 1. The architecture of proposed methodology.

In [7], [4] SystemC-TLM models are verified by adding
some TLM protocol checkers as an external SystemC module
to monitor transactions. Transactions are monitored during
simulation by inserting a copy of the protocol checker between
every pair of TLM modules. They check whether or not each
transaction satisfies the TLM protocols. Using these protocol
checkers makes the method intrusive as the original source
code is manipulated.

Recently, the idea of utilizing GDB to access the run-time
data of SystemC-based models was introduced [13], [12].
While GDB is originally intended to provide programmers
a tool to manually modify the execution behavior of a given
program, it also provides an interface to control its behav-
ior using predefined command files. In order to extract the
information automatically, such a command file is generated
automatically from the debug symbols that are present in the
precompiled binary. The extracted information in [13] is used
to functionally verify a SystemC design against its formal
specification. However, the extracted information is limited
to the order of function calls, disregarding the actual values
that are accepted or returned. E.g., while it is able to check
whether a multiplication was executed, it cannot verify that the
result is indeed the product of the two parameters. Therefore,
the method only verifies the sequence activity of a given
SystemC TLM-2.0 model against its formal specification and
does not verify it against the TLM-2.0 protocol. The process
of the run-time information extraction is presented in Fig. 1
phase 1.

III. PROPOSED METHODOLOGY

As shown in Fig. 1, the proposed method is performed in
three main phases:

1) extracting the simulation behavior,
2) transforming both the extracted information and TLM

rules into formal semantics and
3) checking the transformed model of the simulation behav-

ior against a set of properties of TLM rules.

A. Run-time Information Retrieval

The approach is to build upon the core idea of utilizing
GDB as a readily available virtual execution environment
for SystemC designs [13]. The unique traits of this method,
allowing designers to leave their compilation workflow un-
touched, simply providing a compiled file to an application
that does both, a static analysis and a run-time behavior
extraction, makes it the most promising candidate for the
required analysis.

t r ans ID_number : 0 x7054f0_1

seq1 −> ([’ A T _ t y p e A _ i n i t i a t o r : : t h r e a d _ p r o c e s s ’ , ’ i n i t i a t o r 0 ’ , 0 ns
, ’NULL’ , i n i t i a t o r] , [’ 0 x6bc660 ’ , ’17764 ’ , ’ t lm : : TLM_READ_COMMAND’
, ’ 4 ’ , ’ t lm : : TLM_INCOMPLETE_RESPONSE’ , ’ BEGIN_REQ ’ , ’4565 ps ’])

seq2 −> ([’ A T _ i n t e r c o n n e c t : : n b _ t r a n s p o r t _ f w ’ , ’ i n t e r c o n n e c t ’ , 0 ns
, ’0 x7054f0 ’ , ’ i n t e r c o n n e c t ’] , [’ 0 x6bc660 ’ , ’100 ’ , ’ t lm : : TLM_READ_COMMAND’
, ’ 4 ’ , ’ t lm : : TLM_INCOMPLETE_RESPONSE’ , ’BEGIN_REQ ’ , ’4565 ps ’ , ’NULL’])

seq3 −> ([A T _ t y p e E _ t a r g e t : : n b _ t r a n s p o r t _ f w , t a r g e t 4 , 0 ns
, ’0 x7054f0 ’ , ’ t a r g e t ’] , [’ 0 x6bc660 ’ , ’100 ’ , ’ t lm : : TLM_READ_COMMAND’
, 4 , ’ t lm : : TLM_OK_RESPONSE’ , ’BEGIN_REQ ’ , ’4565 ps ’ , ’ t lm : : TLM_COMPLETED’])

seq4 −> [’ A T _ i n t e r c o n n e c t : : n b _ t r a n s p o r t _ f w ’ , ’ i n t e r c o n n e c t ’ , 0 ns
, ’0 x7054f0 ’ , ’ i n t e r c o n n e c t ’] , [’ 0 x6bc660 ’ , ’100 ’ , ’ t lm : : TLM_READ_COMMAND’
, ’ 4 ’ , ’ t lm : : TLM_OK_RESPONSE’ , ’BEGIN_REQ ’ , ’4598 ps ’ , ’ t lm : : TLM_COMPLETED’]

seq5 −> ([’ A T _ t y p e A _ i n i t i a t o r : : t h r e a d _ p r o c e s s ’ , ’ i n i t i a t o r 0 ’ , 0 ns
, ’NULL’ , ’ i n i t i a t o r ’] , [’ 0 x6bc660 ’ , ’100 ’ , ’ t lm : : TLM_READ_COMMAND’
, ’ 4 ’ , ’ t lm : : TLM_OK_RESPONSE’ , ’BEGIN_REQ ’ , ’4598 ps ’])

Fig. 2. A part of the Trans lifetime of the AT-example.

Note that the retrieved information must additionally include
detailed data of the transactions’ attributes and the related
parameters (such as transition phase or timing annotations)
to describe their lifetime (which consists of an initial and a
final state as well as transitions – which are invoked by method
calls – and intermediate states that connect the former two).
This information is required to formally model a transaction
lifetime and verify it against the TLM-2.0 protocol. Therefore,
the instructions in GDB command are generated specifically
with regard to this case, thus altering the execution to extract
the desired information about TLM transactions.

The method is extended to extract
• the role of each module taking part in the transaction. It is

extracted by analyzing the type of socket which is defined
for each TLM module. Only initiator socket(s) (initiator
module), only target socket(s) (target module) or both
initiator and target socket(s) (interconnect module) and

• the name of executed functions, their arguments’ val-
ues (e.g. transition phase, timing annotation) and return
values.

In order to retrieve the transaction attributes, the GDB
instructions are tailored to extract the attributes of a transaction
object. These are
• data value,
• address,
• command,
• data length,
• byte enable length,
• streaming width,
• DMI allowed and
• response status.
The extracted information is stored in a log file called run-

time log.

B. Information Translation
In order to formally verify the extracted simulation behavior

of a given TLM model against TLM-2.0 rules, three steps are
needed:

1) mapping pieces of information to transactions. As the in-
formation is stored in the order of execution, transactions
overlap in this log file (as method calls related to a partic-
ular transaction may be carried out at different points in
time). In order to verify each particular transaction against
the given protocol, this large set of data must be separated
into sets that each refer to a single given transaction.

2) transforming the transaction information into timed au-
tomata to be able to formally verify it using a model
checker and

3) transforming the TLM-2.0 rules into formal properties
that can be used to verify the generated timed automata.

1) Mapping Pieces of Information to Transactions: The
run-time log file contains unordered information about the
transactions’ data and flow. The former refers to a transaction’s
attributes and the related parameters to describe its lifetime
such as transition phases, timing annotation and return values
of communication interfaces. The latter refers to the order
of TLM modules taking part in the transaction’s lifetime. To
verify the simulation behavior of the model, each transaction
needs to be checked against the TLM rules. These state that a
transaction object is passed as a function argument to a method
implementing one of the given communication interfaces (b-
transport or nb-transport) with a unique reference address
(call by reference). This address can be used as a transaction
ID which is the main key to trace the transaction in its
lifetime. However, the IDs may be re-used for new transactions
as soon as an old one is discarded (as the objects are not
deleted from memory but instead are kept in a pool for
performance reasons). Therefore, information about the role
of the modules taking part in the transaction and the return
value of the communication-interfaces functions are used to
detect the start and end point of the transactions’ usage to
differentiate distinct transaction instances using the same ID.
By using this information, the run-time log is translated to a
structural format (called Trans lifetime in Fig. 1) where for
each transaction, the information of data and flow are defined
in relation to its lifetime.

2) Transforming the Transaction Information into Timed
Automata: In order to formally verify the simulation behavior
of TLM models, it is necessary to transform the retrieved
information into a formal model. As the extracted transactions’
lifetimes have finite steps to implement the TLM protocol
and include timing information (e.g. timing phase and timing
annotations), they can be transformed to a timed automata
model. A timed automaton is a finite state machine controlled
by clock variables.

For specifying a transaction lifetime into a timed automata
model the following definitions are used.

Definition 1. A timed automaton TA is a tuple
(L, l0, C,A,E, I), where L is a set of locations , l0 ∈ L is
the initial location l0 , C is a set of clock variables, and A
is a set of actions, E ⊆ L × A × B (C) × 2C × L is a set
of edges, where B(C) denotes a set of clock constraints, and
I : L → B(C) assigns invariants to locations. The transition

l
(a,g,r)−−−−→ l′ is valid when (l, a, g, r, l′) ∈ E.
Definition 2. The semantics of a TA is defined as a

transition system (S, s0,→), where S ⊆ L × R
|C|
≥0 is a

set of states s0 = (l0, u0) the initial state and →⊆ S ×
(R≥0 ∪ A) × S the transition relation. A clock valuation is
a function u : C → R≥0 that maps a non-negative real value
to each clock. A semantic step of a timed automaton to model
the simulation behavior is defined as

(l, u)
a−→ (l′, u′) iff l

(a,g,r)−−−−→ l′ such that
u ∈ g ∧ u′ = [r → 0]u ∧ u′ ∈ I(l′).

A transaction lifetime includes several timing steps which
present the transaction creation and manipulation by TLM
modules. In order to transform the transaction lifetime into
a timed automaton, each step is defined as a state (location)
and the set of data exchanged between modules is defined as
the transition of states (edges). A timing step is defined as a
location by the information of the module and the sequence
number of the step. In this model, a clock variable is used to
control the sequence of transitions.

A simple example illustrates how the extracted simulation
behavior of a TLM model is transformed into a timed au-
tomata model: Fig. 2 illustrates a part of simulation behavior
of the AT-example (gray components in Fig. 3) which is
the lifetime of a single transaction. This case study is the
running example presenting one of the 13 possible ways
of modeling an approximate timed model of the TLM-2.0
based protocol. A transaction is created by the initiator mod-
ule AT_typeA_initiator with phase BEGIN_REQ and passed
through the interconnect module AT_interconnect to reach
the target module AT_typeE_target. The target module returns
TLM_COMPLETED when it receives the transaction.

The timed automaton TA_0x7054f0_1 formally denotes the
simulation behavior of Fig. 2 based on definition 1:

L = {l0 : seq0_AT_typeA_initiator,
l1 : seq1_AT_interconnect, l2 : seq2_AT_typeE_target,
l3 : seq3_AT_interconnect, l4 : seq4_AT_typeA_initiator}
l0 = seq0_AT_typeA_initiator
C = {clk}
A = φ
E = {l0, l1), (l1, l2), (l2, l3), (l3, l4)}
I : l1 → clk ≤ 1, l2 → clk ≤ 2, l3 → clk ≤ 3, l4→ clk ≤ 4

The clock variable clk is initialized to zero and then used
in two clock conditions. First, the invariant clk ≤ maxtime in-
dicates that the corresponding location must be left before clk
becomes greater than maxtime, and the guard clk == maxtime
enables the corresponding edge at mintime. A = φ denotes
that all transitions between locations are internal transition. It
means that a transition is taken if only the guard condition of
the edge is satisfied.

The operational semantics of the timed automaton
TA_0x7054f0_1 is thus formulated (based on definition 2):

(l0, clk ≤ 0)
T0,clk==0−−−−−−−→ (l1, clk ≤ 1)

(l1, clk ≤ 1)
T1,clk==1−−−−−−−→ (l2, clk ≤ 2)

(l2, clk ≤ 2)
T2,clk==2−−−−−−−→ (l3, clk ≤ 3)

(l3, clk ≤ 3)
T3,clk==3−−−−−−−→ (l4, clk ≤ 4)

The parameter 3
i:0Ti is defined as an assignment statement

when a transition is taken from li to li+1. It sets the value of
transaction attributes and the value of corresponding variables
describing the transaction flow.

3) Transforming TLM Rules into Formal Properties: Like
the simulation behavior of TLM models, the TLM-2.0 rules
need to be formally expressed in a well-defined language
in order to compare the former to the latter. Properties are
specified using a subset of Timed Computation Tree Logic
(TCTL) [2] and described in the language of temporal logic.
The language includes state formulas and path formulas.
State formulas are expressions that are checked for a state,

while path formulas evaluate whether a given state formula is
satisfied over paths by any reachable state.

As illustrated in Fig. 1 phase 2, TLM rules are transformed
from the textbook specification written in the TLM documen-
tation into a set of template properties. This process is done
manually (once) to create a database of predefined temporal
properties. TLM rules are defined formally using pre-defined
symbols which are taken from the field of temporal logic using
the following definitions.

Definition 3. If p and q are a property of states, then the
temporal logic formula:
• Exists eventually p (E <> p) describes that there is a

path that leads to a state in which p holds.
• Exists globally p (E [] p) describes that there is a path

in which p holds for all the states of the path.
• Always globally p (A [] p) describes that p holds for all

states of all paths.
• Always eventually p (A <> p) describes that all paths
p hold for at least one state of the path.

• q always leads to p (q → p) describes any path that
starts with a state in which q holds later reaches a state
in which p holds.

The Template properties database contains the properties to
verify both the transaction semantics and the functionality of
TLM communication. There are 40 of template properties, of
which 15 are defined to verify the semantics of a transaction
and 25 are used to check the compliance of the communica-
tions semantics against TLM-2.0 rules.

As an example of transaction semantics rules, the TLM
rules related to the default value of a transaction address
attribute is considered. The textbook specification of this rule
in TLM-2.0 documentation is as follow.

"The default value of a transaction response status must be equal to
"TLM_INCOMPLETE_RESPONSE".

Due to definition 3, the formal definition of this statement
is as follow:

(li && transact.tstatus == 0) → (li+1 &&
transact.tstatus == 0) where {li, li+1 ∈ E}, i = 0

As the temporal logic does not support enumerate
types, the possible values of all TLM-2.0 enumera-
tion types are denoted by integer values. In case of
the transaction response status attribute transact.tstatus
the enumeration value TLM_INCOMPLETE_RESPONSE
and TLM_OK_RESPONSE are defined by 0 and 1, respec-
tively.

The TLM-2.0 communication semantics rules on the other
hand define how the communication should be carried out. The
textbook specification of this rule in TLM-2.0 documentation
is as follow.

"A phase transition can only take place if the return-value of the
non-blocking transport is TLM_UPDATED."

Based on definition 3, the formal presentation of this rule
is as follow:

(li && tlm_retun_stus ! = 2 && transact.tphase == ′t′)
→ (li+1 && transact.tphase == ′t′) where

{li, li+1 ∈ E}, i > 0

At_tapeA_initiator
Instance 0

At_tapeA_initiator
Instance 1

At_tapeB_initiator
Instance 0

At_tapeB_initiator
Instance 1

BP_chkr_init0

BP_chkr_init1

BP_chkr_init2

BP_chkr_init3

BP_chkr_trgt0

BP_chkr_trgt2

BP_chkr_trgt3

BP_chkr_trgt4

BP_chkr_trgt1

At_tapeE_target

A
T

_in
te

rco
n

n
e
ct

At_tapeD_target

At_tapeC_target

At_tapeB_target

At_tapeA_target

Fig. 3. The architecture of AT-example.

The tlm_retun_stus is an integer variable that denotes
the return value of the non-blocking transport function.
The enumeration value NO_RETURN, TLM_ACCEPTED,
TLM_UPDATED and TLM_COMPLETED are specified by 0,
1, 2 and 3, respectively. transact.tphase refers to the transi-
tion phase of the TLM transaction (such as BEGIN_REQ).

C. TLM Protocol Compliance Checking

In order to verify the formal presentation of the simulation
behavior of a given TLM design, UPPAAL [3], a model
checker that supports the timed automata model, is used. In
UPPAAL, a query is a property that may or may not hold
for the system. The UPPAAL query language is a sub-set of
TCTL, denoting properties using a temporal logic language.

To verify a transaction’s behavior using UPPAAL,
1) each transaction lifetime is defined as a system,
2) the queries are automatically generated from the template

properties stored in the Template properties database and
3) the generated properties are added to the Timed automata

model.
The Timed automata model thus contains both, the formal

presentation of the simulation behavior of TLM models and
the required properties to check the compliance of TLM-2.0
rules. The model checker gets the Timed automata model
as an input file and verifies the system. The results of this
compliance check are reported by the model checker, including
the satisfied properties and violated ones.

IV. EXPERIMENTAL EVALUATION

The proposed method has been applied to several Sys-
temC TLM-2.0 models provided by Doulos [4] that cover
all TLM-2.0 core-interfaces (i.e transport interfaces and direct
memory), the base protocol and coding styles (e.g. loosely-
timed and approximately-timed). To demonstrate the benefits
of the proposed method, the simulation behavior of the AT-
example is altered to violate some TLM-2.0 rules.

The model checker UPPAAL 4.1 is used to verify the
extracted timed automata of each case study. The analysis has
been performed on a PC equipped with 8 GB RAM and an
Intel core i7-2760QM CPU running at 2.4 GHz.

A. Case Study: AT-example

The AT-example design consists of multiple approximately-
timed (AT) initiators and targets, as well as an AT interconnect.
It includes nine TLM designs, implementing 9 of the 13 TLM-
2.0 base protocol’s specified transaction protocols. The unused

seq0__AT_typeA_initiator_initiator0

seq1__AT_interconnect__interconnect

seq2__AT_typeE_target__target4

seq3__AT_interconnect__interconnect

seq4__AT_typeA_initiator__initiator0

clk==0

transact.data = 81, transact.address = 133, transact.cmd = 0, transact.dlength = 4,
transact.tstatus = 0, transact.tphase = 1, transact.delay = 4565, tlm_retun_stus= 0,
simulation_time= 0, clk=0, s_type =0, breq=0

transact.data = 81, transact.address = 10, transact.cmd = 0, transact.dlength = 4,
transact.tstatus = 0, transact.tphase = 1, transact.delay = 4565, tlm_retun_stus = 1,
simulation_time= 0, clk =0, s_type =0, breq=1

clk==1

transact.data = 81, transact.address = 10, transact.cmd = 0, transact.dlength = 4,
transact.tstatus = 1, transact.tphase = 1, transact.delay = 4565, tlm_retun_stus = 3,
simulation_time= 0, clk =0, s_type =0, breq=2

clk==3

transact.data = 81, transact.address = 10, transact.cmd = 0, transact.dlength = 4,
transact.tstatus = 1, transact.tphase = 1, transact.delay = 4565, tlm_retun_stus = 3,
simulation_time= 0, clk =0, s_type =0, breq=2

clk<=1

clk<=2

clk<=3

clk<=4

clk==2

Fig. 4. The formal presentation of AT-example in UPPAAL timed automata
format.

transaction protocols are trivial cases such as transactions that
are responded immediately after initiation.

The traced transactions of each sub-design are automatically
defined as a system in UPPAAL semantics. To model the
lifetime of each transaction, it needs to be defined in terms
of states (locations) and their transitions (edges).

For each transaction, the following steps are applied to map
the transaction lifetime onto UPPAAL’s timed automata with
respect to definition 1 and 2:
• the name of each system is denoted by TA_ID_number

showing a transaction with the ID and the number of
reputation,

• each sequence in the transaction lifetime is mapped onto
a location (which is specified by number of sequence, the
root name of TLM module and its instance name),

• the transaction’s attributes and its related parameters of
each sequence are mapped onto assignments for each
transition and

• the invariant clk is defined to control the sequence of
transitions.

As an example, the first system in Table I shows the first
transaction using ID 0x7054f0. Fig. 4 illustrates the result
of mapping the extracted transaction lifetime onto UPPAAL
timed automata. The node with double circle specifies the ini-
tial state and each node is specified by a name and an invariant.
The assignment statements on each edge express the value of
transaction’s attributes and all related parameters to describes
its flow. The related parameters are the simulation time sim-
ulation_time, the return value of function call tlm_retun_stus,
the type of socket s_type and flags to check the timing phase
breq, ereq, brsp and ersp. The struct transact is defined to
specify the value of transaction attributes (data, address, cmd,
dlength, tstatus), the phase of the transition (tphase) and its
timing annotations (delay) using integer values. As UPPAAL
only supports integer values, all enumeration types of TLM-
2.0 are mapped onto integer values.

TABLE I
EXPERIMENTAL RESULT FOR AT-EXAMPLE

System Modules #TSeq #Queries Original Model FaultA FaultB R/VMU (MB)
#Satisfied #violated VT(ms) #Satisfied #violated VT(ms) #Satisfied #violated VT(ms)

0x7054f0_1 iA-intc-tE 5 31 31 0 45 29 2 43 26 5 43 6.8/42.1
0x7054f0_2 iA-intc-tD 9 44 44 0 61 42 2 59 32 12 57 7.1/42.1
0x705840_1 iA-intc-tC 15 72 72 0 89 70 2 87 59 13 81 7.3/43.2
0x706160_1 iB-intc-tE 6 34 34 0 51 32 2 49 26 8 48 6.9/42.1
0x706160_2 iB-intc-tB 10 49 49 0 73 47 2 71 33 16 68 7.1/42.4
0x706160_3 iA-intc-tA 10 52 52 0 76 50 2 74 36 16 70 7.4/42.4
0x706a50_1 iB-intc-tA 19 105 105 0 173 103 2 171 72 33 165 7.8/43.2
0x7078f0_1 iB-intc-tD 9 44 44 0 69 42 2 67 27 17 64 7.1/42.4
0x708f40_1 iB-intc-tB 10 49 49 0 73 47 2 71 33 16 68 7.1/42.4

iA: initiator-typeA, inct: interconnect, tE: target-typeE TSeq: Transaction Sequence VT: Verification Time R/VMU: Resident/Virtual Memory Usage
Peaks

TABLE II
EXPERIMENTAL RESULTS FOR ALL CASE STUDIES

O
riginal

M
odel

System LOC #Comps #Trans #UTrans TM #Seq #Queries #SatQ #VioQ R/VMU (MB) VT (s) ET (m:s) TotalT (m:s) CExeT (s)
LT-example 175 2 16 1 LT 35 96 96 0 6.7/41.5 0.134 0:09 0:09.134 1.6

Routing-model 456 6 2 1 LT 68 24 24 0 6.7/41.5 0.036 0:21 0:21.036 1.7
Example-4 547 2 348 1 AT 14060 13703 13703 0 7.8/43.2 20.562 66:27 66:47.562 1.8
Example-5 650 7 69 2 LT 1147 828 828 0 6.7/41.5 1.275 31:13 31:14.175 2.1
Example-6 713 9 245 2 AT 14354 15267 15267 0 7.6/42.6 23.900 53:03 53:26.900 2.2
AT-example 2942 19 9 9 AT 1008 480 480 0 7.8/43.2 0.710 7:41 7:41.710 21
Locking-two 3831 23 371 10 LT/AT 16379 8765 8765 0 7.6/42.6 13.147 79:15 79:28.147 24.3

FaultA

LT-example 175 2 16 1 LT 35 96 64 32 6.7/41.5 0.134 0:09 0:09.134 1.6
Routing-model 456 6 2 1 LT 68 24 20 4 6.7/41.5 0.036 0:21 0:21.036 1.7

Example-4 547 2 348 1 AT 14060 13703 13007 696 7.8/43.2 18.110 66:27 66:45.110 1.8
Example-5 650 7 69 2 LT 1147 828 690 138 6.7/41.5 1.015 31:13 31:14.015 2.1
Example-6 713 9 245 2 AT 14354 15267 14777 490 7.6/42.6 21.511 53:03 53:24.511 2.2
AT-example 1950 10 9 9 AT 611 480 462 18 7.8/43.2 0.692 4:22 4:22.692 19.7
Locking-two 2907 13 371 10 LT/AT 10923 8765 8023 742 7.6/42.6 12.410 41:38 41:50.410 22

FaultB

LT-example 175 2 16 1 AT 35 96 64 32 6.7/41.5 0.124 0:09 0:09.124 1.6
Routing-model 456 6 2 1 AT 68 24 20 4 6.7/41.5 0.034 0:21 0:21.034 1.7

Example-4 547 2 348 1 LT 14060 13703 11615 2088 7.8/43.2 17.406 66:27 66:44.406 1.8
Example-5 650 7 69 2 LT 1147 828 690 138 6.7/41.5 1.101 31:13 31:14.101 2.1
Example-6 713 9 245 2 AT 14354 15267 11299 3968 7.6/42.6 20.109 53:03 53:23.109 2.2
AT-example 1950 10 9 9 AT 611 480 345 135 7.8/43.2 0.653 4:22 4:22.653 19.7
Locking-two 2907 13 371 10 LT/AT 10923 8765 5805 2960 7.6/42.6 11.764 41:38 41:49.764 22

LOC: lines of Code UTrans: Unique Base Protocol Transaction TM: Timing Model SatQ: Satisfied Queries VioQ: Violated Queries
R/VMU: Resident/Virtual Memory Usage Peaks VT: Verification Time CExeT: Compilation and Execution Time ET: Extraction Time

TABLE III
FAULT MODELS

Number Type TLM-2.0 Protocol Description Fault Model
1 FaultA Default value of transaction’s response status shall

be set to TLM_INCOMPLETE_RESPONSE
TLM_INCOMPLETE_RESPONSE ↓ (change to)
TLM_OK_RESPONSE

2 FaultA Transaction data length must be greater than 0 data_length
(set to)−−−−−→ -4

3 FaultB The data length attribute shall be set by the
initiator, and shall not be overwritten by any
interconnect component

transaction data_length modified by interconnect
component

4 FaultB The response status attribute shall not be modified
by interconnect component

response status modified by interconnect component

5 FaultB A target component can send END_REQ when it
received BEGIN_REQ

target component send END_RESP after receiving
BEGIN_REQ

In order to verify the AT-example design, several queries are
automatically generated for each system using the proposed
method. To evaluate the generated queries, two types of
possible faults have been defined and injected to the original
design. FaultA and FaultB which are related to transaction
attributes and communication semantics respectively.

1) FaultA: transaction semantics: This fault changes the
value of a transaction’s attribute and the related parameters to
describe its lifetime. It might change the right value either
to the wrong value in acceptable range of the TLM-2.0
enumeration data type (i.e. predefined protocol value) or an
out of range value. As illustrated in Table III first row, the

default value of transaction response status attribute must
be set to TLM_INCOMPLETE_RESPONSED. A transaction
semantic fault might change it to TLM_OK_RESPONSE that
is one of the TLM-2.0 predefined protocol values but may
be invalid in the given context. Fault number 2 in Table III
describes the instances of FaultA which change the value of
the transaction attribute to a non-predefined protocol value.
The query that detects these is: A[](transact.dlength > 0)
where dlength specifies the data length attribute of the struct
data type transact. It means that the data length attribute
dlength must contain a positive value for all states.

2) FaultB: communication semantics: This fault refers to
the modifiability of transaction attributes by different types
of modules, base protocol rules concerning TLM-2.0 core-
interfaces, phase sequences and timing annotations. As shown
in Table III, the data length attribute shall be set by the initiator
module and shall not be overwritten by the interconnect
module – fault number 3 refers to a violation of this rule.
Fault number 4 is a similar case, where an interconnect module
modifies the response_status value. Fault number 5 refers
to a case that corrupts the TLM-2.0 core interfaces and the
transaction phase sequences by using the wrong order of sent
requests. As an example the following query is defined to
detect FaultB-4:

(system_0x7054f0_1.seq1__AT _interconnect__interconnect &&
transact.tstatus == 0) →

(system_0x7054f0_1.seq2__AT _typeE_target__target4 &&
transact.tstatus == 0)

The query means that for the system system_0x7054f0_1
in state seq1__AT_interconnect__interconnect where
the status value tstatus of the transaction struct
transact is equal zero, the transition to the next state
seq2__AT_typeE_target__target4 should leave the value
of transact.tstatus unchanged.

Table I demonstrates the experimental results of verifying
the AT-example using the proposed method. The System col-
umn presents the name of each transaction of the AT-example
which is defined as a system in UPPAAL. The Modules
column demonstrates which type of modules belong to each
sub-design of the AT-example. The TSeq column shows the
number of sequences related to each transaction lifetime. The
Queries column presents the number of queries generated by
the proposed method to verify each system. The generated
queries have been applied to three copies of the AT-example
design. Three columns Original Model, FaultA and FaultB
show the result of applying the proposed verification method
to the AT-example without any manipulation and with injected
fault types FaultA and FaultB respectively. For each of these
columns, the Satisfied, Violated and VT sub-columns illustrate
the number of satisfied queries, violated queries and the time
to verify all queries by UPPAAL respectively.

For the original model, all queries are satisfied, meaning
the design follows all TLM-2.0 rules. In case of the AT-
example with FaultA, two models of this fault are defined
and injected to the original source code of the AT-example.
As it shown in Table I, these faults cause two violations
over the generated queries of each system. FaultA-2 changes
the transaction data length attribute to a negative value. In
case of the AT-example with FaultB, the number of violated
queries for each system is different depending on which TLM-
2.0 base protocol transaction is used. This is because each
transaction may contain a different number of states, with
individual queries (all inheriting the same “overall” parent
query) verifying different transactions concerning the same
rule. E.g. a rule violation that alters the payload size between
states 1 and 2 is detected in a different query than the one that
alters the payload size between states 2 and 3.

The P/VMU column shows the value of resident memory
over virtual memory usage peaks when checking a property

using the UPPAAL model checker. As UPPAAL considers
each query separately, for each system the maximum P/VMU
over all queries has been reported.

The complete results of applying the proposed method to
verify different TLM-2.0 designs are presented in Table II
using the same scenarios (Original Model, FaultA and FaultB).
The LOC, Comp, Trans and TM columns present the com-
plexity and difference of each design in terms of lines of
code, number of components, number of transaction and the
timing model, respectively. The UTrans column shows how
many different base protocol transactions are implemented
in each design. The Seq column shows the number of lines
related to the unique behavioral information that has been
extracted during the execution of each design. The TotalT
column illustrates the total time required to verify each design
using the proposed method. It consists of two parts: the time
required to check the whole queries for each design (VT) and
the time spent to extract its simulation behavior (ET). The
CExeT column is the time required to compile and execute
each design using GCC without applying the proposed method.

In Table II, the faulty AT-example and Locking-two designs
have different LOC and Comp values than the original mod-
els. These differences result from the custom base protocol
checkers that were included in both designs and that needed to
be removed to create faulty models. As the complexity of the
faulty models in both cases decreased, the value of parameters
Seq, ET and CExeT related to this complexity reduced as well.

B. Integration and Discussion

The proposed method is able to automatically retrieve the
simulation behavior of a given SystemC TLM-2.0 implemen-
tation and formally verify it against TLM-2.0 rules.

In comparison to the formal verification methods that are
restricted to a sub-set of SystemC models because of several
pre-conditions and pre-assumptions on SystemC implementa-
tions, the proposed method has no limitation on how and which
SystemC constructs are used to implement an ESL design.
Although the proposed method does not assure the validity
of the model like formal methods (as it verifies the model’s
simulation behavior instead of its formal specification), it
makes a trade-off between the accuracy of the model to check
the compliance of the model and its applicability to verify a
wide range of SystemC designs.

Unlike simulation based verification approaches that rely
on manipulating the original source code or modifying the
SystemC library and/or interfaces to verify the run-time infor-
mation, the proposed method verifies the detailed simulation
behavior of a given TLM model without any modification
of the user’s implementation and the standard tool flow. It
means that the proposed method provides the designers with
a non-intrusive and an easy-to-use TLM protocol compliance
checking solution. Moreover, it can be combined with setups
that already rely on a modified SystemC library which makes
the approach applicable to a wide range of TLM models.

The only precondition of the suggested approach is that the
executable SystemC TLM-2.0 model contains debug informa-
tion that is compatible with GDB. Hence, while GCC and
Clang-LLVM are thus supported, Microsoft Visual Studio is
not.

0 50 100 150 200 250 300 350 400
0

500

1000

1500

2000

2500

3000

3500

4000

4500

0.2
0.4

66.431.2
53

7.7

79.2
Time (m)

Transaction Number

Li
ne

of
C

od
e L

oc
ki
ng

-t
w
o

E
xa

m
pl
e-

4

E
xa

m
pl
e-

5

E
xa

m
pl
e-

6

A
T-

ex
am

pl
e

R
ou

tin
g-

m
od

el
LT

-e
xa

m
pl
e

Fig. 5. Analysis of data extraction time

The performance of the proposed method is considered in
two phases which is the time that is spent to
• retrieve the run-time information of a given TLM design

and transform it into the timed automata model and
• verify the transformed model against set of properties

using the UPPAAL model checker
As illustrated in Table II, the extraction of a TLM-2.0 design’s
run-time information is the major time consuming part of the
method. The information extraction process is expensive as
the program is executed on GDB. To store the state of the
program during its simulation time on disk, the execution has
to be halted repeatedly. Therefore, this time is related to the
complexity of an application and the amount of information
to be extracted depending on the model’s timing parameters.
This complexity can be related to the lines of code and the
number of transactions. Fig. 5 illustrates an analysis on run-
time information extraction based on the lines of code and
the number of transactions. For low numbers of transactions,
the designs with more lines of code and AT timing model
exhibit an increased execution time. By increasing the number
of transactions and lines of code, the required time increases.
The maximum extraction is used by Locking-two (about 80
minutes).

As shown in Table II, the time consumed for the first step
by the proposed method is within a reasonable boundary for
the simple designs like LT-example and Routing Model or the
complex design AT-example with low numbers of transactions
in comparison to their compilation and execution time using
GCC. For complex designs such as Locking-two with large
numbers of transactions, the results in this table show the time
is still in order of minutes and hours meaning that while the
method may not be applicable for the figurative coffee break
of a developer, it still provides designers with a simple solution
to analyze a design’s behavior within reasonable time frames.

As the proposed method streams all information directly to
disk, the memory overhead for the first step is negligible.

V. CONCLUSION

In this paper a protocol compliance checking methodology
of SystemC TLM-2.0 designs has been proposed. The method
is based on formally verifying the simulation behavior of a
given SystemC TLM model by UPPAAL model checker. The

simulation behavior which describes the transactions of the
model is extracted automatically and non-intrusively using an
automated debugger. The transactions and TLM-2.0 protocol
rules are defined formally in terms of timed automata and
property language used by UPPAAL respectively. A formal
description of a large set of all TLM-2.0 protocol rules has
been provided in TCTL for the first time. Two types of
potential violations related to the transaction attributes and
communication semantics are defined and injected to the
original case studies to evaluate the proposed method. The
experimental results confirm the applicability and quality of
the proposed method to verify several TLM-2.0 designs with
different complexity. For future work, we plan to extend the
method to support both user-defined protocol and the TLM
model including transaction extension.

VI. ACKNOWLEDGMENTS
Financial support of subproject P02 “Heuristic, Statistical

and Analytical Experimental Design” of the Collaborative
Research Center SFB 1232 “Farbige Zustände” by the German
Research Foundation (DFG), the Reinhart Koselleck project
DR 287/23-1 (DFG), University of Bremen’s graduate school
SyDe, funded by the German Excellence Initiative and BMBF
grant SELFIE, no. 01IW16001 is gratefully acknowledged.

REFERENCES

[1] IEEE Standard SystemC Language Reference Manual. IEEE Std 1666-2005, pages 1–423,
2006.

[2] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Inf. Comput.,
104(1):2–34, 1993.

[3] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, pages
183 – 235, 1994.

[4] J. Aynsley. TLM-2.0 base protocol checker. https://www.doulos.com/knowhow/systemc/
tlm2/at_example. Accessed: 2016-01-30.

[5] J. Aynsley, editor. OSCI TLM-2.0 Language Reference Manual. Open SystemC Initiative
(OSCI)., 2009.

[6] C. Baier and J.-P. Katoen. Principles of Model Checking (Representation and Mind Series).
The MIT Press, 2008.

[7] M. Bawadekji, D. Große, and R. Drechsler. TLM protocol compliance checking at the
electronic system level. In DDECS, pages 435–440, 2011.

[8] C. N. Chou, Y. S. Ho, C. Hsieh, and C. Y. Huang. Symbolic model checking on SystemC
designs. In DAC, pages 327–333, 2012.

[9] W. Ecker, V. Esen, T. Steininger, M. Velten, and M. Hull. Interactive presentation:
Implementation of a transaction level assertion framework in SystemC. In DATE, pages
894–899, 2007.

[10] Y. Endoh. ASystemC: An AOP extension for hardware description language. In AOSD,
pages 19–28, 2011.

[11] L. Ferro and L. Pierre. Isis: Runtime verification of TLM platforms. In FDL, pages 1–6,
2009.

[12] M. Goli, J. Stoppe, and R. Drechsler. AIBA: an Automated Intra-cycle Behavioral Analysis
for SystemC-based design exploration. In ICCD, 2016.

[13] M. Goli, J. Stoppe, and R. Drechsler. Automatic equivalence checking for SystemC-TLM 2.0
models against their formal specifications. In DATE, 2017.

[14] D. Große, H. M. Le, and R. Drechsler. Proving transaction and system-level properties of
untimed SystemC TLM designs. In MEMOCODE, pages 113–122, 2010.

[15] A. Habibi and S. Tahar. Design and verification of SystemC transaction-level models. VLSI,
14(1):57–68, 2006.

[16] P. Herber, J. Fellmuth, and S. Glesner. Model checking SystemC designs using timed
automata. In CODES+ISSS, 2008.

[17] P. Herber and S. Glesner. A HW/SW co-verification framework for SystemC. TECS,
12:61:1–61:23, 2013.

[18] M. Kallel, Y. Lahbib, R. Tourki, and A. Baganne. Verification of SystemC transaction level
models using an aspect-oriented and generic approach. In DTIS, pages 1–6, 2010.

[19] H. M. Le, D. Große, V. Herdt, and R. Drechsler. Verifying SystemC using an intermediate
verification language and symbolic simulation. In DAC, pages 1–6, 2013.

[20] C. Schulz-Key, M. Winterholer, T. Schweizer, T. Kuhn, and W. Rosentiel. Object-oriented
modeling and synthesis of SystemC specifications. In ASP-DAC, pages 238–243, 2004.

[21] H. Sohofi and Z. Navabi. Assertion-based verification for system-level designs. In SQED,
pages 582–588, 2014.

[22] R. Stallman and C. Support. Debugging with GDB: The GNU Source-level Debugger. Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA, ninth
edition, 2010.

[23] D. Tabakov and M. Y. Vardi. Monitoring temporal SystemC properties. In MEMOCODE,
pages 123–132, 2010.

[24] D. Tabakov and M. Y. Vardi. Automatic aspectization of SystemC. In MISS, pages 9–14,
2012.

[25] T. L. Veldhuizen. C++ templates are turing complete. Technical report, 2003.

