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Abstract—In order to meet time-to-market constraints and
to raise the design productivity, High-level Synthesis (HLS) is
being increasingly adopted by the semiconductor industry. HLS
designs, which can be automatically translated into Register
Transfer Level (RTL), are typically written in SystemC at the
Electronic System Level (ESL). However, this modern design flow
still has weaknesses, in particular, due to the significant manual
effort involved for verification and the subsequent debugging
process which are both time-consuming and error-prone.

In this paper, we propose ASCHyRO, a fully automated semi-
formal fault localization approach for SystemC HLS designs.
ASCHyRO takes advantage of a hybrid rank ordering technique
to derive a reduced ordered set of potential fault locations. The
reduced order set is obtained by calculating a Confidence Score
(CS) for each fault candidate based on a combination of static
and dynamic fault probability analysis. Experimental results
including an extensive set of standard SystemC HLS designs
show the effectiveness of our approach in localizing even multiple
faults with high confidence in a short execution time.

I. INTRODUCTION

The increasing functionality of digital systems and reduced
time-to-market constraints push designers to model systems
at a higher level of abstraction than the traditional Register
Transfer Level (RTL). Hence, High-level Synthesis (HLS) at
the Electronic System Level (ESL) [1] is being increasingly
adopted by the semiconductor industry to boost the design
productivity [2]. HLS designs are typically developed using
SystemC language (a de-facto standard at the ESL) [3], [4]
and can be automatically synthesized into RTL. However, this
modern design flow still has weaknesses, in particular, due to
the significant manual effort involved for verification and the
subsequent debugging process which are both time-consuming
and error-prone.

SystemC designs verification and debugging are critical, as
undetected fault may propagate to final silicon implementation
and become very costly to fix. Thus, catching faults as early
as possible is of the utmost importance. Although lots of
progress has been made in terms of correctness assurance (ver-
ification) of SystemC designs [5]–[9], providing an automated
debugging solution has received less attention. The debugging
process of SystemC designs is a non-trivial task, mainly due to
its object-oriented nature and the complex language constructs
and semantics (e.g. event-driven simulation semantics, process
synchronization, and inherent concurrency). As a consequence,
the debugging process of SystemC designs is mostly per-
formed manually that is very time-consuming, making it a
bottleneck in the design flow.
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In general, the debugging process consists of two main
steps which are 1) fault localization, i.e., the identification
of possible faulty locations that can cause erroneous state
transitions which eventually lead to design failures and 2) fault
correction, i.e., locally modifying the functionality of the
identified portion. The fault localization is considered as the
most time-consuming step in the debugging process and its
quality affects the following (manual or automatic) fault cor-
rection step [10]. Particularly, localization of functional faults
(e.g. false state transition, incorrect assignment, and incorrect
operator) is very challenging as they can occur on numerous
locations such as local variables, module ports, global signals,
conditions, and loops.

In this paper, we focus on the fault localization of SystemC
HLS designs that is a critical step of the debugging process at
the ESL and typically takes a significant amount of time and
effort from designers. We present ASCHyRO, an Automatic
Fault Localization of SystemC HLS Designs Using a Hybrid
Accurate Rank Ordering Technique. ASCHyRO is a semi-
formal fault localization approach which consists of two main
phases: 1) hybrid program slicing and 2) ranking analysis.

In the first phase, we take advantage of the static and
dynamic program slicing methods to confine the initial search
space to those parts that actually cause the erroneous output(s).
The static slicing is performed on the formal representation of
a given SystemC design’s behavior i.e., a correlation graph,
representing the program based on variables dependency and
2) an adapted model of hammock graph w.r.t SystemC con-
structs, including a one-to-one correspondence between the
design’s statements (both data and control). The dynamic
slicing is performed on the statements of the design that
activate the potential faults at run-time and propagate them
to the design’s output(s).

In the second phase, results of the static and dynamic slicing
are combined to create 1) a Confidence Score (CS) for each
variable of the design and 2) a reduced set of lines of code
(i.e. fault location candidates). The CS is calculated based on
two parameters which are the probability of fault occurrence
on SystemC design variables derived from the static and
dynamic slicing. Variables with the equal CS are categorized in
the same class of priority and classes are sorted in descending
order based on the CS value. The fault location candidates are
obtained based on dynamic slicing of the hammock graph w.r.t
the CS classes.

The experimental results, including several standard Sys-
temC HLS designs, demonstrate that ASCHyRO can accu-
rately localize the potential faults in a short execution time and
effectively reduce designers effort during debugging process.



1 s t r u c t M1 : sc_module {
2 s c _ i n < i n t > in1 , in2 , i n 3 ;
3 s c _ i n _ c l k c l k ;
4 s c _ i n <bool > c t l 1 , c t l 2 ;
5 sc_ou t < i n t > out1 , ou t2 ;
6 sc_ou t <bool > c t l O u t ;
7 void p r o c e s s 1 ( ) ;
8 SC_CTOR (M1) {
9 SC_METHOD ( p r o c e s s 1 ) ;

10 d o n t _ i n i t i a l i z e ( ) ;
11 s e n s i t i v e << c l k . pos ( ) ; } ;
12 / /−−−−−−−−−−−−−−−−−−−
13 s t r u c t M2 : sc_module {

14 s c _ i n _ c l k c l k ;
15 s c _ i n < i n t > in1 , i n 2 ;
16 s c _ i n < i n t > c t l I n ;
17 sc_ou t < i n t >

out1 , out2 , ou t3 ;
18 i n t genA , genB , genC , genD ;
19 void p r o c e s s 2 ( ) ;
20 /∗ . . . ∗ / } ;
21 / /−−−−−−−−−−−−−−−−−−−
22 void M1 : : p r o c e s s 1 ( ) {
23 i n t tp1 , t p 2 ;
24 t p 1 = i n 1 . r e a d ( ) ∗ i n 3 . r e a d ( ) ;
25 t p 2 = i n 1 . r e a d ( ) + i n 2 . r e a d ( ) ;

26 i f ( c t l 1 . r e a d ( ) ) {
27 ou t1 . w r i t e (− t p 1 ) ;
28 c t l O u t . w r i t e ( 1 ) ; }
29 e l s e {
30 ou t1 . w r i t e ( t p 1 ) ;
31 c t l O u t . w r i t e ( 0 ) ; }
32 ou t2 . w r i t e ( t p 2 ) ; }
33 / /−−−−−−−−−−−−−−−−−−−
34 void M2 : : p r o c e s s 2 ( ) {
35 i n t temp1 , temp2 , temp3 ;
36 /∗ . . . ∗ /
37 genA = genD ; / / f a u l t :

genB = genD ;

38 i f ( genA > i n 1 . r e a d ( ) )
39 temp1= i n 1 . r e a d ( ) ∗genA ;
40 e l s e
41 temp1= i n 1 . r e a d ( ) +genA ;
42 i f ( c t l I n )
43 genB = 1 ;
44 temp2=genA∗genB ; / / f a u l t :

+ −> ∗
45 temp3=genC+ i n 2 . r e a d ( ) ;
46 ou t1 . w r i t e ( temp2 ) ;
47 ou t2 . w r i t e ( temp1 ) ;
48 ou t3 . w r i t e ( temp3 ) ; }

Fig. 1: A part of the 2-stage pipe design’s source code.

II. RELATED WORKS

There are several works on program debugging at different
levels of abstraction, i.e, from gate [11], [12] to algorithmic
levels [10], [19] which are related to our proposed approach,
thus we discuss them in this section.

In manual fault localization [13], designers run the design
with some input tests until a failure is observed. Then, they
set breakpoints iteratively, analyze the program status, and
backtrack to the error origin using a source-level debugger
such as the GNU debugger (GDB) [14]. Since this procedure
gives poor results, puts lots of effort on designers, and overall
is very time-consuming, alternatives have been developed.

In [15], a debugging approach is introduced to accelerate
finding bug in the extracted potential error location set of a
given design. In order to rank error candidates, a probabilistic
confidence score has been suggested. Similarly, [16] presents
a formal debugging method based on static slicing which
provides designers with a reduced ordered set of potential error
locations. However, both methods are only applicable at RTL
and do not support SystemC constructs.

The method presented in [10] enables designers to debug
software programs implemented in C language. It provides
designers with a set of potential error locations based on
dynamic program slicing technique. However, as the method is
only based on simulation results, it may fail in case of multiple
faults since some of them may not be activated by the input
tests at run-time. Moreover, the method uses a commercial tool
called “FoREnSiC” to perform dynamic program slicing. This
limits the availability of the method (as it is not an open-source
free tool). The methods in [17]–[19] propose formal debugging
of software program described in C language. However, these
debugging methods are at the algorithmic level and hence do
not support SystemC constructs. Moreover, a missing formal
semantics for the SystemC language restricts the application
of formal debugging techniques for SystemC designs at the
ESL.

The methods in [20], [21] as well as commercial tools [22],
[23] introduce an integrated debugging environment for Sys-
temC designs based on computational reflection, enabling de-
signers to interact with platform simulation models. Although
the aforementioned methods help designers in understanding
various aspects of a SystemC design and monitoring its
behavior, they do not provide any fault localization facilities.

In [24], a simulation-based debugging environment for Sys-
temC designs is proposed. It is based on calculating minimal
difference between a passing and a failing process schedule
using a set of test cases. However, the method only focuses
on process scheduling and does not consider functional faults.
The method modifies the SystemC scheduler to handle process

activations. This may cause compatibility issue for several
approaches in parallel and reduces the degree of automation.

To the best of our knowledge, ASCHyRO is the first
SystemC HLS fault localization approach at the ESL that takes
advantage of a semi-formal technique to provide designers
with a reduced ordered of potential fault candidates.

III. FAULT LOCALIZATION IN SYSTEMC HLS
In this section, using a motivating example, we explain

challenges of fault localization in SystemC HLS designs
and the importance of a proper fault localization approach.
Consider the 2-stage pipe design (Fig. 1) implemented in
SystemC. The design includes two modules M1, and M2, and
performs a set of algebraic operations to generate the final
results (out1, out2, and out3 of module M2) in two steps.
Here we also assume that the only reference that is available
for designers is the correct value of final outputs (as reference
results) for a specific testbench. Now consider the scenario
that designers made two mistakes when implementing the
design. First, an incorrect assignment where the definition of
variable genB of module M2 (Line 37, Fig. 1) is incorrectly
implemented. Second, an incorrect operator where the local
variable temp2 of function process2 of module M2 (Line 44,
Fig. 1) is incorrectly defined. After executing the design,
they found that the value of final outputs out1 and out2 of
module M2 is incorrect (w.r.t the reference results). Therefore,
an important task is now debugging, i.e. localization of the
faults and then fixing them.

The common form of debugging is to find a set of potential
candidates for the location of the faults. Then, all candidates
are evaluated and changes are applied to the design to finally
find the exact location of the faults and fix them. A strong
fault localization approach significantly reduces not only the
required time of the whole debugging process but also effort
of the fixing phase. However, fault localization of SystemC
designs is very challenging due to the following reasons:

1) The C++ compiler cannot detect the aforementioned types
of faults as they are functional faults and are not related
to the C++ or SystemC syntax,

2) Monitoring the simulation behavior of the design (e.g.
using VCD) [25]–[27] is very time-consuming as it
requires to manually trace run-time values of all design’s
variables. Thus, it does not reduce the number of fault
candidates and the search space.

3) The existing C-based debugger methods such as [10],
[18] are not applicable as they do not support SystemC
constructs, data types and semantics.

4) Since no reference model or a (basic) specification of the
motivating example is at hand, the formal methods such
as [16], [18] (even if they are adopted to support SystemC
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Fig. 2: Overview of the proposed approach ASCHyRO.

constructs) are not applicable. Moreover, as SystemC
lacks formal semantics, translating SystemC source code
into a formal language is not a trivial task.

In the absence of a proper fault localization approach, the
potential fault candidates (or search space) extend to the whole
variables of the design and the corresponding lines of code.
For example, in the case of motivating example (Fig. 1), all
variables and the corresponding lines of code of the design are
fault candidates which are 21 variables and more that 46 lines
of code (as only a part of the design is represented). However,
evaluating and changing all these candidates one by one in
order to find the exact fault location is very time-consuming
and requires a huge effort. Hence, a fault localization technique
for SystemC HLS designs is required to reduce the number
of initial candidates and prioritize them for the evaluation and
fixing phase.

IV. FAULT LOCALIZATION METHODOLOGY

An overview of our proposed approach ASCHyRO is il-
lustrated in Fig. 2, consisting of two main phases which
are Hybrid Program Slicing and Ranking Analysis.

In the first phase, we perform a static and a dynamic
analysis. The static analysis consists of two steps:

1) extracting a Correlation Graph (CG) to formally slice the
program based on variables dependency,

2) analyzing all statements of the design to generate a Ham-
mock Graph (HG) including a one-to-one correspondence
between the design’s statements (data and control),

In order to know which statements of the design contribute to
propagating faults to the final output(s) during the execution
time, a dynamic analysis is performed. This is done by generat-
ing an instrumented version of the source code and executing
it with input tests that propagate faults to the output(s) and
cause error. The result of this analysis provides designers with
dynamic slicing of the SystemC design.

In the second phase, a ranking analysis is performed to
calculate a Confidence Score (CS) for each variable of the
design based on two parameters:

1) probability of fault occurrence on nodes derived from
static slicing and

2) probability of fault occurrence on nodes derived from
dynamic slicing.

The objective of our proposed approach is to identify a
minimal number of variables (and the corresponding lines of

code) in a given SystemC HLS design that are responsible for
the design’s erroneous behavior. In the following, each phase
of ASCHyRO is explained in detail and illustrated using the
motivating example, introduced in Section III (Fig. 1).

A. Hybrid Program Slicing

The program slicing technique has been introduced for the
first time in the software domains to identify parts of a program
which have an impact on a selected set of variables [28]. Parts
of the program that do not affect these variables are eliminated
and hence a reduced set is obtained. This reduced variable set
is called a slice. The program slicing technique is divided
into static slicing and dynamic slicing [29]. The static slicing
extracts all statements that affect the value of a variable for all
possible inputs at the point of interest, e.g., at a statement in
the program. The dynamic slicing finds those statements that
affect the value of a variable for a particular set of input tests
applied to the program.

In this paper, we take advantage of a hybrid slicing analysis
(combining both static and dynamic techniques) and adopt it
1) to support the SystemC constructs and 2) to be used for
fault localization purpose. The goal of static slicing analysis
is to formally identify the dependency of a given output to
the design’s variables for all possible input tests (independent
from the testcases). Thus, for the debugging task, it is still
valid when new counterexamples are applied to the design.
However, the size of the generated slice might be large which
tends to a reduction on the impact of the slice on debugging.
On the other hand, dynamic slicing can identify those variables
(and the corresponding lines of code) that associate to the
faulty output for a specific input test. Although the generated
slice is more accurate and narrow, it may not be valid when
new counterexamples are applied to the design. Hence, the
main reason to use a hybrid analysis is that the combination
of both techniques not only can reduce the number of fault
candidates but also provide the possible fault candidates that
are not activated by the given input tests during the execution.

1) Static Slicing: In order to formally represent the behav-
ior of a given SystemC design, we consider two data structures
which are CG and HG. The CG data structure describe the
behavior of a given SystemC design based on how different
variables (including all modules signals, ports and global and
local variables) of the design are related to each other. The
formal definition of CG data structure is as follows:

Definition 1. A Correlation Graph (CG) is a structure
(N, E, Z), where N is a set of nodes, E is a set of edges,
and Z ⊆ N is set of output variables. The edge from node X
to node Y shows that Y is dependent to X .

We perform a static analysis on the AST of the design to
generate the CG data structure. To do this, first all variables
of the design are extracted and tokenized by a unique string
including the module, function (for local variable), and vari-
able name. The extraction process is performed by visiting
relevant nodes in the AST of the design. To extract variables
dependency, a recursive analysis is performed on the AST
from the point that computational statements are defined. The
computational statements are usually defined as assignments
in the design or due to due to the SystemC structure, using
the write() member function of the output ports. If a statement
includes a function (or SystemC process) call, we recursively
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Fig. 3: Coloration Graph (CG) of the motivating example.

extract the relation of the function variables with the left-
hand side variable or module port. Moreover, all variables of
the compound statements (e.g. if-else, for-loop or while state-
ments) in which these computational statements are defined,
are also added into the dependency list of the result variable. It
should be taken into account that in our framework, we keep
the correspondence between nodes in the correlation graph
and variables in the statements of the SystemC code so when
a node in the correlation graph is selected as an fault candidate
the related statement in the SystemC code is easily determined.

In order to know how different statements (data and control
flow) of a given SystemC design are related to each other, the
HG representation of the design is automatically generated
from the AST of the SystemC design. The formal definition
of HG data structure is as follows:

Definition 2. A Hammock Graph (HG) is a structure
(N, E, n0, ne), where N is a set of nodes, E is a set of
edges in an N × N processing. n0 is the initial node and
ne is the end node. If (n, m) ∈ E then n is an immediate
predecessor of m, and m is an immediate successor of n.
There is a path from n0 to all other nodes in N . From all
nodes of N , excluding ne, there is a path to ne.

The HG graph is generated by analyzing the AST of a
given SystemC HLS design. We visit all nodes in the AST
which are related to statements of the design. This includes
both computational and control flow statements. To do this, a
Depth-First Search (DFS) algorithm is performed within the
top level entities (i.e. modules and global functions) to visit all
nodes of the statement’s type in the AST. We take advantage
of modules binding information to extract the connection of
modules within the design. Moreover, function calls within the
modules process are extracted by visiting the relevant nodes
in the AST to understand how lower hierarchies in a module
(i.e., local function and process) are connected to each other.
Please note that each statement of the design is tokenized by
the line of code where the statement is defined.

After extracting both CG and HG, the main task is to
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Fig. 4: Region representation of the motivating example’s CG.

identify the nodes located on the cone of faulty output(s),
and then slicing the aforementioned graphs into some regions
based on the cones. To perform the static slicing, we use
definitions of cone and region as follows:

Definition 3. In a correlation (or hammock) graph, the cone
of output Oi is the set of all nodes which Oi is dependent on.
This cone can be extracted by backtracking the nodes starting
from Oi and ending in primary inputs.

Definition 4. In a correlation graph, assume that
C1 ,C2 , . . . ,Cn are the cones for outputs O1 ,O2 , . . . ,On ,
respectively. The set of nodes which are only shared in cones
Ct1 ,Ct2 , . . . ,Ctk

is called a Region. We show a region based
on the dependent outputs as R({Ot1 ,Ot2 , . . . ,Otk

}) where
Oti

is the corespondent output for the cone Cti
.

Based on the Definition 4, the identified regions in a CG
are completely independent from each other, and each node
of the graph is only member of one of the regions. For
example, Fig. 3 shows the generated CG of the motivating
example (Fig. 1). In this graph, the nodes without any input
arrows (the gray nodes) show the primary inputs while the
nodes without any output arrows (the black nodes) indicate
the primary outputs of the design. The static slicing of the CG
based on Definition 3 and Definition 4 is illustrated in Fig. 4.
Since the design has three outputs, three cones C1 , C2 , and
C3 are created. C1 = {n0, n8, n9, n12, n13, n16, n18, n21},
C2 = {n1, n2, n5, n7, n10, n12, n15, n19, n21}, and C3 =
{n0, n1, n3, n4, n6, n11, n14, n17, n20} include the set of all
nodes on which out1, out2, and out3 are dependent, respec-
tively. The regions are created based on Definition 4:
R1({out1}) = {n8, n9, n13, n16, n18}, R2({out2}) = {n2, n5, n7,

n10, n15, n19}, R3({out3}) = {n3, n4, n6, n11, n14, n17, n20},
R4({out1, out2}) = {n12, n21}, R5({out2, out3}) = {n1},
R6({out1, out2, out3}) = ∅, R7({out1, out3}) = {n0} (1)

The static slicing of HG for a set of faulty outputs is
performed by identifying all nodes of the graph on which
the outputs are dependent. A node in the HG is considered
as a dependent node to a given output, if the corresponding
statement of this node (in the design’s source code) has at
least one variable that is located in the cone of the output.
Thus, in the case of HG static slicing, a simplified version
of Definition 4 is used where only two regions are created.
A region includes the dependent nodes to the faulty output(s)
and the other consists of independent nodes.

For example, Fig. 5 shows a part of the generated HG of
the motivating example (Fig. 1, Line 37 – Line 48). Each
node of the HG represents a statement of the design and is
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Fig. 5: Static and dynamic slicing of the motivating example
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tokenized by the corresponding line of code (LoC). Consider
the case of motivating example where the static slicing is
performed for out1 and out2 of module M2 (which are two
of the design’s primary outputs). Black circles in this figure
show statements that influence out1 and out2, while white
circles show statements that do not have any impact on them.
The static slicing of the HG for the primary outputs out1 and
out2 shows that nodes n7 and n10 do not affect them (as
the corresponding statements of these nodes do not have any
variables located in the cone of out1 and out2). Thus, the static
slicing of the HG for out1 and out2 results in the identification
of nodes n0 , n1 , n2 , n3 , n4 , n5 , n6 , n8 , and n9 .

2) Dynamic Slicing: In this section, we explain how dy-
namic slicing for design fault localization is performed and
can reduce the search space even more. The dynamic slicing is
performed by finding the intersection of the static slices of HG
and the executed statements. As we keep the correspondence
between nodes in the CG (variables of the design) and nodes in
the HG (statements of the design), the dynamic slicing of the
CG is performed by extracting the variables that are appeared
in the dynamic slicing of the HG. The executed statements
are obtained by running the program with the input test(s)
that cause faulty output(s). To know which statements (and
the corresponding lines of code and variables) of the design
have been executed, an instrumented version of the design
is automatically generated from the AST. This is done by
the Static Analyzer module (Fig. 2, phase 1) by adding an
instruction after each statement of the design. The generated
source code is automatically compiled to an executive binary
model and run with the input test(s) that cause incorrect
results. Thus, the generated Run-time Info includes all executed
statements.

Fig. 5 shows an example of the dynamic slicing of a part
of the motivating example based on its generated HG and
executed statements. The executed statements are obtained for
the case that genA < in1 (Fig 1, Line 38) and ctlIn is equal to
zero (Fig 1, Line 42), while other inputs have specific values.
Black circles in this figure show statements that influence out1

and out2, while white circles show statements that do not have
any impact on them. Due to the input values, the else part
of the condition statement (Fig 1, Line 41) is only executed,
thus nodes n1 and n2 are excluded from executed statements.
Moreover, nodes n4 and n5 are excluded from the executed
statements as value of ctlIn is zero, i.e., the if statement is not
executed. By intersecting the result of static slicing of the HG
and the executed statements, the result of dynamic slicing of
the graph for out1 and out2 is generated. It shows the nodes in
the HG (the corresponding statements in the source code) that
have dependency to out1 and out2 of module M2 and have
been executed based on the input tests that cause incorrect
results. Thus, the result of dynamic slicing of the HG for out1
and out2 consists of nodes n0 , n3 , n6 , n8 , and n9 .

B. Ranking Analysis
The ranking analysis is performed to calculate a CS for each

variable of the design and consequently a reduced set of lines
of code (i.e. fault location candidates). The CS is obtained
using a two-step analysis: static and dynamic ranking.

1) Static Ranking: The goal of static ranking is to specify
the exact fault occurrence probability on nodes of CG. The
concept of region in Definition 4 empowers us to come up with
a theory about the faults location in SystemC HLS designs.

Theorem 1. Assume that n faults have occurred in the
design and propagated to some of the outputs. Assume
that S = {Of1 ,Of2 , . . . ,Ofk

} is the set of faulty outputs,
and S1 ,S2 , . . . ,Sp are all subsets of S. Then, the regions
R(Sh1

),R(Sh2
), . . . ,R(Shl

) are the candidates for fault oc-
currence if Sh1

∪ Sh2
∪ · · · ∪ Shl

= S .

Proof. Based on the region definition, we know that a re-
gion R({Ot1 ,Ot2 , . . . ,Otm}) is on the cone of the outputs
Ot1

,Ot2
, . . . ,Otm

. It means that if these outputs are faulty,
R is a candidate for the fault occurrence as the fault can
propagate to outputs through their cones. Now we can extend
the proof for several faults. Assume that we have several faults,
a set of regions is a candidate for occurrence of n faults if
these regions are located on the cones of all faulty outputs i.e.
the regions can influence all faulty outputs.

In general and with respect to Theorem 1, four Fault Sce-
narios (FSc) might happen when debugging a design. These
fault scenarios are illustrated in Fig. 6 and are obtained based
on the number of faults n , the number of faulty outputs nfout ,
and the number of outputs nout . FSc1 (which refers to the
case of single fault and single faulty output) and FSc2 (which
refers to the case of single fault and multiple faulty outputs)
are happened, if the single fault is located in the region of
the faulty output(s). Similarly, FSc3 (which refers to the case
of multiple faults and single faulty output) is happened, if all
faults are located in the reign of the faulty output. Thus, for
the aforementioned fault scenarios, the probability analysis is
simple as it needs to only be performed on a region.

In contrast, the probability analysis in the case of FSc4
(which refers to the case of multiple faults and multiple faulty
outputs) is complex as different regions combination must be
taken into account to cover all possible states.

Based on Theorem 1 and w.r.t the fault scenarios, we pro-
pose an algorithm to specify the probability of fault occurrence
on each node of CG. The algorithm receives a set of faulty
outputs, number of faults, and regions on correlation graph



Algorithm 1 Static ranking
Require: Set of faulty outputs Outsf , number of faults n , CG regions R(Outsr1 ),

R(Outsr2 ), . . . , R(Outsrm )
Ensure: Fault probability for each node pni
1: FaultyRegions ← ∅
2: RC ← Create all region combinations with n members
3: for each C ∈ RC do
4: MergedSet ← ∅
5: N ← 1
6: for each R(Outsr ) ∈ C do
7: MergedSet ← MergedSet ∪Outsr

8: N ← N × size(R(Outsr ))

9: if MergedSet = Outsf then
10: FaultyRegions ← FaultyRegions ∪ C
11: for each R(Outsr ) ∈ C do
12: NR(Outsr ) ← NR(Outsr ) + N

13: EffectiveNodeSize ← 0
14: for each R(Outsr ) ∈ FaultyRegions do
15: EffectiveNodeSize ← EffectiveNodeSize + size(R(Outsr ))

16: for each R(Outsr ) ∈ FaultyRegions do
17: pnodeR(Outsr )

← R(Outsr )
EffectiveNodeSizen×size(R(Outsr ))

18: Pnode ← Pnode ∪ {pnodeR(Outsr )
}

19: return Pnode

as inputs and returns the fault probability for each node as
output. In order to illustrate each part of the algorithm, we
use the motivating example after slicing in Fig. 4 for the
FSc4 (which is the most complex fault scenario). With respect
to the fault scenario of the motivating example, there are
two faults on the correlation graph of Fig. 4 after slicing
and both outputs of the design out1 and out2 are faulty.
Therefore, the set of faulty outputs is S = {out1 , out2}.
Regions R1 ({out1}), R4 ({out1 , out2}) are the candidates
for the faults occurrence (i.e. one fault on R1 and one fault
on R4) as {out1} ∪ {out1 , out3} = {out1 , out3} which is
equal to the set of faulty outputs S.

Now, we explain our static ranking algorithm in detail with
the help of the example. First, all combinations of the CG
regions with n members are created (Line 2 in Algorithm 1).
As there are n faults in the design, each fault should occur in
one of the regions. Thus, the set of region combinations (RC )
contains all possible scenarios for occurrence of faults in the
design. In our example, the set of RC is as follows:

RC = {{R1 ,R1 }, {R1 ,R2 }, {R1 ,R3 }, {R2 ,R2 },
{R2 ,R3 }, {R3 ,R3 }, {R1 ,R4 }, . . . } (2)

Next, we analyze each region combination to see if it is
a true candidate for the faults occurrence (Line 3). We
merge the set of corresponding outputs for the regions in
a combination to create MergedSet . (Line 7). For instance,
as {R1 ({out1}),R4 ({out1 , out2})} is one of the combina-
tions in our example, we merge the corresponding outputs to
get {out1} ∪ {out1 , out2} = {out1 , out2}. Based on Theo-
rem 1, if MergedSet is equal to set of faulty outputs, the region
combination is a true candidate for the fault occurrence. Thus,
it is added to the set of faulty regions FaultyRegions (Line 9 –
Line 10). In our example, MergedSet = {out1 , out2} exactly
equals the set of faulty outputs Outsf , as a result, it is a
candidate. Additionally, {R1 ,R2}, {R1 ,R4}, {R2 ,R4}, and
{R4 ,R4} are other candidates and are identified similarly.
We should also calculate the probability of fault occurrence
for each combination. Assume that {RC1

,RC2
, . . . ,RCn

} is a
region combination. As these regions are totally independent,
the probability of n faults occurrence in this combination is
as follows:

P =
size(RC1 )× size(RC2 )× · · · × size(RCn )

size(EffectiveNodes)
(3)

nfout = 1

1 < nfout ≤ nout

n
1

> 1

1

1

> 1
n

Fault 
Scenarios

(FSc)

FSc1

FSc2

FSc3

FSc4

Only one 
region

Combination 
of multiple 

regions

Fig. 6: Possible fault scenarios.

Since the number of effective nodes which have the possibility
of fault occurrence is unknown in this point, we only compute
the numerator (Line 8). Please note that we do not consider
the primary input nodes in the probability computations as it
is impossible that a fault occurs on a primary input. Returning
to our example again, the values of the numerators for the
combinations {R1 ,R2}, {R1 ,R4}, {R2 ,R4}, and {R4 ,R4},
i.e. all true combination candidates for the fault occurrence are:

NR1 ,R2 = size(R1 )× size(R2 ) = 5 × 5 = 25

NR1 ,R4 = size(R1 )× size(R4 ) = 5 × 1 = 5

NR2 ,R4 = size(R2 )× size(R4 ) = 5 × 1 = 5

NR4 ,R4 = size(R4 )× size(R4 ) = 1 × 1 = 1 (4)

In order to obtain the probability of fault occurrence in each
single region Ri, we calculate the summation of all combina-
tion probabilities where Ri is a member of the combination.
Please note that the number of effective nodes is still unknown,
we only sum the numerators (Line 11 – Line 12). In our
example, the calculations are as follows:

NR1 =NR1 ,R2 + NR1 ,R4 = 25 + 5 = 30

NR2 =NR1 ,R2 + NR2 ,R4 = 25 + 5 = 30

NR4 =NR1 ,R4 + NR2 ,R4 + NR4 ,R4 = 5 + 5 + 1 = 11 (5)

After analyzing all combinations and extracting the com-
plete set of faulty regions FaultyRegions , we sum the number
of nodes in these regions to obtain the number of effective
nodes EffectiveNodeSize (Line 14 – Line 15). Finally, the
possibility of fault occurrence for each region is achieved
by dividing the numerator value calculated in the previous
steps by EffectiveNodeSizen. We also divide the obtained
probability by the number of nodes in each region to acquire
the probability of the fault occurrence for each CG nodes
(Line 16 – Line 19). In our example, The probability of fault
occurrence for each node in the three regions are as follows:

pnodeR1
=

NR1

EffectiveNodeSize2 × size(R1 )
=

30

11 2 × 5
= 0 .050

pnodeR2
=

NR2

EffectiveNodeSize2 × size(R2 )
=

30

11 2 × 5
= 0 .050

pnodeR4
=

NR4

EffectiveNodeSize2 × size(R4 )
=

11

11 2 × 1
= 0 .091 (6)

The probability of fault occurrence for each node is added to
the CS of its corresponding variable. Variables with the equal
CS are categorized in the same class of priority. A variable
(node in CG) with a higher CS should be analyzed earlier in
the fixing phase. Therefore, we sort the classes based on their
CS value in a descending order.

2) Dynamic Ranking: Although the previous static ranking
analysis can greatly reduce the number of fault candidates,
there may still be a large number of potential fault locations,
especially in the case of complex designs or designs with only



one output. Identifying the true design faults by examining all
fault candidates one by one requires a huge amount of run
time and effort. To alleviate this problem, we take advantage
of the results of dynamic slicing to improve the CS of each
design’s variables and reduce the number of faulty candidates.

The result of dynamic slicing on CG and HG provide a
more reduced set of variables and lines of code than the
static slicing, respectively. The goal of dynamic ranking is to
specify the exact fault occurrence probability on nodes of CG
(variables of the design) which are appeared in the dynamic
slicing and improve their CS. Moreover, the corresponding
lines of code of each variable w.r.t the dynamic slicing of HG
is reported to designers as fault location candidates.

To improve the CS of each variable, a similar probability
analysis to Algorithm 1 is performed. The only different is
the number of nodes in the CG. The calculated probability
value in this step is added to the probability value from static
ranking to generate the final CS of each variable.

In our example, after performing dynamic slicing, node
n9 is eliminated from R1 . Thus, the probability of fault
occurrence for each node in the three regions are as follows:

pnodeR1
=

NR1

EffectiveNodeSize2 × size(R1 )
=

24

10 2 × 4
= 0 .060

pnodeR2
=

NR2

EffectiveNodeSize2 × size(R2 )
=

25

10 2 × 5
= 0 .050

pnodeR4
=

NR3

EffectiveNodeSize2 × size(R3 )
=

1

10 2 × 1
= 0 .100 (7)

The final CS for each node (variable of the design)
in the CG is obtained by adding the dynamic probabil-
ity value to the static probability value calculated in the
previous step. Therefore, the CS for each node of the
CG is as follows: CSn12 = 0 .191 , CSn8 ,n13 ,n16 ,n18 = 0 .110 ,
CSn5 ,n7 ,n10 ,n15 ,n19 = 0 .100 , CSn9 = 0 .050 , and the CS for
other nodes in the CG is zero. By this, we have five classes of
variable candidates where the actual faults are in the first two
class, including five variables. Moreover, the dynamic slicing
of the HG (Fig. 5) is reported to designers to know which lines
of code are candidates for fault locations. Thus, in the case of
motivating example, the percentage reduction on search space,
i.e., variables and lines of code are 76% and 79%, respectively.

V. EXPERIMENTAL RESULTS

The proposed approach was applied to several standard Sys-
temC HLS designs from various domains which are provided
by OSCI [30], [31], and [32]. All the experiments were carried
out on a PC equipped with 8 GB RAM and an Intel core i7
CPU running at 2.4 GHz. The Static Analyzer module was
implemented in C++ language using the LibTooling library of
Clang compiler [33]. To access relevant nodes in the AST
(generated by Clang) of a given design, the primary node
visitor RecursiveASTVisitor of Clang was used. We used the
Rewriter interface of Clang to insert the print statements
in the corresponding design’s lines of code and generate its
new instrumented version. The Ranking Analyzer module was
implemented based on Algorithm 1 in C++.

We randomly injected functional faults (such as false state
transition, incorrect assignment, and incorrect operator) into
each design, which result in faulty (erroneous) output(s). The
functional faults that we target in this paper are the common
modeling mistakes affecting the functionality of a SystemC

design. In order to localize the aforementioned functional
faults, we gave the list of buggy output(s), designs’ source
code, and test cases which only include failing test stimuli to
ASCHyRO. To cover all fault scenarios (shown in Fig. 6), we
performed 20 experiments for each design (10 for each case
of single fault and multiple faults).

Table I shows the results of applying ASCHyRO to different
types of SystemC designs for localizing single fault and
multiple faults. The first two columns list the names and lines
of code for each design, respectively. Column #Vars presents
the number of variables for each design. Please note that
#LoC and #Var columns also represent the initial search space
for fault candidates. Column #Fault indicates the number of
injected functional faults into each design. The FLR shows the
percentage of reduction on fault locations w.r.t to the design’s
lines of code (the initial search space). The #CFL column lists
the number of code lines as the fault location candidates in the
design’s source code. Column VarR represents the percentage
of reduction on number of candidate variables w.r.t to design’s
variables (the initial search space). The #CVar column shows
the number of candidate variables for each design which cause
erroneous output(s). Please note that the reported reduction
values for columns FLR, #CFL, VarR, and #CVar are the
average of 10 experiments w.r.t single fault and multiple faults.

As can be seen in Table I, ASCHyRO on average reduces
the search space by 82% (in terms of LoC) and 78% (in
terms of the number of candidate variables), and 76% (in
terms of LoC) and 71% (in terms of the number of candidate
variables) for single fault and multiple faults, respectively.
The worst case reduction results are related to Cholesky, FIR-
filter, Adpmc, and Decimation benchmarks as they only have
one primary output. Thus, the static slicing (and subsequently
the static ranking) does not have any effect on reducing the
search space as all variables of the design are in the cone
of output (i.e. only one region is created). In this case, the
reduction only depends on the results of dynamic slicing (and
subsequently the dynamic ranking). However, ASCHyRO still
can reduce the search space with the help of dynamic slicing.
Please note that this limitation is a common problem for
all debugging approaches [10], [15], [16] which are based
on program slicing and probability analysis. The best case
reduction results are related to the Pkt-switch, RISC-CPU, and
LZW-encoder benchmarks where up to 96% (in terms of LoC
and the number of candidate variables), and 92% (in terms of
LoC) and 91% (in terms of the number of candidate variables)
reduction in search space were achieved for single fault and
multiple faults, respectively. It also shows that our approach
can significantly reduce the search space for complex design
with a large number of primary outputs.

The execution time of ASCHyRO is illustrated (in sec-
onds) in Table. I, column Execution Time, followed by the
required time for hybrid program slicing (column Phase1),
ranking analysis (column Phase2) and the total execution
time (column Total). Column CET shows the pure compi-
lation and execution time of each design by GCC without
any instrumentation. Please note that the execution time is
reported for the average of 10 experiments w.r.t single fault
and multiple faults. In comparison to CET, the execution time
of ASCHyRO is in the same range that on average, it takes
20.39 and 21.95 seconds to localize single fault and multiple
faults, respectively. The major time-consuming part of the



TABLE I: Experimental results for all SystemC benchmarks in case of single and multiple faults

Benchmark LoC #Vars #Fault #CFL FLR #CVar VarR Execution Time (s) CET (s)Phase1 Phase2 Total

Single
Fault

4-stage pipe1 90 36 1 23 74% 8 78% 6.52 0.11 6.63 3.21
FIR-filter2 365 42 1 91 75% 20 52% 12.32 0.11 12.43 4.11
Cholesky2 432 37 1 137 68% 21 43% 16.39 0.10 16.49 4.38
Adpcm2 444 46 1 129 70% 19 58% 12.51 0.11 12.62 3.78

Uart2 468 55 1 86 81% 6 89% 11.26 0.17 11.43 3.71
FFT-flpt1 586 56 1 77 86% 9 83% 12.28 0.17 12.45 3.92

FFT-fixed2 625 71 1 93 85% 11 85% 14.76 0.19 14.95 4.22
IDCT2 725 64 1 112 84% 6 91% 13.10 0.18 13.28 3.69

Decimation2 793 89 1 219 72% 39 56% 22.97 0.12 23.09 5.02
VGA2 821 81 1 71 91% 4 95% 21.16 0.19 21.35 3.84

Pkt-switch1 1053 72 1 68 93% 5 93% 19.56 0.18 19.74 6.13
RISC-CPU1 1960 345 1 121 94% 13 96% 47.61 0.31 47.92 11.21

LZW-encoder3 5132 422 1 205 96% 21 95% 52.09 0.56 52.65 24.68

Average 1037.99 108.92 1 110.15 82% 13.99 78% 20.18 0.20 20.39 6.29

M
ultiple

Fault

4-stage pipe1 90 36 3 41 54% 13 63% 7.04 0.19 7.23 3.21
FIR-filter2 365 42 2 117 67% 24 44% 12.91 0.12 13.03 4.11
Cholesky2 432 37 3 189 56% 22 39% 17.14 0.11 17.25 4.38
Adpcm2 444 46 2 161 63% 20 55% 12.89 0.12 13.01 3.78

Uart2 468 55 2 93 80% 9 83% 12.73 0.19 12.92 3.71
FFT-flpt1 586 56 4 109 81% 15 72% 13.80 0.20 14.00 3.92

FFT-fixed2 625 71 2 111 82% 13 81% 15.77 0.21 15.98 4.22
IDCT2 725 64 3 129 82% 9 85% 15.09 0.20 15.29 3.69

Decimation2 793 89 2 258 67% 51 42% 23.08 0.13 23.21 5.02
VGA2 821 81 4 97 88% 10 87% 22.48 0.23 22.71 3.84

Pkt-switch1 1053 72 3 82 92% 8 89% 21.61 0.23 21.84 6.13
RISC-CPU1 1960 345 5 290 85% 34 90% 50.36 0.42 50.78 11.21

LZW-encoder3 5132 422 5 410 92% 38 91% 57.29 0.89 58.18 24.68

Average 1037.99 108.92 3.07 160.53 76% 20.46 71% 21.70 0.25 21.95 6.29
1Provided by [30] 2Provided by [31] 3Provided by [32] LoC: Lines of Code #CFL: number of Candidate Fault Location FLR: Fault Location Reduction #CVar: number of Candidate Variable VarR: Variable Reduction CET: pure

Compilation and Execution Time without any instrumentation

approach is the first phase where the AST of each design and
the instrumented version of the source code are generated,
CG and HG are extracted, and finally the static and dynamic
slicing are performed.

Overall, our experiments with an extensive set of SystemC
HLS designs demonstrate that ASCHyRO is efficient and
scalable. In particular, even a design with more than 5, 000
lines of code (e.g. LZW-encoder) which are the initial search
space in debugging process for designers, can be reduced
significantly in less than a minute with a high accuracy.

VI. CONCLUSION

In this paper, we have proposed ASCHyRO, a novel semi-
formal fault localization approach for SystemC HLS design
at the ESL. Our approach takes advantage of a combination
of static and dynamic slicing along with a ranking analysis to
localize faults. Our experiment on a wide range of SystemC
designs with practical sizes illustrates that ASCHyRO provides
designers with a reduced ordered set of fault candidates
(variables and the corresponding lines of code) for multiple
faults and erroneous outputs in a short execution time.
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