
Investigating Various Adder Architectures for
Digital In-Memory Computing Using MAGIC-based

Memristor Design Style
Chandan Kumar Jha1*, Alireza Mahzoon2, and Rolf Drechsler1,2

German Research Center for Artificial Intelligence, DFKI GmbH, Bremen, Germany1

Institute of Computer Science, University of Bremen, Bremen, Germany2

Email: chandan.jha@dfki.de, alireza.mahzoon@uni-bremen.de, drechsler@uni-bremen.de

Abstract—Adders are implemented using a wide variety of
architectures. These architectures have been extensively studied
for digital IC-based implementations. In recent years, in-memory
computing has gained interest owing to the benefits it provides
in terms of both energy and performance as compared to
conventional von Neumann computing. In this work, we for the
first time investigate various adder architectures for in-memory
computing using the memristor aided logic (MAGIC) design style
for memristors. We analyze seven different adder architectures
for bit-widths: 8-bit, 16-bit, 32-bit, and 64-bit. We have used the
state-of-the-art SIMPLER tool for performing the mapping of
these adders to memristor crossbars. We show that serial prefix
adders are better suitable for IMC using the MAGIC design
style as compared to the widely used ripple carry adder. The
adder designs and the mapping will be made open source at
https://github.com/agra-uni-bremen/icee2022-magic-adder-lib, to
promote further research in the direction.

I. INTRODUCTION

In-memory computing (IMC) using memristors has gained
immense popularity in recent years [1]. A memristor is a two-
terminal device capable of changing its resistance depending
upon the applied voltage/current [2], [3]. Memristors can be
configured to be in a high resistance state (logic 0) or a
low resistance state (logic 1), which can then be used to
perform computations [4]. Implementing arithmetic circuits
using memristors has been explored using both digital and
analog computations [5], [6]. In this work, we focus on using
memristors for the implementation of adders using digital
computations [7]–[9].

We have used one of the most popular logic design styles
using memristors called memristor aided logic (MAGIC) for
implementing adders [10], [11]. The NOR and NOT operations
implemented using the MAGIC design style are shown in
Fig. 1. These gates can be implemented using a memristor
crossbar array as shown in Fig. 2. Before performing the
NOR operation, the output memristor (Mout) is first set
to low resistance, i.e., logic 1 state. When both the input
memristors (Min1,Min2) are in logic 0 state, the output
memristor remains in logic 1 state, as the current through
Mout is lesser than the threshold current. In all the other
cases, at least one of the input memristors is ON and the
state of the output memristor changes to logic 0 as sufficient
current flows through the memristor Mout. The NOT gate
also operates similarly but requires only one input memristor

(a) (b)

Fig. 1: MAGIC design style implementation (a) NOR gate (b)
NOT gate

(Min1) as shown in Fig. 1. If the input memristor has logic
0, the output memristor remains in logic 1 state. Whereas if
the input memristor has a logic 1 state the output memristor
Mout state is changed to logic 0.

Prior works on memristor based adders have mostly limited
themselves to ripple carry adders [7], [9]. In this work for the
first time, we compare and analyze various adder architectures.
We generated seven different adder architectures namely Rip-
ple Carry (RC), Carry-Lookahead (CL), Ladner-Fischer (LF),
Kogge-Stone (KS), Brent-Kung (BK), Carry Skip (CK), and
Serial Prefix (SE) [11], [12]. The general structure of the
parallel prefix adder is shown in Fig. 3 [11]. It has three major
parts. The first part is used to obtain the generate and propagate
signals from the primary inputs using (1). The second stage
uses these signals to generate the carry bits. There are multiple
ways in which the carry generation logic can be implemented
leading to different adder designs using (2,3). Lastly, the carry
and the propagate bits are used to generate the final sum of
the addition using (4).

gi = ai ∧ bi ; pi = ai ⊕ bi (1)

gi:j = gi:k ∨ (pi:k ∧ gk−1:j) ; pi:j = pi:k ∧ pk−1:j (2)

ci+1 = gi ∨ (pi ∧ ci) (3)

si = pi ⊕ gi−1:0 (4)

While these adder architectures have been extensively studied
and tailored depending upon the constraints of the digital IC
design, the same is not true for memristors. This motivates the
need for in-depth analysis and comparison across the adder

https://github.com/agra-uni-bremen/icee2022-magic-adder-lib


Fig. 2: Mapping 2 NOR and 1 NOT operation to a single row using MAGIC design style

Fig. 3: General structure of a parallel prefix adder

architectures to identify the most suited adder architecture for
the MAGIC based design style. In this work, we have the
following contributions:

• We present the first in-depth comparison across 7 dif-
ferent adder architectures for bit-widths ranging from
8-bit to 64-bit for IMC using MAGIC design style for
memristor crossbars.

• Contrary to the existing works that use ripple carry
adders for MAGIC-based design we show that serial
prefix adders are best suitable for MAGIC-based design
style. On average across all bit-widths serial prefix adder
has 8.5% lesser gate count and 8.9% lesser cycles as
compared to ripple carry adder.

• We will make the formally verified adder designs and the
magic design style-based mapping open source as they
can be used both as a benchmark and for building larger
designs.

The rest of the paper is organized as follows. In Section II,
we discuss the framework used for evaluation. In Section III,
we discuss the results and analysis. We conclude the paper in
Section IV.

II. FRAMEWORK FOR EVALUATION

The overall framework for evaluation is shown in Fig. 4.
We used the GENMUL framework to generate the design of
adders [13]. We generated adders ranging from bit-width 8
to 64. For verification purposes, all the adder designs were
converted to the .aig (AND-Inverter Graph) format using
YOSYS synthesis tool. We formally verified the RC adder de-
signs using the RevSCA-2.0 framework, which is a word-level
verification method that uses symbolic computer algebra [14].
We then performed the combinational equivalence checking
(CEC) using the ABC tool and the verified RC adders as

Fig. 4: Framework used for analysis of adder architectures

the gold designs [15]. All the formally verified adder designs
were then synthesized using the YOSYS synthesis tool. The
YOSYS tool generates the .blif (Berkeley Library Exchange
Format) of the adder designs. We then perform mapping of
these adder designs to the memristor crossbars using the
SIMPLER framework [7]. We started with 25 memristors and
kept increasing the memristor count in steps of 25 until all
the designs for a particular bit-width had a mapping using
SIMPLER. SIMPLER provides the mapping of the adder
designs to NOR and NOT operations on a memristor crossbar.
We get the gate count and the number of cycles from the
SIMPLER tool as the design metrics. We have performed a
technology-independent mapping using the SIMPLER tool.
The mapping can be used to implement the design on a
crossbar and perform circuit-level analysis.

III. RESULTS AND DISCUSSION

In this section, we discuss the results obtained by mapping
adders to memristor crossbars. RC adders have been explored
in earlier works related to mapping memristor to crossbars and
have shown to be the most efficient [7], [9]. Hence, we have
used RC adders mapped using the state-of-the-art SIMPLER
tool as the baseline for comparison.

A. 8-bit Adders

The result for the 8-bit adder is shown in Fig. 5. We see
that the gate count and total cycles vary from 83 (SE) to 133
(KS) and 85 (SE) to 139 (KS) respectively. SE and CK adders
are better for MAGIC design style as compared to RC adders
by 8.7% and 1.1% in terms of gate count and 9.6% and 1.1%
in terms of total cycles respectively.



97 90
107

133
102 91 83

0

50

100

150

BK CK CL KS LF RC SE

G
at

e
C

ou
nt

Adder Designs

8 -bit

(a) Gate Count for various 8-bit adder designs

100 93
111

139

106 94 85

0

50

100

150

BK CK CL KS LF RC SE

To
ta

l
C

yc
le

s

Adder Designs

8 -bit

(b) Total Cycles for various 8-bit adder designs

Fig. 5: Gate Count and Total Cycles for 8-bit Adders using 50 memristors

221
186

310 322
245

187 171

0

100

200

300

400

BK CK CL KS LF RC SE

G
at

e
C

ou
nt

Adder Designs

16 -bit

(a) Gate Count for various 16-bit adder designs

228
191

325 338

253
192 176

0

100

200

300

400

BK CK CL KS LF RC SE
To

ta
l

C
yc

le
s

Adder Designs

16 -bit

(b) Total Cycles for various 16-bit adder design

Fig. 6: Gate Count and Total Cycles for 16-bit Adders using 75 memristors

472
353

868 796

547
379 347

0
200
400
600
800

1000

BK CK CL KS LF RC SE

G
at

e
C

ou
nt

Adder Designs

32 -bit

(a) Gate Count for various 32-bit adder designs

479
358

897 817

555
384 351

0
200
400
600
800

1000

BK CK CL KS LF RC SE

To
ta

l
C

yc
le

s

Adder Designs

32 -bit

(b) Total Cycles for various 32-bit adder design

Fig. 7: Gate Count and Total Cycles for 32-bit adders using 150 memristors

B. 16-bit Adders

The result for the 16-bit adder is shown in Fig. 6. We see
that the gate count and total cycles vary from 171 (SE) to 322
(KS) and 176 (SE) to 338 (KS) respectively. SE and CK adders
are better for MAGIC design style as compared to RC adders
by 8.6% and 0.5% in terms of gate count and 8.3% and 0.5%
in terms of total cycles respectively.

C. 32-bit Adders

The result for the 32-bit adder is shown in Fig. 7. We see
that the gate count and total cycles vary from 347 (SE) to 868

(CL) and 351 (SE) to 897 (CL) respectively. SE and CK adders
are better for MAGIC design style as compared to RC adders
by 8.4% and 6.8% in terms of gate count and 8.6% and 7.8%
in terms of total cycles respectively.

D. 64-bit Adders

The result for the 64-bit adder is shown in Fig. 8. We see
that the gate count and total cycles vary from 699 (SE) to
2152 (CL) and 705 (SE) to 2209 (CL) respectively. SE adders
are better for MAGIC design style as compared to RC adders



985 827

2152
1907

1214
763 699

0
500

1000
1500
2000
2500

BK CK CL KS LF RC SE

G
at

e
C

ou
nt

Adder Designs

64 -bit

(a) Gate Count for various 64-bit adder designs

994 834

2209
1947

1225
769 705

0
500

1000
1500
2000
2500

BK CK CL KS LF RC SE

To
ta

l
C

yc
le

s

Adder Designs

64 -bit

(b) Total Cycles for various 64-bit adder design

Fig. 8: Gate Count and Total Cycles for 64-bit adders using 275 memristors

by 8.4% and 9.1% in terms of gate count and total cycles
respectively.

E. Overall Discussion

We see that SE adders and CK adders outperform RC adders
for bit-widths 8, 16, and 32. SE adder outperforms RC adder
for bit-width 64. As we move from 8 bits to 16, 32, and 64
bits, the gate count and total cycles increase by 2.06, 4.18,
and 8.42 times respectively as compared to the 8-bit SE adder.
While existing works have used RC adders as the baseline for
implementing adders, we showed through our analysis that it
is not the most optimal for the MAGIC design style. SE adders
are the most suitable for IMC based on MAGIC design style
in memristor crossbars. Since memristors-based IMC maps the
designs to limited functions which are then implemented using
memristor crossbars we believe this sort of analysis is very
crucial to identifying the best adder architecture suitable for a
given design style. Hence, we will also make the design and
the mapping open source as this work can act as a baseline
for further research in this direction.

IV. CONCLUSION

In this work, we performed a detailed comparison across
different adder architectures for performing IMC using mem-
ristors. We observed that across bit-widths, the serial prefix
adder uses the least number of gates and requires the least
number of cycles. On average, across all bit-widths, serial
prefix adder has 8.5% lesser gate count and 8.9% lesser cycles
as compared to ripple carry adder. All the adder designs and
the mapping are made open source at https://github.com/agra-
uni-bremen/icee2022-magic-adder-lib, so that they can be used
as benchmarks and promote further research in this direction.
In the future, we would like to extend the analysis to other
memristor-based design styles suitable for IMC.

ACKNOWLEDGEMENT

This work was supported by the German Research Founda-
tion (DFG) within the project PLiM (DR 287/35-1).

REFERENCES

[1] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,
“Memory devices and applications for in-memory computing,” Nature
nanotechnology, vol. 15, no. 7, pp. 529–544, 2020.

[2] K. Sun, J. Chen, and X. Yan, “The future of memristors: materials
engineering and neural networks,” Advanced Functional Materials,
vol. 31, no. 8, p. 2006773, 2021.

[3] M. Di Ventra, Y. V. Pershin, and L. O. Chua, “Circuit elements with
memory: memristors, memcapacitors, and meminductors,” Proceedings
of the IEEE, vol. 97, no. 10, pp. 1717–1724, 2009.

[4] Y. Li, Z. Wang, R. Midya, Q. Xia, and J. J. Yang, “Review of memristor
devices in neuromorphic computing: materials sciences and device
challenges,” Journal of Physics D: Applied Physics, vol. 51, no. 50,
p. 503002, 2018.

[5] I. Vourkas and G. C. Sirakoulis, “Emerging memristor-based logic circuit
design approaches: A review,” IEEE Circuits and Systems Magazine,
vol. 16, no. 3, pp. 15–30, 2016.

[6] P. Mannocci, G. Pedretti, E. Giannone, E. Melacarne, Z. Sun, and
D. Ielmini, “A universal, analog, in-memory computing primitive for
linear algebra using memristors,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 68, no. 12, pp. 4889–4899, 2021.

[7] R. Ben-Hur, R. Ronen, A. Haj-Ali, D. Bhattacharjee, A. Eliahu, N. Peled,
and S. Kvatinsky, “Simpler magic: Synthesis and mapping of in-
memory logic executed in a single row to improve throughput,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 39, no. 10, pp. 2434–2447, 2019.

[8] S. Froehlich and R. Drechsler, “Unlocking approximation for in-memory
computing with cartesian genetic programming and computer algebra
for arithmetic circuits,” it-Information Technology, vol. 64, no. 3, pp.
99–107, 2022.

[9] P. Thangkhiew, R. Gharpinde, D. N. Yadav, K. Datta, and I. Sengupta,
“Efficient implementation of adder circuits in memristive crossbar array,”
in TENCON 2017-2017 IEEE Region 10 Conference. IEEE, 2017, pp.
207–212.

[10] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny, and U. C. Weiser, “MAGIC—memristor-aided logic,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 11,
pp. 895–899, 2014.

[11] N. H. Weste and D. Harris, CMOS VLSI design: a circuits and systems
perspective. Pearson Education India, 2015.

[12] A. Mahzoon and R. Drechsler, “Polynomial formal verification of prefix
adders,” in 2021 IEEE 30th Asian Test Symposium (ATS). IEEE, 2021,
pp. 85–90.

[13] R. Drechsler and D. Große, Recent Findings in Boolean Techniques.
Springer, 2021.

[14] A. Mahzoon, D. Große, and R. Drechsler, “RevSCA-2.0: SCA-based
formal verification of nontrivial multipliers using reverse engineering
and local vanishing removal,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 41, no. 5, pp. 1573–
1586, 2021.

[15] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een, “Improvements to
combinational equivalence checking,” in 2006 IEEE/ACM International
Conference on Computer Aided Design. IEEE, 2006, pp. 836–843.

https://github.com/agra-uni-bremen/icee2022-magic-adder-lib
https://github.com/agra-uni-bremen/icee2022-magic-adder-lib

	Introduction
	Framework For Evaluation
	Results and Discussion
	8-bit Adders
	16-bit Adders
	32-bit Adders
	64-bit Adders
	Overall Discussion

	Conclusion
	References

