
Energy-Efficient CNN inferencing on
GPUs with Dynamic Frequency Scaling

Rolf Drechsler, Christopher A. Metz and Christina Plump

Abstract To ensure that emerging technologies such as autonomous driv-
ing and application-specific Internet of Things devices work correctly, fast
and accurate calculations must be performed by algorithms like Machine
Learning (ML). One essential algorithm in these systems is Convolutional
Neural Network (CNN), which requires a lot of computational resources. De-
signers often use ML accelerators like General Purpose Graphic Processing
Units (GPGPUs) to keep up with design requirements, but choosing the right
accelerator and accelerator configuration can be time-consuming and difficult.
Our research analyzes the power consumption and execution time of CNNs on
GPGPUs with different frequency settings. We found that changing the fre-
quency significantly impacted power consumption but only had a marginal
effect on computation time. Furthermore, increasing the frequency beyond
1200 MHz shows no improvement in computation time anymore. Therefore,
a lower frequency can help create an energy-efficient CNN inference system
without sacrificing performance.

Key words: Convolutional Neural Network (CNN), Graphic Processing
Unit (GPU), energy-efficient, frequency scaling, inferencing

Rolf Drechsler
University of Bremen/DFKI GmbH, Bremen, e-mail: drechsler@uni-bremen.de

Christopher A. Metz
University of Bremen, Bremen e-mail: cmetz@uni-bremen.de

Christina Plump
DKFI GmbH, Bremen, e-mail: cplump@uni-bremen.de

Users may only view, print, copy, download and text- and data-mine the content, for the
purposes of academic research. The content may not be (re-)published verbatim in whole or in
part or used for commercial purposes. Users must ensure that the author’s moral rights as well

as any third parties’ rights to the content or parts of the content are not compromised

1



2 Drechsler et al.

1 Introduction

The use of Machine Learning (ML) is widespread, ranging from self-driving
cars [1] to medical imaging like MRI [7]. Even ordinary people can access
Natural Language Processing (NLP) through platforms like ChatGPT [3].
However, the hardware and framework required for these applications dif-
fer significantly. Artificial Intelligence (AI) and ML systems can be as small
as embedded microprocessors or as large as supercomputers. When design-
ing these systems, one must consider the trade-off between performance and
power consumption. Small systems embedded with batteries cannot match
the performance of a supercomputer due to power limitations.

To optimize the performance of ML/AI applications, current General Pur-
pose Graphics Processing Unit (GPGPU) are explicitly designed for this pur-
pose. However, the power consumption of individual GPGPUs continues to
increase, with models like the NVIDIA H100 consuming up to 700 watts [16].
In contrast, the NVIDIA V100 only consumes up to 250 watts. To achieve
sustainable ML/AI systems, an energy-efficient design, implementation, and
operation are necessary.

When designing IoT or edge devices for ML/AI applications with lim-
ited power supply, it is crucial to perform Design Space Exploration (DSE)
to find a balance between power consumption and performance [15]. Power
management techniques like Dynamic Voltage and Frequency Scaling (DVFS)
or Dynamic Frequency Scaling (DFS) are effective ways to achieve this bal-
ance. DVFS adjusts the voltage/frequency during application processing,
while DFS only modifies the frequency. Both techniques optimize energy con-
sumption and performance. Although DVFS/DFS techniques for CPU-based
applications are well-established, research on these techniques for GPGPU
only started a decade ago [12, 4].

NVIDIA offers the option to set a frequency cap due to their tool nvidia-
smi. Studies [13, 18] illustrate that frequency caps can positively affect power
consumption. However, they also indicate that adjusting the frequency set-
tings of GPUs does not significantly improve the execution time of Deep
Learning (DL) applications [13]. Thus, configuring a frequency cap is a
promising method to reduce power consumption. As a drawback, those fre-
quency caps result in unconventional and unpredictable behavior regarding
the execution time of various applications [18, 13].

In [18] the impact of power and frequency caps are investigated on general
high-performance applications but not on the inferencing of neural networks.
They pointed out that using the frequency caps configured with nvidia-smi
results in large variations in the execution time. Consequently, it is not pos-
sible to estimate the execution time of an application for multiple executions
with the same frequency caps.

[5] analyzes the impact of DVFS on the NVIDA K20. They discovered that
when using a GPU for compute-bound tasks requiring high performance and
throughput, the system’s performance and power consumption are closely



Energy-Efficient CNN inferencing on GPUs 3

Convolutional Layers Fully Connected Layers

Input Convolutional

Pooling

Output

Fig. 1 Overview of CNN architecutre adjusted from [14]

tied to the GPU frequency. This means that increasing the GPU frequency
results in improved performance without significantly increasing energy con-
sumption as long as the power limit is not exceeded. This contrasts our
experimental results related to the newer NVIDIA V100S. We could spot an
increase in power consumption, especially in higher frequencies.

The work in [13] only investigated the impact of DFS on power consump-
tion on CNNs. We extend the analysis to performance and investigate both
power consumption and performance of CNN inferencing with DFS. Our main
findings can be summarized as follows:

• There is almost no correlation between performance and frequency on most
CNN inferencing task.

• There is a strong correlation between power consumption and frequency.
• The power consumption is strongly increasing for frequencies larger than

1200 MHz.
• Lower frequencies do not lead to significant performance loss but reduce

power consumption.

This work is structured as follows: Section 2 explains the necessary back-
ground to CNNs and GPGPUs. Next, Section 3 illustrates the Methodology.
The experimental setup and results are described in section 4. The work
closes with a conclusion and future work in Section 5

2 Background

In this section, we explain some background and introductory concepts of
CNNs and GPGPUs that are necessary to understand the proposed analysis.



4 Drechsler et al.

2.1 Convolutional Neural Networks

Convolutional Neural Nrtworks (CNNs) are a specialized type of neural net-
work mainly used for image data but can also be used on time-series data.
As the name Convolutional Neural Network indicates, these networks use a
mathematical operation called convolution [6, 7].

When it comes to a convolutional layer, it typically involves three stages
- convolution, activation, and pooling, illustrated in Fig. 1. Multiple convolu-
tions are carried out in parallel during the convolution stage, as demonstrated
in Fig. 2.

The activation stage involves applying a linear activation function, such as
the Rectified Linear Unit (ReLU) activation function. Finally, the optional
pooling stage employs a pooling function, such as max-pooling [6]. For in-
stance, Alexnet has six convolution layers and three max-pooling layers [10].
The max-pooling function selects the highest value within a n×m sized kernel
or window.

The convolution calculation and conceptual design of CNNs are well-suited
for parallel execution and benefit significantly from GPGPU’s massive par-
allelization capabilities [6].

a b c d e

f g h i j

k l m n o

q r s t u

w x

y z

aw + bx + 

fy + gz

bw + cx + 

fy + gz

cw + dx + 

hy + iz

dw + ex + 

iy + jz

fw + gx + 

ky + lz

gw + hx +

ly + mz

hw + ix +

my + nz

iw + jx + 

ny + oz

kw + lx +

qy + rz

lw + mx + 

ry + sz

mw + nx +

sy + tz

nw + ox + 

ty + uz

Kernel

Input

Output

Fig. 2 Convolutional operations for a 2D convolution with a 2x2 Kernel. The figure
does not consider any bias used for the convolutional layer based on [6, p. 330].



Energy-Efficient CNN inferencing on GPUs 5

2.2 General Purpose GPU

The architecture of Graphics Processing Units (GPUs) is considerably more
intricate than that of conventional Central Processing Units (CPUs), involv-
ing an adaptable quantity of Streaming Multiprocessors (SMs), as depicted in
Figure 3 for the NVIDIA V100. Each SM is subdivided into four Processing
Units (PUs) that work to optimize GPU efficiency. For the NVIDIA V100,
each of the four PUs are equipped with an L0 instruction cache, one Warp
Scheduler, one dispatch unit, a 64KB register file, 16 Floating Point (FP)
32 cores, 8 FP64 cores, 16 INT32 cores, and one tensor core (with mixed-
precision tensor cores for deep learning) [8, 17].

SM

L1 Instruction Cache

Tex Tex Tex

PU PU

L1 Data Cache / Shared Memory

Tex

PU PU

L0 Cache
Warp Scheduler
Dispatch Unit

Register File

INT32 INT32
INT32 INT32
INT32 INT32
INT32 INT32
INT32 INT32
INT32 INT32
INT32 INT32
INT32 INT32

FP32 FP32
FP32 FP32
FP32 FP32
FP32 FP32
FP32 FP32
FP32 FP32
FP32 FP32
FP32 FP32

FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64

Tensor Core

LD/
ST

LD/
ST

LD/
ST

LD/
ST

LD/
ST

LD/
ST

LD/
ST

LD/
ST

SFU

Fig. 3 Overview of streaming multiprocessor architecture adjusted from [17].

The GPGPU application, based on CUDA, is divided into multiple ker-
nels1. These kernels are compiled and divided into Cooperative Thread Ar-
rays (CTAs) or thread blocks. A CTA is further divided into groups of 32
threads, known as a warp, and all threads in a warp perform the same instruc-
tion following the Single Instruction Multiple Data (SIMD) principle [19].
However, NVIDIA refers to it as Single Instruction Multiple Threads (SIMT).
Managing warps may be unfamiliar to some programmers; they can only con-
trol the total number of threads, but it is a crucial aspect of the process [9].
Programmers write a program for a single thread and specify the number
of parallel executions. The warp scheduler locates the warps on the system
without the control of the programmers. The number of warps that can run
concurrently on an SM depends on their resource requirements, such as the
number of registers or shared memory usage.

1 Please note that the mentioned kernels are not affiliated with those of the CNN
concept.



6 Drechsler et al.

The warp-synchronous programming technique (i.e., SIMT) is softening
with the Volta architecture. Thus, threads can execute different instructions
within a warp. This makes the process more efficient and streamlined, en-
hancing its effective programming method [11, 19]. This results in fewer idle
threads generated by divergent branches.

3 Method

We conducted a study to determine how frequency scaling impacts the ef-
ficiency of CNN inferencing tasks. Our study carefully examined the power
consumption and computation time of inferencing tasks on multiple CNNs
with different frequencies. In the following, we describe the data-gathering
process and the evaluation methods.

3.1 Data Gathering

For our analysis, we generated different CNNs, same as in [13]. As Table 1
illustrates, the CNNs differ in size (number of hidden layers and neurons)
and input image size. However, it should be noted that some CNNs share
the same input size. That can be attributed to all these CNNs being trained
based on the ImageNet dataset [2].

The CNNs are downloaded pre-trained from TensorflowHub2 to ensure the
correct implementation of each CNN. Afterward, we execute each CNN as a
single batch run, with the prediction of one image at a time, on a machine
equipped with the NVIDIA V100S.

Before each execution, we use the nvidia-smi tool to set the frequency of
the NVIDIA V100S to a fixed value. Figure 4 illustrates using the nvidia-smi
frequency cap. The NVIDIA V100S offers a wide range of frequency settings,
from 135 MHz to 1597 MHz. However, the memory frequency remains fixed
at 1107 MHz for this particular GPU model and cannot be adjusted during
benchmarks. We perform only one CNN per run to ensure accurate results
and reset the GPU settings after each execution. This returns the GPU to its
default state before starting a new run. Additionally, we repeat each CNN
and frequency combination three times to determine the average execution
time and power consumption.

To measure the power consumption, we utilize the internal power sensors
of NVIDIA V100S. We consistently measure the power consumption and keep
track of the highest power consumption during CNN executions. Addition-
ally, we measure the execution time for each CNN and frequency setting,

2 https://www.tensorflow.org/hub



Energy-Efficient CNN inferencing on GPUs 7

Table 1 An overview of CNN models used in the experiments

CNN Input Size Layers Neurons

m-r50x1 224 × 224 50 15, 903, 016
m-r50x3 224 × 224 50 143, 111, 080
m-r101x3 224 × 224 101 25, 3408, 168
m-r101x1 224 × 224 101 28, 158, 248
m-r154x4 224 × 224 154 611, 981, 544
densenet121 224× 224 121 49, 926, 612
densenet169 224× 224 169 60, 094, 164
densenet201 224× 224 201 77, 292, 244
efficientnetb0 224× 224 240 25, 117, 095
efficientnetb1 240× 240 342 40, 150, 331
efficientnetb2 260× 260 342 50, 908, 981
efficientnetb3 300× 300 387 87, 507, 971
efficientnetb4 380× 380 477 180, 088, 531
efficientnetb5 456× 456 579 358, 290, 427
efficientnetb6 528× 528 669 605, 671, 091
efficientnetb7 600× 600 816 1, 046, 113, 195
inceptionresnetv2 299× 299 164 81, 201, 907
inceptionv3 299× 299 48 32, 554, 387
mobilenet 224× 224 28 16, 848, 248
mobilenetv2 224× 224 53 21, 815, 960
nasnetlarge 331× 331 1041 290, 560, 171
nasnetmobile 224× 224 771 27, 690, 705
resnet101 224× 224 101 55, 886, 036
resnet101v2 224× 224 101 51, 261, 140
resnet152 224× 224 152 79, 067, 348
resnet152v2 224× 224 152 75, 755, 220
resnet50v2 224× 224 50 31, 381, 204
vgg16 224× 224 16 15, 262, 696
vgg19 224× 224 19 16, 567, 272
xception 299× 299 71 62, 981, 867
alexnet 227 × 227 8 650, 000

nvidia−smi − i 0 −ac ${memory clock rate } , ${ c o r e c l o c k r a t e }

Fig. 4 Frequency capping with nvidia-smi

allowing for a comparison between execution time and frequency behavior.
The measured values are stored in a Comma-Separated Value (CSV) file.

Technical Setup:

Our technical setup utilizes a SLURM-based HPC cluster, ensuring consis-
tency using the same machine for all experiments. This machine has three
NVIDIA V100S 32GB graphics cards, 256GB of memory, and an EPYC



8 Drechsler et al.

ROME 7272 processor with 2 AMD. The home directory is connected through
a 10 GBit/s ethernet connection to a Network Attached Storage (NAS) [13].

3.2 Evaluation Process

As already mentioned, we consider the following setup: Our independent vari-
ables contain the CNNs used for inferencing Ni ∈ N = {N1 = alexnet,N2

= densenet121, ..., N31 = xception} and the varied frequencies f ∈ F ⊂ R≥0.
Our dependent variables contain the maximum power consumption P and the
computation time T . While N is a discrete set, F can be easily discretized
by sampling the frequencies at interest and ensuring a sensible distribution.

For each CNN inferencing task, we sampled 196 different frequencies (rang-
ing from 135 MHz to 1597 MHz) in approximately uniform distribution and
performed n = 3 repetitions of these tasks to factor out measurement noise.
Hence, for each CNN, we have 196 · 31 = 6076 data points (each in n = 3
repetitions) both in maximum power consumption and computation time.

We use standard statistical measures for evaluating our results: First, we
analyze the reliability of the computed data by computing mean µ(d) and
standard deviation σ(d) for each data point d in maximum power consump-

tion P and computation time t, as well as the variation coefficient σ(d)
µ(d) for

both dependent variables. Second, we compute relative values (on means)

trel(d) = µt(d)
minf∈F t(d) for computation time based on the minimum value of

computation time. This computation shows for each frequency in each net by
what factor the computation time increases compared to the shortest com-
putation time given this CNN. Third, we compute correlation coefficients

σxy = µ(xy−µ(x)µ(y)
σ(x)·σ(y) for each net between both dependent variables, but also

power consumption to frequency as well as computation time to frequency,
i.e. σPt, σPf , and σtf to analyze their influence on one another. This value
is normalized to lie between −1.0 and 1.0, where higher absolute values de-
note a higher linear dependence and lower absolute values (usually below 0.5)
indicate no linear correlation.

4 Evaluation

In this section, we describe the results of the above-described evaluation pro-
cess. Furthermore, we analyze and discuss our results to answer the following
evaluation questions:

• Evaluation Question 1: How reliable is the technical setup?
• Evaluation Question 2: What influence does the frequency have on the

computation time of the CNN inferencing task?



Energy-Efficient CNN inferencing on GPUs 9

• Evaluation Question 3: What influence does the frequency have on the
power consumption of the CNN inferencing task?

• Evaluation Question 4: Which influence is higher on computation time
or power consumption, the net’s or frequency’s influence?

Combining the results of these evaluation questions may allow a sound
answer to the original question about the influence of frequency scaling on
performance measures.

4.1 Evaluation Results

Xception

resnet101v2 resnet152 resnet152v2 resnet50v2 vgg16 vgg19

m−r50x3 mobilenet MobileNetV2 nasnetlarge nasnetmobile resnet101

InceptionResNetV2 inceptionv3 m−r101x1 m−r101x3 m−r154x4 m−r50x1

efficientnetb2 efficientnetb3 efficientnetb4 efficientnetb5 efficientnetb6 efficientnetb7

alexnet densenet121 densenet169 densenet201 efficientnetb0 efficientnetb1

40
0

80
0

12
00

16
00

40
0

80
0

12
00

16
00

40
0

80
0

12
00

16
00

40
0

80
0

12
00

16
00

40
0

80
0

12
00

16
00

40
0

80
0

12
00

16
00

0

50

100

150

200

0

50

100

150

200

0

50

100

150

200

0

50

100

150

200

0

50

100

150

200

0

50

100

150

200

frequency [MHz]

av
er

ag
e 

tim
e 

[s
]

Fig. 5 Average computation time (in seconds) for all nets and frequencies with error
bands of one σ



10 Drechsler et al.

Xception

resnet101v2 resnet152 resnet152v2 resnet50v2 vgg16 vgg19

m−r50x3 mobilenet MobileNetV2 nasnetlarge nasnetmobile resnet101

InceptionResNetV2 inceptionv3 m−r101x1 m−r101x3 m−r154x4 m−r50x1

efficientnetb2 efficientnetb3 efficientnetb4 efficientnetb5 efficientnetb6 efficientnetb7

alexnet densenet121 densenet169 densenet201 efficientnetb0 efficientnetb1

40
0

80
0

12
00

16
00

40
0

80
0

12
00

16
00

40
0

80
0

12
00

16
00

40
0

80
0

12
00

16
00

40
0

80
0

12
00

16
00

40
0

80
0

12
00

16
00

50

100

150

200

50

100

150

200

50

100

150

200

50

100

150

200

50

100

150

200

50

100

150

200

frequency [MHz]

av
er

ag
e 

po
w

er
 [W

]

Fig. 6 Average maximum power (in W) for all nets and frequencies with error bands
of one σ

Figures 5 and 6 show the results on average computation time and average
maximum power consumption. In both figures, facets show the results per net,
the x-axis shows different frequencies, and the y-axis shows the average value
with an error-band of one standard deviation for time and power, respectively.

In Figure 5, one can see that in most nets, the error band is compar-
atively narrow, with the obvious exception of the densenet-variants. The
inceptionnet-variants and efficientnet-variants also show higher standard de-
viations of consumption time than the remaining nets. It is noticable that
the frequency seems to have, at most, a mild negative effect, for most nets,
the trend appears constant at first sight.

In Figure 6, we again see higher standard deviations for most of the
efficientnet-variants as well as the inceptionnet-variants, however, not for
the densenet-variants. Here, only densenet201 shows high standard devia-



Energy-Efficient CNN inferencing on GPUs 11

tions. Additionally, the setup results in higher standard deviations for the
m-r101x3 net. As for the average maximum power values, the figure shows a
progressing curve for all nets, however, with varying steepness, e.g. the net
m-r154x4 has the highest increase for high frequencies, whereas nasnetmo-
bile has a comparably low increase, although still an increase. It is, however,
remarkable that the increase significantly progresses after passing the 1200
MHz frequencies. For most nets, this is where the most significant increase
starts.

Xception

resnet101v2 resnet152 resnet152v2 resnet50v2 vgg16 vgg19

m−r50x3 mobilenet MobileNetV2 nasnetlarge nasnetmobile resnet101

InceptionResNetV2 inceptionv3 m−r101x1 m−r101x3 m−r154x4 m−r50x1

efficientnetb2 efficientnetb3 efficientnetb4 efficientnetb5 efficientnetb6 efficientnetb7

alexnet densenet121 densenet169 densenet201 efficientnetb0 efficientnetb1

40
0

80
0

12
00

16
00

40
0

80
0

12
00

16
00

40
0

80
0

12
00

16
00

40
0

80
0

12
00

16
00

40
0

80
0

12
00

16
00

40
0

80
0

12
00

16
00

1.0

1.2

1.4

1.0

1.2

1.4

1.0

1.2

1.4

1.0

1.2

1.4

1.0

1.2

1.4

1.0

1.2

1.4

frequency [MHz]

re
la

tiv
e 

av
er

ag
e 

tim
e 

Fig. 7 relative average computation time for all nets and frequencies with a loess-
model fitted

To further investigate the only barely visible negative trend for the av-
erage computation time, we computed the relative average computation as
described in Section 3.2. Figure 7 shows the result. Again, each facet repre-
sents a CNN inferencing task (in the same order as both figures before), the



12 Drechsler et al.

x-axis shows the frequencies, and the y-axis now shows the relative average
computing time based on the minimum value (for this net). The blue lines
indicate a model fitted via the loess method to aid the eye in visualizing the
underlying trend. It cannot be seen as direct model computation. There are
several things to observe here: First, the higher variability in the data is not
an indicator of a high deviation in terms of the frequency variation as all of
the data is now scaled to its perceptive minimum and does still not exceed
1.5, i.e. a 50% increase on the minimum. Second, in this visualization, the
negative trend is easier to spot, however, it is still very small. Some nets, e.g.,
alexnet, vgg16, vgg19, show a rather clear negative trend, while others still
show basically none at all, e.g., efficientnetb3, densenet201, or InceptionRes-
NetV2. Third, the minimum value, i.e. 1.0, seems to generally lie between
900 and 1200 MHz, sometimes even once at the beginning of this range and
the end, see e.g. InceptionResNetV2. Last but not least, some nets seem to
show a change of trend in the middle of their data: It is especially prominent
in densenet169 and nasnetmobile, where at around 900 MHz, there seems to
be a drop in relative computing time, and then an increase can be seen.

To undermine our visual findings with a quantitative metric, we computed
the correlation coefficient for each net between frequency, average computa-
tion time, and average maximum power. Figure 8 shows the results, light
gray columns show the correlation coefficient results for frequency and aver-
age maximum power, and dark gray columns show the correlation coefficient
results for frequency and average computing time. As was already visible
in Figure 6, the values for the correlation coefficient with average maximum
power are very high, sometimes even close to 1.0, i.e. there is a strong positive
relationship between both variables. To phrase it differently, a higher average
maximum of power can be seen for higher frequencies. The picture is inverse
when looking at average computing time. Here, all correlation coefficients are
negative, albeit very small. The highest values to be observed are the ones
for alexnet, and both vgg16, and vgg19, which matches the conclusions from
the last paragraph.

4.2 Evaluation Discussion

For Evaluation Question 1, it is important that the repetitions yield com-
parable results. A closer look at Figures 5 and 6 shows that although some
nets have a higher standard deviation, these are also the ones with higher
average values. A computation of the variance coefficient for both maximum
power and computation time yields most variance coefficients to be smaller
than 0.2, and none exceeding 0.3. These are small values, that indicate that
is valid to trust the technical setup to give reproducible values.

In response to Evaluation Question 2, we can detect only a marginal nega-
tive impact on the computation time of the CNN inferencing task, i.e. higher



Energy-Efficient CNN inferencing on GPUs 13

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

al
ex

ne
t

de
ns

en
et

12
1

de
ns

en
et

16
9

de
ns

en
et

20
1

ef
fic

ie
nt

ne
tb

0

ef
fic

ie
nt

ne
tb

1

ef
fic

ie
nt

ne
tb

2

ef
fic

ie
nt

ne
tb

3

ef
fic

ie
nt

ne
tb

4

ef
fic

ie
nt

ne
tb

5

ef
fic

ie
nt

ne
tb

6

ef
fic

ie
nt

ne
tb

7

In
ce

pt
io

nR
es

N
et

V
2

in
ce

pt
io

nv
3

m
−

r1
01

x1

m
−

r1
01

x3

m
−

r1
54

x4

m
−

r5
0x

1

m
−

r5
0x

3

m
ob

ile
ne

t

M
ob

ile
N

et
V

2

na
sn

et
la

rg
e

na
sn

et
m

ob
ile

re
sn

et
10

1

re
sn

et
10

1v
2

re
sn

et
15

2

re
sn

et
15

2v
2

re
sn

et
50

v2

vg
g1

6

vg
g1

9

X
ce

pt
io

n

CNN

co
rr

el
at

io
n 

co
ef

fic
ie

nt

Fig. 8 Correlation coefficients for frequency and computation time as well as fre-
quency and power

frequencies lead only to very small improvements in computation time if at
all. This finding aligns with the general direction of the findings in [18].

Concerning Evaluation Question 3, we have observed a significant link
between frequency and power usage. The power consumption drastically in-
creases when the frequency exceeds 1200 MHz, the range where overclocking
begins, as the base frequency of NVIDIA V100 is 1245 MHz. As a result,
overclocking has a greater impact on power consumption, while underclock-
ing has a smaller effect on most CNNs. However, some exceptions exist, such
as the NASNetlarge or the NASNetMobile, which suggests that network de-
sign also plays a role in power consumption. Overclocking the GPGPU core
frequency generally does not result in significantly better performance but
increases power consumption dramatically.



14 Drechsler et al.

The answer to Evaluation Question 4 has two parts: Firstly, the frequency
has a significant impact on power consumption, as shown by the strong cor-
relations. There are a few exceptions like the NASNetLarge and NASNetMo-
bile, where the increase of power consumption already starts before the 1200
MHz frequency. Please notice that both CNNs are automatically designed by
Neural Architecture Search (NAS) techniques and not by humans. Thus, the
NAS technique and the implementation of both networks could lead to dif-
ferent behavior. Secondly, while the correlation between frequency and power
consumption is generally high, the correlation between computation time and
frequency is the opposite, indicating that the application influences compu-
tation time more than the frequency does. This effect can also be observed
in the findings of [18] for other high-performance applications. In addition,
the implementation of the application can also have a significant impact on
the computation time.

Overall, lower frequencies lead to lower power consumption for CNNs,
while the computation time is never more than 50 % slower as the fastest
execution. Consequently, we recommend lowering the frequency of CNNs in-
ferencing tasks to establish sustainable and energy-efficient systems.

5 Conclusion

We present a new experimental results on DVFS for CNN on the NVIDIA
V100S showing an interesting behavior of the GPU. As our experiments
pointed out, higher frequencies significantly impact power consumption, while
small to middle frequencies have a smaller impact. Moreover, we showed that
the impact of the frequency on computation time is marginal and can be ig-
nored. Consequently, lower frequency settings can be used to design energy-
efficient CNN inferencing systems without significant performance loss.

The new insights can help to design more energy-efficient AI systems,
thus leading to more sustainable AI. In future work, we plan to develop
automatic optimization methods to automatically adjust the frequency of
GPGPUs related to the executed applications. We aim to attain superior
frequency adjustment and energy conservation while maintaining optimal
performance.

Acknowledgements This work was supported by the Data Science Center of the
University of Bremen (DSC@UB).



Energy-Efficient CNN inferencing on GPUs 15

References

1. Daily, M., Medasani, S., Behringer, R., Trivedi, M.: Self-driving cars. Computer
50(12), 18–23 (2017)

2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255 (2009)

3. Deng, J., Lin, Y.: The benefits and challenges of chatgpt: An overview. Frontiers
in Computing and Intelligent Systems 2(2), 81–83 (2022)

4. Ge, R., Vogt, R., Majumder, J., Alam, A., Burtscher, M., Zong, Z.: Effects of
dynamic voltage and frequency scaling on a K20 GPU. In: 2013 42nd International
Conference on Parallel Processing. pp. 826–833 (2013)

5. Ge, R., Vogt, R., Majumder, J., Alam, A., Burtscher, M., Zong, Z.: Effects of
dynamic voltage and frequency scaling on a k20 gpu. In: 2013 42nd International
Conference on Parallel Processing. pp. 826–833 (2013)

6. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016),
http://www.deeplearningbook.org

7. Hoinkiss, D.C., Huber, J., Plump, C., Lüth, C., Drechsler, R., Günther, M.: AI-
driven and automated MRI sequence optimization in scanner-independent MRI
sequences formulated by a domain-specific language. Frontiers in Neuroimaging
2, 1090054 (2023)

8. Hong, S., Kim, H.: An analytical model for a gpu architecture with memory-level
and thread-level parallelism awareness. SIGARCH Comput. Archit. News 37(3),
152–163 (2009)

9. Hong, S., Kim, H.: An analytical model for a gpu architecture with memory-
level and thread-level parallelism awareness. In: Proceedings of the 36th annual
international symposium on Computer architecture. pp. 152–163 (2009)

10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep
convolutional neural networks. In: Pereira, F., Burges, C., Bottou, L., Weinberger,
K. (eds.) Advances in Neural Information Processing Systems. vol. 25. Curran
Associates, Inc. (2012)

11. Lustig, D., Sahasrabuddhe, S., Giroux, O.: A formal analysis of the nvidia ptx
memory consistency model. In: Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems. p. 257–270. ASPLOS ’19, Association for Computing Machinery, New
York, NY, USA (2019)

12. Mei, X., Wang, Q., Chu, X.: A survey and measurement study of GPU DVFS on
energy conservation. Digital Communications and Networks 3(2), 89–100 (2017)

13. Metz, C.A., Goli, M., Drechsler, R.: Towards neural hardware search: Power
estimation of CNNs for GPGPUs with dynamic frequency scaling. In: Proceedings
of the 2022 ACM/IEEE Workshop on Machine Learning for CAD. pp. 103–109
(September 2022)

14. Metz, C.A., Plump, C., Berger, B.J., Drechsler, R.: Hybrid PTX analysis for
GPU accelerated CNN inferencing aiding computer architecture design. In: Fo-
rum on Specification & Design Languages (FDL). Turin, Italy (2023), (accepted
for publication)

15. Milenkovic, M.: Internet of Things: Concepts and System Design. Springer Nature
(2020)

16. Nvidia: NVIDIA H100 Tensor Core GPU. https://resources.nvidia.com/
en-us-tensor-core/nvidia-tensor-core-gpu-datasheet, accessed:
2023-08-31

17. Nvidia: Volta architecture whitepaper. https://images.nvidia.com/
content/volta-architecture/pdf/volta-architecture-whitepaper.
pdf, accessed: 2022-01-18



16 Drechsler et al.

18. Patki, T., et al.: Comparing GPU power and frequency capping: A case study
with the MuMMI workflow. In: 2019 IEEE/ACM Workflows in Support of Large-
Scale Science (WORKS). pp. 31–39 (2019)

19. Saiz, A., Prieto, P., Abad, P., Gregorio, J.A., Puente, V.: Top-down performance
profiling on nvidia’s gpus. In: 2022 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). pp. 179–189. IEEE (2022)


