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Abstract Although quantum computing has made tremendous 
progress in last couple of years and technologies like NMR, Ion 
Trap, superconducting qubits have come out as promising 
platforms to implement quantum computing devices, such 
technologies are facing several design constraints. One such 
constraint is the Nearest Neighbor (NN) property, which 
demands the adjacency of logical qubits. Aiming to contribute to 
this cause, here we are proposing an improved design approach 
for transforming quantum circuits for NN-based architectures 
using genetic algorithms. In this work, our primary objective 
remains to form efficient NN structures by restricting the SWAP 
usage. In the design phase, initially, we use the k-means clustering 
scheme for partitioning the qubits into separate objects and, 
then, a genetic algorithm is applied that eventually fixes the order 
of qubits for each individual cluster. In the final phase, all these 
local solutions are combined and, again, a genetic algorithm is 
employed to obtain a global solution. We have tested our 
approach over a large spectrum of benchmarks and 
improvements are registered over some state-of-the-art design 
works.  
 

Keywords  Quantum Circuit,quantum gate, Nearest 
Neighbour(NN), SWAP gate, Quantum Cost(QC). 

I. INTRODUCTION 

Limitations of classical computing have resulted in an 
evolution of an alternative computational technology called 
quantum computing. The emergence of such technology 
promises to provide more efficient solutions for certain 
complex problems like factorization in RSA cryptosystem [1] 
or database search [2] for which no efficient classical 
algorithms exist. As a result, the design of quantum algorithms 
gets immense priority in order to aid the realization of 
practical applications for quantum computing devices. 
However, several challenges exist that need to be addressed 
for this purpose. Amongst these, fault-tolerance is considered 
an essential factor and it is found that this issue can be 
addressed by incorporating quantum error correction codes 
[3], like surface code [4].  But the implementation of such 
code demands nearest neighbor (NN) restrictions in which the 
quantum gates need to act on adjacently placed qubits only.  
Moreover, long interaction distances between the qubits are 
more susceptible to noise which may lead to computational 
errors. 

Experimentally, it is observed that close qubit interactions 
reduce such computational errors [5]. Additionally, quantum 
circuits implementing technologies like ion-trap [6], quantum 
dots [7], nuclear magnetic resonance [8] and superconducting 
qubits [9] consider NN interaction as a necessary design 
constraint. Consequently, the consideration of NN 
representations has become important to design algorithms for 
such architectures. The most standard way of achieving NN 
transformations is to insert a sequence of SWAP gates before 
quantum gates with non-adjacent qubits.  Following such an 
approach, however, causes an overhead in the resulting circuit 
with respect to both, depth and gate count. Based on this, 
efficient synthesis of NN circuits using less SWAP overhead 
becomes an essential design challenge. This can be fulfilled by 
rearranging the original positions of the qubits. For this 
purpose, a wide variety of techniques for an efficient NN 
representation have been proposed.  
 For example, a linear nearest neighbor (LNN) realization of 
quantum circuits using solutions based on templates and 
reordering strategies (global and local) has been presented in 
the article [10]. To obtain a better LNN representation, the 
authors of [11] followed an efficient method which not only 
reduces the additional circuit overhead but also brings down 
the time complexity. To improve the linear structure further, a 
design approach based on circuit partitioning has been 
developed in [12], where, initially, the input circuit is 
partitioned into sub-circuits and, then, MINLA approach is 
executed for obtaining an improved LNN solution. In way to 
contain the complexity of examining all possible qubit 
permutation orders, a compact and dedicated data structure 
representation is employed in the work [13]. To reduce the 
SWAP count in the overall netlist, look-ahead schemes have 
been introduced in [14]. Based on the scheme of [14], an 
advanced version of this look-ahead methodology has been 
presented in [15]. Exact design solutions have also been 
introduced in the works [16, 17, 18] that produce an optimal 
LNN solution with minimal SWAP overhead. However, such 
approaches are not feasible for larger circuits due to the 
enormous time consumption. Hence, developing further 
solutions for the improved realization of NN circuits remains a 
research topic. 
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Focusing on the need, in this article, we emphasize on 
developing an intelligent qubit policy based on global 
reordering of qubits empowered with genetic algorithms.  But 
to determine the best qubit order requires investigation of all 
possible permutation of qubits. For circuits with n qubits, n! 
qubit permutations are possible, i.e the complexity grows 
exponentially. To tackle this complexity, we introduce a 
heuristic NN design solution which simplifies the search 
process by exploring only parts of the state space. This 
approach results in optimal or nearly optimal results for many 
benchmark circuits.  
The rest of the paper is structured as follows. Section II 
presents an overview of nearest neighbor quantum circuits. 
Reordering of NN-compliant circuits for the entire netlist is 
presented in Section III. A description of the proposed 
reordering solution is discussed in Section IV. An 
experimental analysis followed by a comparison to some of 
the earlier works is provided in Section IV. Finally, we 
conclude the paper in Section V. 
 
         II. NEAREST NEIGHBOR BASED QUANTUM CIRCUITS 

 

Like bits used in classical computing, qubits represent the 
information units for quantum computing. A qubit is 
considered as a two-state quantum system existing in one of 
the basis states of |  and | . In addition to this, qubit states 
can also exist in a superposition of basis states which can be 
expressed in the form of state vector (| ), |  |  | , 

represents the amplitude values that are subject 
2 2 = 1. Operations performed on such an 

n-qubit system can be conducted through the employment of 
quantum gates which is described as multiplication of 2n × 2n 
unitary transformation matrices. The number of such unitary 
operators acting together in a specific manner realizes a 
quantum circuit.  
 

Definition 1: A network containing a cluster of quantum gates 
operating over a number of circuit lines forms a quantum 
circuit. 
 
 
 
 
 
 
 
 
 
 
 
The main basic building block for quantum circuits is quantum 
gate. The schematic representation of commonly used 1-qubit 
and 2-qubit quantum gates from NCV library [19] are shown 
in Table 1. 
Moreover, physical constraint of certain quantum technologies 
restricts the qubit interaction distance and only permits the 
quantum gates to act on qubits placed at adjacent locations. 
This phenomenon is known as nearest neighbor property.  To 

bring non-adjacently placed interacting qubits close to each 
other, a special type of gate termed as SWAP is used (the 
graphical representation of SWAP along with its elementary 
composition is depicted in Fig. 1). 
 
 
 
 
 
 
Definition 2: The interaction distance occurring between the 
positions of control and target qubits of any 2-qubit gate is 
called as Nearest Neighbor Cost (NNC).  
 

This NN cost [23] calculation can be performed by estimating 
the difference between the control and target qubit positions as 
given in Eqn. (1):  
 

              NNCg =                       (1) 
  

The above cost expression determines the nearest neighbor 
cost of a 2-input gate g whose control/target qubits are at 
positions c and t, respectively. Adding all such individual 
costs of each gate g results in an overall NN cost for the entire 
circuit network C and this estimation can be formulated as 
 

            NNCC =  = .                     (2) 
 

From this expression, we can infer that a given circuit can be 
considered nearest neighbor compliant if it contains only gates 
with adjacently placed interacting qubits  resulting in  

 = 0. For a better apprehension of the above 
statements, the transformation of rudimentary quantum 
circuits to NN architectures is discussed in the next example. 
 

Example 1: Let's consider the circuit shown in Fig. 2(a) 
which has NNCC = 6, since the interacting qubits of each gate 
do not occur at adjacent locations (NNCg Once the 
SWAP gates are placed before and after each non adjacent 
gate, a corresponding NN circuit results as shown in Fig. 2(b). 
In this transformed design, a total of 12 SWAP gates have 
been embedded to form the NN architecture.    
 
 

 
 
 
 
 
 
 

III. GLOBAL REORDERING OF NN CIRCUITS 
 

Reducing the SWAP overhead in NN architectures can be 
achieved through implementations of global reordering 
schemes, which emphasize on changing the initial qubit order 
before adding SWAP gates such that the cost overhead in the 
resulting NN architecture is reduced. Let s take an example to 
explain it. 
 

Example 2: Consider again the circuit from Fig. 2(a) and its 
corresponding NN design from in Fig. 2(b). Now changing the 
initial qubit order from q1q2q3q4 to q2q3q1q4 leads to the circuit 
shown in Fig. 3(a) and its NN cost is reduced from 6 to 2. The 
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q4 

V V  
V  

V 

Fig. 2(a): Quantum circuit 
having NNCC = 6 

q1 

q2 

q3 

q4 

V V  

V V  

Fig. 2(b): NN complaint design 
for Fig. 2(a) 

Table 1: Symbolic representation of some quantum gates 

Gates Symbol Gates Symbol 

NOT  Control
led -V 

 
 

 
CNOT 

 

V  Control
led -V  

V   

V 

V 

 V  V  

 

 

 

Fig.1: Pictorial representation of the SWAP gate 
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NN representation of this circuit (as depicted in Fig. 3(b)) can 
be obtained using only 4 SWAPs compared to 12 required in 
Fig. 2(b).  

 

 
 
 
 
 

By investigating the above example, it can be inferred that 
reordering of the qubit positions has a significant effect on the 
NN configuration of the circuit. In the next section, an NN 
synthesis workflow based on global qubit reordering is 
proposed. 
 

                             III. PROPOSED APPROACH  

Here, we introduce an improved design solution for efficient 
transformation of quantum circuit to NN architectures.  This 
transformation involves five design phases: i) Graph 
formation, ii) Cluster Formation, iii) Finding local solution, iv) 
Merging of clusters, v) Finding global solution. For a better 
apprehension of the entire design flow, we use the circuit 
shown in Fig. 4 with which all the phases are illustrated.   
 

Phase 1: Graph Formation 
 

In this phase, a complete graph is constructed for a given 
circuit specification in which the vertices represent the qubits, 
while the edges interconnect these vertices. Each of the edges 
is assigned a weight indicating the degree of interaction 
between the two corresponding qubits of the circuit and it can 
be computed heuristically using 
 

 )/1(/* jijiji TNIIe ,                     (3) 

where the notations Ii, Ij, represent the interaction count of 
qubits qi and qj while notations N and Tij are the total gate 
count in the given circuit and the timestamp of gates appearing 
between the qubits qi and qj respectively. The significance of 
considering the term 1/Tij is to assign priority to the gates 
depending on its respective positions and it decreases from left 
to right of the circuit. 
For the circuit shown in Fig. 4, its corresponding complete 
graph representation is depicted in Fig. 5.  
 
 
 
 
 
 
 
 
 
 
The edge weight of this complete graph is determined using 
the expression given in Eqn. (3). There are nodes whose 
interconnecting edges have been assigned zero weight due to 
absence of any gate acting on those qubits. 
 

 
 
 
 

Phase 2: Cluster Formation 
 

After constructing the complete graph, the purpose of the 
second phase is to partition the entire graph into sub-graphs 
obtained in Phase 1. In this process, the k-means algorithm has 
been applied and the qubits representing the vertices are 
divided into distinct groups of clusters based on the k-means 
policy. The objective behind implementing this clustering 
technique is to reduce the complexity of finding appropriate 
solutions for large problem sizes (for circuits with large 
number of qubits, the number of possible permutations 
increases). This strategy basically groups the qubits into 
distinct clusters and, then, finds solution for each cluster 
separately, which in turn helps to find solutions fast.  
The number of clusters (NumC) required for any given circuit 
can be determined heuristically using a logarithm function, 
namely 
 

 NumC = ,                       (4) 
 

where the parameter NumQ is the number of qubits of a given 
circuit. This expression computes the number of clusters 
(NumC) needed for qubit partitioning and it increases with the 
number of qubits such that the cluster sizes does not differ 
much. The constants in the above logarithmic expression are 
obtained through experimentation. This expression is feasible 
only when the following condition is satisfied: 
 

                 NumC  2   iff   NumQ 8 otherwise                   (5) 
                NumC < 2    iff  NumQ < 8 
More precisely, qubit partitioning or clustering can only take 
place when a given circuit contains either 8 or more than 8 
qubits; otherwise no partitioning is required, i.e. all qubits are 
placed in a single cluster (for qubit size of 6 and 7, the 
expression returns a unit value indicating no cluster formation 
while for circuits with 3 to 5 qubits, clustering becomes 
irrelevant since the expression in Eq. (4) returns a negative 
value). It has been verified through experimentation that, for 
partitioning purposes, this phase becomes feasible only when 
the qubit size reaches the threshold value of 8. Otherwise, 
clustering becomes insignificant for circuits with less than 8 
qubits since possible qubit permutations can be determined 
manually. 
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Fig. 3(a): Quantum circuit 
having NNCC = 2 
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Fig. 3(b): NN circuit of  
Fig. 3(a) 
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Fig. 5: Graphical representation of circuit in Fig. 4 

Fig. 4: Input quantum circuit  
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The size of each cluster remains almost same and its 
maximum size (CSMAX) is kept fixed which can be computed 
by 
  CSMAX = NumQ /NumC                      (6) 
 

After determining the number of clusters (NumC) for any input 
circuit (of size n qubits), we randomly chose NumC qubits as 
the center for each such cluster. In other words, qubits are 
randomly assigned as cluster centers. The remaining qubits are 
then assigned to these clusters based on the objective function  

 ),(max
1

i

Num

i Cq
weightcluster cqEObj

C

i

.             (7) 

This expression indicates that qubits (q) are assigned to the 
clusters Ci, where i= 1 to NumC based on their maximum edge 
weight (Eweight) with respect to cluster centers ci. Before 
assigning any qubit to a cluster, we need to verify whether the 
maximum cluster size has been reached. If this is not the case, 
we would assign it to the said cluster. Otherwise, we are 
assigning it to the next best (based on Objcluster) available 
cluster. In this manner, all the qubits are assigned to distinct 
clusters. 
After the initial assignment of the qubits to different clusters 
in the first iteration, the following two steps are repeated.   

1. From each cluster, a qubit is selected as new cluster center 
for the next iteration based on roulette wheel. 
2. Once all the cluster centers are obtained, the remaining 
qubits are assigned to these new clusters in a similar manner 
using the cost function Objcluster. If this computed value is 
greater than the previous one, then only the clusters will be 
updated. Otherwise, it remains the same as in the previous 
iteration. 
 

For a better apprehension, we again consider the input circuit 
shown in Fig. 4. As this circuit contains eight qubits, 
clustering becomes suitable according to the conditions stated 
in Eqn. (5). Using the expression given in Eqn. (4), qubits are 
partitioned into two clusters based on the objective function 
Objcluster. Here, the formed clusters are  C1{q5, q6, q7, q8} and 
C2{q1, q2, q3, q4} respectively. So, only two clusters will be 
formed for the given circuit at the end of this phase.  
  

Phase 3: Finding Local Solution  
 

After partitioning the qubits into distinct clusters as discussed 
in the previous section, we find intra-cluster solution in which 
a suitable qubit order is determined for each cluster. For this 
purpose, a nature-inspired meta-heuristic scheme is applied 
extensively on each cluster separately. Amongst all the 
possible qubit permutation order within each cluster, we 
randomly select a subset that has the maximum cluster size. 
This selection actually forms the population size (qubit 
sequence order is considered as the genetic chromosome) of 
the clusters and the random subset orders within each cluster 
represent the corresponding members of the population. Each 
of these cluster populations are evaluated using a fitness 
function.    
In our case, we have considered the fitness function equivalent 
to that of nearest neighbor cost expression given in Eqn. (2). 
To create new members for the next generations, some 

random pairs are chosen (as parents with best fitness values 
from the current population are selected using roulette wheel 
approach From these parent members, new members are 
generated by performing crossover followed by mutation. The 
crossover operation is carried out by randomly selecting a 
crossover point across the parents in which the contents 
appearing before the point of first parent is copied directly in 
the offspring, while the remaining elements are appended in 
the order they occur in the second parent. The mutation 
operation is being executed with a defined probability besides 
choosing two random mutation points across the parents. This 
process is repeated iteratively until the termination condition 
is reached which is set as the iteration count in our approach.     
For the circuit shown in Fig. 4, two clusters C1{q5, q6, q7, q8} 
and C2{q1, q2, q3, q4} are formed as discussed in Phase 3. After 
following all the genetic operations stated above, the resulting 
cluster representations produced at the end of this phase are 
C1{q8, q6, q7, q5} and C2{q3, q2, q1, q4}, respectively. This 
solution represents the corresponding qubit permutation orders 
within each cluster.   
 

Phase 4: Merging of Clusters 
 

In this phase, we randomly combine all the formed clusters 
into a single cluster. At the end of the previous phase, cluster 
solutions with proper qubit ordering are achieved and these 
solutions are combined together in a random manner to 
generate an overall qubit order for the given netlist. Such 
cluster merging is being conducted in such a way that the 
order of qubits within each cluster is preserved in the final 
merged qubit order representation.  
For a better apprehension, we have considered the previously 
formed clusters (C1{q8, q6, q7, q5}, C2{q3, q2, q1, q4}). After 
randomly merging the elements of these clusters, it yields the 
resulting qubit order as C{q3, q8, q6, q7, q2, q1, q4, q5}. 
 

Phase 5: Finding Global Solution 
 

Similar to Phase 3, here, we also apply a genetic algorithm for 
finding a qubit order. But now we consider the resulting qubit 
order sequence obtained from Phase 4. All the operations 
associated with this algorithm are applied to obtain an overall 
qubit ordering for the entire circuit. For circuits with less than 
eight qubits, this step is applied directly after Phase 1. 
Otherwise, all the steps (from Phase 1 to 3) are executed 
sequentially.  
To obtain the globally reordered sequence for the initial qubit 
positions for the design of Fig. 4, again a genetic algorithm is 
applied. The qubit ordering (C{q3, q8, q6, q7, q2, q1, q4, q5}) 
obtained from the cluster combination is again permuted into 
C{q7, q4, q1, q3, q2, q5, q6, q8} by re-executing the steps of the 
genetic algorithm. The circuit representation with this 
resulting qubit ordering ( q7q4q1q3q2q5q6q8) is shown in Fig. 6. 
To realize its corresponding NN circuit (shown in Fig. 7), an 
overall of 8 SWAP gates are required (instead of the 32 gates 
which are needed with the initial qubit order of 

q1q2q3q4q5q6q7q8). Hence, a significant reduction in the 
SWAP overhead is achieved using this global reordering 
scheme.  
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IV. EXPERIMENTAL RESULTS 
 

In this section, the performance of the proposed reordering 
solution is evaluated. To this end, results from our 
experimental evaluations are reported. Our design workflow 
has been developed in C++ and processed on an Intel core i5 
processor with 3.30 GHz and 4GB RAM configurations.  
Experimental analysis has been conducted on a set of 
benchmark specifications taken from [20] and the resulting 
outcomes are tabulated in Table 2 and Table 3 respectively. 
The best results obtained for each benchmark circuit by 
running our algorithm repeatedly have been reported, while 
the remaining cases are omitted due to space limitations. The 
genetic approach mutation operation is conducted with 
probability of 0.7, while no crossover probability is being 
considered. Both, clustering and genetic phases, are executed 
for 40 iterations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the investigation of our result set recorded in Table 2, it 
can be inferred that, by changing the position of qubits using 
our approach, efficient NN-compliant circuits are produced 
which significantly reduce the SWAP overhead over works 
[10] and [13]. The result set from Table 2 shows that an 
overall cost reduction about 34.5% (69.91% in the best case) 
is achieved (compared to the work [10]) while a 8.28% 
reduction (best case value of 21.12%) compared to [13] is 
recorded. For some benchmark circuits, the column 'No. of 
cluster formed' contains '0' which indicates the circuits that do 

not meet the feasibility condition discussed in Eqn. (5). 
Additionally, the runtime (in seconds) of our method as well 
as that of work [13] is reported in Table 2. Optimal SWAP 
count for benchmarks is also mentioned under the column 
header optimal SWAP count  in Table 2 and it is very 
promising that our design solution provides either the optimal 
value (highlighted with yellow color) or nearly optimal results. 
Further investigations also reveals that our method produces 
results faster than [13]. The SWAP requirement for large 
benchmark circuits (synthetic benchmarks) are also recorded 
in Table 3, which also provides optimal and sub-optimal 
solutions.          

V. CONCLUSION 
 

This article discussed the problem of NN optimization using 
the global reordering scheme and also aimed to reduce the 
SWAP cost of the resulting circuits. In this work, we 
implemented a qubit reordering policy based on genetic 
algorithms and the k-means technique to obtain better 
solutions. The entire design flow is implemented in five 
different phases in which certain random pathways are 
conducted so as to avoid huge computational runtimes. We 
also have verified the effectiveness of our methodology by 
testing our design workflow over a large spectrum of 
benchmarks and comparing the computed results with some 
reported linear NN based design solutions. This method can 
also be extended further for higher dimensional structures 
(such as considered in [21]) by undertaking some 
modifications in the workflow. In the future, we will try 
investigating whether the proposed global reordering scheme 
to optimize quantum circuits can be extended so that they can 
be efficiently be used for IBM Q architectures [22].  
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