2020 IEEE 50th International Symposium on Multiple-Valued Logic (ISMVL)

Efficient Implementation of Nearest Neighbor
Quantum Circuits Using Clustering with Genetic
Algorithm

Anirban Bhattacharjee', Chandan Bandyopadhyay®, Angshu Mukherjee', Robert Wille?, Rolf Drechsler’, Hafizur Rahaman'
"Indian Institute of Engineering Science and Technology Shibpur, India-711103
Institute for Integrated Circuits, Johannes Kepler University Linz, A-4040 Linz, Austria
*Institute of Computer Science, University of Bremen & Cyber-Physical Systems, DFKI GmbH, 28358 Bremen, Germany
Email: anirbanbhattacharjee330@ gmail.com, chandan @uni-bremen.de, angshumukherjee100 @ gmail.com, robert.wille @jku.at,
drechsle @uni-bremen.de, rahaman_h @it.iiests.ac.in

Abstract—Although quantum computing has made tremendous
progress in last couple of years and technologies like NMR, Ion
Trap, superconducting qubits have come out as promising
platforms to implement quantum computing devices, such
technologies are facing several design constraints. One such
constraint is the Nearest Neighbor (NN) property, which
demands the adjacency of logical qubits. Aiming to contribute to
this cause, here we are proposing an improved design approach
for transforming quantum circuits for NN-based architectures
using genetic algorithms. In this work, our primary objective
remains to form efficient NN structures by restricting the SWAP
usage. In the design phase, initially, we use the k-means clustering
scheme for partitioning the qubits into separate objects and,
then, a genetic algorithm is applied that eventually fixes the order
of qubits for each individual cluster. In the final phase, all these
local solutions are combined and, again, a genetic algorithm is
employed to obtain a global solution. We have tested our
approach over a large spectrum of benchmarks and
improvements are registered over some state-of-the-art design
works.

Keywords— Quantum Circuit,quantum Nearest

Neighbour(NN), SWAP gate, Quantum Cost(QC).

gate,

1. INTRODUCTION

Limitations of classical computing have resulted in an
evolution of an alternative computational technology called
quantum computing. The emergence of such technology
promises to provide more efficient solutions for certain
complex problems like factorization in RSA cryptosystem [1]
or database search [2] for which no efficient classical
algorithms exist. As a result, the design of quantum algorithms
gets immense priority in order to aid the realization of
practical applications for quantum computing devices.
However, several challenges exist that need to be addressed
for this purpose. Amongst these, fault-tolerance is considered
an essential factor and it is found that this issue can be
addressed by incorporating quantum error correction codes
[3], like surface code [4]. But the implementation of such
code demands nearest neighbor (NN) restrictions in which the
quantum gates need to act on adjacently placed qubits only.
Moreover, long interaction distances between the qubits are
more susceptible to noise which may lead to computational
eITorS.

Experimentally, it is observed that close qubit interactions
reduce such computational errors [5]. Additionally, quantum
circuits implementing technologies like ion-trap [6], quantum
dots [7], nuclear magnetic resonance [8] and superconducting
qubits [9] consider NN interaction as a necessary design
constraint. Consequently, the consideration of NN
representations has become important to design algorithms for
such architectures. The most standard way of achieving NN
transformations is to insert a sequence of SWAP gates before
quantum gates with non-adjacent qubits. Following such an
approach, however, causes an overhead in the resulting circuit
with respect to both, depth and gate count. Based on this,
efficient synthesis of NN circuits using less SWAP overhead
becomes an essential design challenge. This can be fulfilled by
rearranging the original positions of the qubits. For this
purpose, a wide variety of techniques for an efficient NN
representation have been proposed.

For example, a linear nearest neighbor (LNN) realization of
quantum circuits using solutions based on templates and
reordering strategies (global and local) has been presented in
the article [10]. To obtain a better LNN representation, the
authors of [11] followed an efficient method which not only
reduces the additional circuit overhead but also brings down
the time complexity. To improve the linear structure further, a
design approach based on circuit partitioning has been
developed in [12], where, initially, the input circuit is
partitioned into sub-circuits and, then, MINLA approach is
executed for obtaining an improved LNN solution. In way to
contain the complexity of examining all possible qubit
permutation orders, a compact and dedicated data structure
representation is employed in the work [13]. To reduce the
SWAP count in the overall netlist, look-ahead schemes have
been introduced in [14]. Based on the scheme of [14], an
advanced version of this look-ahead methodology has been
presented in [15]. Exact design solutions have also been
introduced in the works [16, 17, 18] that produce an optimal
LNN solution with minimal SWAP overhead. However, such
approaches are not feasible for larger circuits due to the
enormous time consumption. Hence, developing further
solutions for the improved realization of NN circuits remains a
research topic.

978-1-7281-5406-0/20/$31.00 ©2020 IEEE
DOI 10.1109/ISMVL49045.2020.00-32

40

IEEE
computer
psouety

Focusing on the need, in this article, we emphasize on
developing an intelligent qubit policy based on global
reordering of qubits empowered with genetic algorithms. But
to determine the best qubit order requires investigation of all
possible permutation of qubits. For circuits with n qubits, n!
qubit permutations are possible, i.e the complexity grows
exponentially. To tackle this complexity, we introduce a
heuristic NN design solution which simplifies the search
process by exploring only parts of the state space. This
approach results in optimal or nearly optimal results for many
benchmark circuits.

The rest of the paper is structured as follows. Section II
presents an overview of nearest neighbor quantum circuits.
Reordering of NN-compliant circuits for the entire netlist is
presented in Section III. A description of the proposed
reordering solution is discussed in Section IV. An
experimental analysis followed by a comparison to some of
the earlier works is provided in Section IV. Finally, we
conclude the paper in Section V.

II. NEAREST NEIGHBOR BASED QUANTUM CIRCUITS

Like bits used in classical computing, qubits represent the
information units for quantum computing. A qubit is
considered as a two-state quantum system existing in one of
the basis states of |0) and |1). In addition to this, qubit states
can also exist in a superposition of basis states which can be
expressed in the form of state vector ([§)), [§) = a|0) + B|1),
where a and P represents the amplitude values that are subject
to the condition o + B? = 1. Operations performed on such an
n-qubit system can be conducted through the employment of
quantum gates which is described as multiplication of 2" x 2"
unitary transformation matrices. The number of such unitary
operators acting together in a specific manner realizes a
quantum circuit.

Definition 1: A network containing a cluster of quantum gates
operating over a number of circuit lines forms a quantum
circuit.

Table 1: Symbolic representation of some quantum gates

Gates Symbol Gates Symbol
NOT e 9 Control
— led -V
exor i
v . Control i
led -V* T

The main basic building block for quantum circuits is quantum
gate. The schematic representation of commonly used 1-qubit
and 2-qubit quantum gates from NCV library [19] are shown
in Table 1.

Moreover, physical constraint of certain quantum technologies
restricts the qubit interaction distance and only permits the
quantum gates to act on qubits placed at adjacent locations.
This phenomenon is known as nearest neighbor property. To

41

bring non-adjacently placed interacting qubits close to each
other, a special type of gate termed as SWAP is used (the
graphical representation of SWAP along with its elementary
composition is depicted in Fig. 1).

Fig.1: Pictorial representation of the SWAP gate

Definition 2: The interaction distance occurring between the
positions of control and target qubits of any 2-qubit gate is
called as Nearest Neighbor Cost (NNC).

This NN cost [23] calculation can be performed by estimating
the difference between the control and target qubit positions as
given in Eqn. (1):

NNC, =|c —t| -1 (1)

The above cost expression determines the nearest neighbor
cost of a 2-input gate g whose control/target qubits are at
positions ¢ and ¢, respectively. Adding all such individual
costs of each gate g results in an overall NN cost for the entire
circuit network C and this estimation can be formulated as

NNCc =Y NNCg = ¥(|c — t| — 1). 2)

From this expression, we can infer that a given circuit can be
considered nearest neighbor compliant if it contains only gates
with adjacently placed interacting qubits — resulting in
Y.NNCg 0. For a better apprehension of the above
statements, the transformation of rudimentary quantum
circuits to NN architectures is discussed in the next example.

Example 1: Let's consider the circuit shown in Fig. 2(a)
which has NNC¢ = 6, since the interacting qubits of each gate
do not occur at adjacent locations (NNC, # 0). Once the
SWAP gates are placed before and after each non adjacent
gate, a corresponding NN circuit results as shown in Fig. 2(b).
In this transformed design, a total of 12 SWAP gates have
been embedded to form the NN architecture.

q1

qQ2 q2
q4s —£ *-'JL_‘ qs

g4 o— d4
Fig. 2(a): Quantum circuit
having NNC¢= 6

Fig. 2(b): NN complaint design
for Fig. 2(a)

III. GLOBAL REORDERING OF NN CIRCUITS

Reducing the SWAP overhead in NN architectures can be
achieved through implementations of global reordering
schemes, which emphasize on changing the initial qubit order
before adding SWAP gates such that the cost overhead in the
resulting NN architecture is reduced. Let’s take an example to
explain it.

Example 2: Consider again the circuit from Fig. 2(a) and its
corresponding NN design from in Fig. 2(b). Now changing the
initial qubit order from q;q2q3q4 t0 q2q3q:1q4 leads to the circuit
shown in Fig. 3(a) and its NN cost is reduced from 6 to 2. The

NN representation of this circuit (as depicted in Fig. 3(b)) can
be obtained using only 4 SWAPs compared to 12 required in
Fig. 2(D).

qi

Qs

Fig. 3(a): Quantum circuit
having NNCc=2

q2
qs3

Lo

Fig. 3(b): NN circuit of
Fig. 3(a)

By investigating the above example, it can be inferred that
reordering of the qubit positions has a significant effect on the
NN configuration of the circuit. In the next section, an NN
synthesis workflow based on global qubit reordering is
proposed.

III. PROPOSED APPROACH

Here, we introduce an improved design solution for efficient
transformation of quantum circuit to NN architectures. This
transformation involves five design phases: i) Graph
formation, ii) Cluster Formation, iii) Finding local solution, iv)
Merging of clusters, v) Finding global solution. For a better
apprehension of the entire design flow, we use the circuit
shown in Fig. 4 with which all the phases are illustrated.

Phase 1: Graph Formation

In this phase, a complete graph is constructed for a given
circuit specification in which the vertices represent the qubits,
while the edges interconnect these vertices. Each of the edges
is assigned a weight indicating the degree of interaction
between the two corresponding qubits of the circuit and it can
be computed heuristically using

e, =1,*I,/NQ 1T, 3)

where the notations I, I;, represent the interaction count of
qubits g; and g; while notations N and T} are the total gate
count in the given circuit and the timestamp of gates appearing
between the qubits g; and g; respectively. The significance of
considering the term I/T}; is to assign priority to the gates
depending on its respective positions and it decreases from left
to right of the circuit.
For the circuit shown in Fig. 4, its corresponding complete
graph representation is depicted in Fig. 5.

VT
1 B

Vi

Qi
q2
q3
4
qs
Je
q7

&

qs
Timestamp 1 2 3 4 5 6 7 8 9
Fig. 4: Input quantum circuit

The edge weight of this complete graph is determined using
the expression given in Eqn. (3). There are nodes whose
interconnecting edges have been assigned zero weight due to
absence of any gate acting on those qubits.

42

P issTinssronssr
|

oo |

Nl

o \ 0555555555555

10 b

Fig. 5: Graphical representation of circuit in Fig. 4

Phase 2: Cluster Formation

After constructing the complete graph, the purpose of the
second phase is to partition the entire graph into sub-graphs
obtained in Phase 1. In this process, the k-means algorithm has
been applied and the qubits representing the vertices are
divided into distinct groups of clusters based on the k-means
policy. The objective behind implementing this clustering
technique is to reduce the complexity of finding appropriate
solutions for large problem sizes (for circuits with large
number of qubits, the number of possible permutations
increases). This strategy basically groups the qubits into
distinct clusters and, then, finds solution for each cluster
separately, which in turn helps to find solutions fast.

The number of clusters (Numc) required for any given circuit
can be determined heuristically using a logarithm function,
namely

Nume = [2.9 * In(0.18 * NumQ)], S

where the parameter Numy, is the number of qubits of a given
circuit. This expression computes the number of clusters
(Numc) needed for qubit partitioning and it increases with the
number of qubits such that the cluster sizes does not differ
much. The constants in the above logarithmic expression are
obtained through experimentation. This expression is feasible
only when the following condition is satisfied:

Numc>2 iff Numg> 8 otherwise

Numc <2 iff Numg <8
More precisely, qubit partitioning or clustering can only take
place when a given circuit contains either 8 or more than 8
qubits; otherwise no partitioning is required, i.e. all qubits are
placed in a single cluster (for qubit size of 6 and 7, the
expression returns a unit value indicating no cluster formation
while for circuits with 3 to 5 qubits, clustering becomes
irrelevant since the expression in Eq. (4) returns a negative
value). It has been verified through experimentation that, for
partitioning purposes, this phase becomes feasible only when
the qubit size reaches the threshold value of 8. Otherwise,
clustering becomes insignificant for circuits with less than 8
qubits since possible qubit permutations can be determined
manually.

®)

The size of each cluster remains almost same and its
maximum size (CSyx) is kept fixed which can be computed
by

(6)

After determining the number of clusters (Num) for any input
circuit (of size n qubits), we randomly chose Num, qubits as
the center for each such cluster. In other words, qubits are
randomly assigned as cluster centers. The remaining qubits are
then assigned to these clusters based on the objective function

. ~ Nume. . 7
Obj 10, = MAX z Z E, (g

i=1 geC;

This expression indicates that qubits (¢) are assigned to the
clusters C;, where i= I to Num¢ based on their maximum edge
weight (E,.n) with respect to cluster centers c; Before
assigning any qubit to a cluster, we need to verify whether the
maximum cluster size has been reached. If this is not the case,
we would assign it to the said cluster. Otherwise, we are
assigning it to the next best (based on Obj.,.,) available
cluster. In this manner, all the qubits are assigned to distinct
clusters.

After the initial assignment of the qubits to different clusters
in the first iteration, the following two steps are repeated.

CSMAX = Nqu/NumC

1. From each cluster, a qubit is selected as new cluster center
for the next iteration based on roulette wheel.

2. Once all the cluster centers are obtained, the remaining
qubits are assigned to these new clusters in a similar manner
using the cost function Obj. .- If this computed value is
greater than the previous one, then only the clusters will be
updated. Otherwise, it remains the same as in the previous
iteration.

For a better apprehension, we again consider the input circuit
shown in Fig. 4. As this circuit contains eight qubits,
clustering becomes suitable according to the conditions stated
in Eqn. (5). Using the expression given in Eqn. (4), qubits are
partitioned into two clusters based on the objective function
Obj 1usier- Here, the formed clusters are C;{qgs, g5 g7 gs} and
Cx{q1, g2 g3 q4} respectively. So, only two clusters will be
formed for the given circuit at the end of this phase.

Phase 3: Finding Local Solution

After partitioning the qubits into distinct clusters as discussed
in the previous section, we find intra-cluster solution in which
a suitable qubit order is determined for each cluster. For this
purpose, a nature-inspired meta-heuristic scheme is applied
extensively on each cluster separately. Amongst all the
possible qubit permutation order within each cluster, we
randomly select a subset that has the maximum cluster size.
This selection actually forms the population size (qubit
sequence order is considered as the genetic chromosome) of
the clusters and the random subset orders within each cluster
represent the corresponding members of the population. Each
of these cluster populations are evaluated using a fitness
function.

In our case, we have considered the fitness function equivalent
to that of nearest neighbor cost expression given in Eqn. (2).
To create new members for the next generations, some

43

random pairs are chosen (as parents with best fitness values
from the current population are selected using roulette wheel
approach. From these parent members, new members are
generated by performing crossover followed by mutation. The
crossover operation is carried out by randomly selecting a
crossover point across the parents in which the contents
appearing before the point of first parent is copied directly in
the offspring, while the remaining elements are appended in
the order they occur in the second parent. The mutation
operation is being executed with a defined probability besides
choosing two random mutation points across the parents. This
process is repeated iteratively until the termination condition
is reached which is set as the iteration count in our approach.
For the circuit shown in Fig. 4, two clusters Ci{qs, g5 q7 qs}
and C{q;, 92, g3, q4} are formed as discussed in Phase 3. After
following all the genetic operations stated above, the resulting
cluster representations produced at the end of this phase are
Cilas g6 q» qs} and Cx{qs q» q; qu}, respectively. This
solution represents the corresponding qubit permutation orders
within each cluster.

Phase 4: Merging of Clusters

In this phase, we randomly combine all the formed clusters
into a single cluster. At the end of the previous phase, cluster
solutions with proper qubit ordering are achieved and these
solutions are combined together in a random manner to
generate an overall qubit order for the given netlist. Such
cluster merging is being conducted in such a way that the
order of qubits within each cluster is preserved in the final
merged qubit order representation.

For a better apprehension, we have considered the previously
formed clusters (Ci{qs, g5 g7 qs}» C2{qs g2 q1, q4}). After
randomly merging the elements of these clusters, it yields the
resulting qubit order as C{q3, gs, 96 47 92 91, 44 q5}-

Phase 5: Finding Global Solution

Similar to Phase 3, here, we also apply a genetic algorithm for
finding a qubit order. But now we consider the resulting qubit
order sequence obtained from Phase 4. All the operations
associated with this algorithm are applied to obtain an overall
qubit ordering for the entire circuit. For circuits with less than
eight qubits, this step is applied directly after Phase 1.
Otherwise, all the steps (from Phase 1 to 3) are executed
sequentially.

To obtain the globally reordered sequence for the initial qubit
positions for the design of Fig. 4, again a genetic algorithm is
applied. The qubit ordering (C{gq3 gs 96 97 92 491, 9+ qs})
obtained from the cluster combination is again permuted into
C{q7 94 91, 93 92 45 qs qs} by re-executing the steps of the
genetic algorithm. The circuit representation with this
resulting qubit ordering (ng,9.q:9392959s4s) is shown in Fig. 6.
To realize its corresponding NN circuit (shown in Fig. 7), an
overall of 8 SWAP gates are required (instead of the 32 gates
which are needed with the initial qubit order of
nq:9293949596979s)- Hence, a significant reduction in the
SWAP overhead is achieved using this global reordering
scheme.

ar *
Ga * Vv
qi i
g3 “
e
qs o s
Qs - s J: :|: Pany
qs r s I_
Fig. 6: Globally reordered circuit Fig. 7: NN realization of circuit
for Fig. 4

from Fig. 6
IV. EXPERIMENTAL RESULTS

In this section, the performance of the proposed reordering
solution is evaluated. To this end, results from our
experimental evaluations are reported. Our design workflow
has been developed in C++ and processed on an Intel core i5
processor with 3.30 GHz and 4GB RAM configurations.
Experimental analysis has been conducted on a set of
benchmark specifications taken from [20] and the resulting
outcomes are tabulated in Table 2 and Table 3 respectively.
The best results obtained for each benchmark circuit by
running our algorithm repeatedly have been reported, while
the remaining cases are omitted due to space limitations. The
genetic approach mutation operation is conducted with
probability of 0.7, while no crossover probability is being
considered. Both, clustering and genetic phases, are executed
for 40 iterations.

Table 3: Results from higher qubits synthetic benchmarks

Prop. Soln.
Benchmark | No.of | Gate [Tg of SWAP | Time
hames qubits | Count cluster | count (sec.)
) formed

rev_17 17 136 4 1360 0.078
rev_18 18 153 4 1632 0.081
rev_19 19 171 4 1938 0.089
hm_20 20 73 4 270 0.088
hm_21 21 79 4 330 0.091
hm_22 22 85 4 346 0.012
ac_ 21_1 21 130 4 370 0.168
ac_21_2 21 67 4 408 0.095
ac_21_3 22 42 4 274 0.093
rdom_22 22 55 4 164 0.163
rdom_24 24 47 5 168 0.30
rdom_27 27 53 5 268 0.74
rdom_30 30 59 5 346 0.97
rdom_33 33 65 6 366 1.17
add23_218 23 58 5 222 0.18
add29_218 29 74 5 314 0.52
add8_172 25 96 5 286 0.47

From the investigation of our result set recorded in Table 2, it
can be inferred that, by changing the position of qubits using
our approach, efficient NN-compliant circuits are produced
which significantly reduce the SWAP overhead over works
[10] and [13]. The result set from Table 2 shows that an
overall cost reduction about 34.5% (69.91% in the best case)
is achieved (compared to the work [10]) while a 8.28%
reduction (best case value of 21.12%) compared to [13] is
recorded. For some benchmark circuits, the column 'No. of
cluster formed' contains '0' which indicates the circuits that do

44

not meet the feasibility condition discussed in Eqn. (5).
Additionally, the runtime (in seconds) of our method as well
as that of work [13] is reported in Table 2. Optimal SWAP
count for benchmarks is also mentioned under the column
header “optimal SWAP count” in Table 2 and it is very
promising that our design solution provides either the optimal
value (highlighted with yellow color) or nearly optimal results.
Further investigations also reveals that our method produces
results faster than [13]. The SWAP requirement for large
benchmark circuits (synthetic benchmarks) are also recorded
in Table 3, which also provides optimal and sub-optimal
solutions.
V. CONCLUSION

This article discussed the problem of NN optimization using
the global reordering scheme and also aimed to reduce the
SWAP cost of the resulting circuits. In this work, we
implemented a qubit reordering policy based on genetic
algorithms and the k-means technique to obtain better
solutions. The entire design flow is implemented in five
different phases in which certain random pathways are
conducted so as to avoid huge computational runtimes. We
also have verified the effectiveness of our methodology by
testing our design workflow over a large spectrum of
benchmarks and comparing the computed results with some
reported linear NN based design solutions. This method can
also be extended further for higher dimensional structures
(such as considered in [21]) by undertaking some
modifications in the workflow. In the future, we will try
investigating whether the proposed global reordering scheme
to optimize quantum circuits can be extended so that they can
be efficiently be used for IBM Q architectures [22].

REFERENCES
P.W Shor,”Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,”SIAM J. Comput. 26 (5),
1484-1509 (1997).

LK Grover, “A fast quantum mechanical algorithm for database
search,” In. Symposium on the Theory of Computing, pp. 212-219
(1996).

A. G. Fowler, C. D. Hill, and L. C. Hollenberg, “Quantum-error
correction on linear-nearest-neighbor qubit arrays,” Physical Review A,
vol. 69, no. 4, p. 042314, 2004.

A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland,
“Surface codes: Towards practical large-scale quantum computation,”
Physical Review A, vol. 86, no. 3, p. 032324, Sep. 2012.

H. Haffner et al., “Scalable multiparticle entanglement of trapped ions,
“ Nature, vol. 438, no. 7068, pp. 643-646, Dec 2005.

D. Kielpinski, C. Monroe, D.Wineland. “Architecture for a largescale
ion-trap quantum computer”,Nature, 417(6890):709-711, 2002.

J. Taylor, J. Petta, A. Johnson, A. Yacoby, C. Marcus, and M.
Lukin,“Relaxation, dephasing, and quantum control of electron spins in
double quantum dots”. Physical Review B, 76(3):035315, 2007.

B. Criger, G. Passante, D. Park, and R. Laflamme. “Recent advances in
nuclear magnetic resonance quantum information processing”.
Philosophical Transactions of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences,370(1976):4620—
4635, 2012.

A. Blais, J. Gambetta, A. Wallraff, D. Schuster, S. Girvin, M. Devoret,
and R. Schoelkopf. “Quantum information processing with circuit
quantum electrodynamics”. Physical Review A, 75(3):032329, 2007.

(1]

[2]

[3]

[4]

[5]
[6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. Saeedi, R. Wille, R. Drechsler. “Synthesis of quantum circuits for
linear nearest neighbor architectures.”Quant. Inf. Proc., 10(3):355-377,
2011.

Y. Hirata, M. Nakanishi, S. Yamashita and Y. Nakashima, “An efficient
conversion of quantum circuits to a linear nearest neighbor architecture”,
Quantum Info. Comput., vol. 11, no. 1, pp. 142-166, Jan 2011.

A. Shafaei, M. Saeedi, and M. Pedram. Optimization of quantum circuits
for interaction distance in linear nearest neighbor architectures. Design
Autom. Conf., 2013.

R. Wille, N. Quetschlich, Y. Inoue, N. Yasuda, and S. Minato. “Using nt-
DDs for Nearest Neighbor Optimization of Quantum Circuits” In
Conference on Reversible Computation, pages 181-196, 2016.

R. Wille, O. Keszocze, M. Walter, P. Rohrs, A. Chattopadhyay, and R.
Drechsler, “Look-ahead schemesfor nearest neighbor optimization of 1D
and 2D quantum circuits,” in Proc. ASP Design Autom. Conf., Jan 2016,
pp. 292-297.

A. Bhattacharjee, C. Bandyopadhyay, R. Wille, R. Drechsler, and H.
Rahaman, “Improved Look-ahead Approaches for Nearest Neighbor
Synthesis of 1D Quantum Circuits, “ In Intl. Conference on VLSI
Design, DOIL: 10.1109/VLSID.2019.00054, Jan 2019.

R. Wille, A. Lye, and R. Drechsler, “Exact reordering of circuit lines for

nearest neighbor quantum architectures,” IEEE Trans. on CAD, vol. 33,
no. 12, pp. 1818-1831, Dec 2014.

(17]

[18]

[19]

[20]

[21]

[22]

[23]

R. Wille, A. Lye and R. Drechsler, “Optimal SWAP gate insertion for
nearest neighbor quantum circuits,” in Proc. ASP Design Automation
Conf. Suntec, Singapore: IEEE, 2014, pp. 489-494.

A. Zulehner, S. Gasser, and R. Wille, “Exact Global Reordering for
Nearest Neighbor Quantum Circuits Using A*,” In Conference on
Reversible Computation, 185-201, 2017.

Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N.,
Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for
quantum computation. Physical review A, 52(5), p.3457, 1995.

R. Wille, D. GroBe, L. Teuber, G.W. Dueck, and R. Drechsler. RevLib:
An Online Resource for Reversible Functions and Reversible Circuits.
In International Symposium on Multiple-Valued Logic (ISMVL), pages
220-225, 2008. RevLib is available at http://www.revlib.org.

A. Lye, R. Wille, and R. Drechsler. Determining the Minimal Number of
SWAP Gates for Multi-dimensional Nearest Neighbor Quantum
Circuits. In IEEE ASP-DAC, pages 178-183, 2015.

A. Zulehner, A. Paler, and R. Wille, "An Efficient Methodology for
Mapping Quantum Circuits to the IBM QX Architectures," IEEE
TCAD, 2018.

A. Bhattacharjee, C. Bandyopadhyay, R. Wille, R. Drechsler, H.
Rahaman, “A Novel Approach for Nearest Neighbor Realization of 2D
Quantum Circuits,” IEEE ISVLSI 2018 (pp. 305-310).

Table 2: Comparison with related state-of-the-art NN techniques

Prop. soln. [13] No 13 Optimal % imprv. over
No. of | Gate [10] No. of | 81| SWAP count
Benchmark names R No. of of Time .
qubits| count SWAP . (SWAPs) (as mentioned
cluster Time (SWAPs) | (sec.) . [10] [13]
count in [13])
formed (sec.)

3.17_13 3 14 0 6 0.0056 6 6 0.1 4 0.0 0.0
4gt4-v0_80 6 34 0 44 | 0.0192 46 44 0.1 4.34 0.0
4gt10-v1_81 5 36 0 32 0.021 76 32 0.1 57.89 | 0.0

4gt5_75 5 22 0 22 0.012 33 22 0.1 33.33 | 0.0

4gt11_84 5 7 0 2 0.0154 6 2 0.1 2 66.66 0.0
rd32-v0_67 4 8 0 4 0.0109 4 4 0.1 4 0.0 0.0
4gt13-v1_93 5 17 0 8 0.014 20 8 0.1 8 60 0.0

449 17 4 32 0 32 0.0082 32 32 0.1 0.0 0.0
4gt12-v1_89 5 52 0 52 0.018 85 52 0.1 38.82 0.0

4mod7-v0_95 5 40 0 44 0.0153 104 44 0.1 57.69 0.0
hwb4_52 4 23 0 18 0.009 28 18 0.1 18 35.71 | 0.0
alu-v4_36 5 32 0 34 | 0.01362 62 34 0.1 45.16 | 0.0
aj-e11_165 5 59 0 52 | 0.01369 65 52 0.1 52 20 0.0

mod5adder_128 6 87 0 120 | 0.0191 196 120 0.2 38.77 0.0
rd53_135 7 78 0 136 0.027 208 136 0.3 136 34.61 | 0.0
ham?7_104 7 87 0 140 0.025 190 140 0.3 140 26.31 | 0.0

mod8-10_177 6 108 0 156 | 0.0194 166 156 0.1 156 6.02 0.0

hwb5_55 5 106 0 120 | 0.0143 165 120 0.1 120 27.27 0.0

hwb6_58 6 146 0 290 | 0.0199 374 294 0.2 290 22.45 | 1.36
hwb8_118 8 |14260 2 49790 | 0.080 56108 50184 0.6 11.26 1
hwb9_123 9 |18124 2 71576 | 0.103 96317 74086 0.8 25.68 | 3.38

rd73_140 10 76 2 150 | 0.0990 190 178 0.9 150 21.05 | 15.73
sys6-v0_144 10 62 2 114 | 0.096 260 118 0.8 114 56.15 | 3.38
sym9_148 10 | 4452 2 10984 | 0.104 20992 12128 0.7 10984 47.67 | 9.43
urfl_149 9 57770 2 |179832| 0-0815 | 200460 | 203836 0.6 179832 10.29 | 11.77
urf2_152 8 |25150| 2 71280 | 0.0564 90676 73932 0.4 71280 21.39 | 3.58
Shor3 10 | 2076 2 4802 | 0.097 4802 0.8 4802 0.0
urf6_160 15 | 53700 3 |249952| 0.277 427072 | 257604 10.0 241208 41.47 3
plus63mod4096_163| 12 | 25492 3 [114170| 0.188 127506 | 144752 1.9 113104 10.45 | 21.12
plus63mod8192_164| 13 | 32578 3 |149776| 0.231 203488 178122 5.6 149708 26.39 | 15.91
cycle10_2_110 12 | 1126 3 4104 | 0.148 6822 4500 1.6 4104 39.84 | 8.8
rd84_142 15 | 112 3 308 | 0.271 528 348 4.7 284 41.66 | 11.49
ham15_108 15 | 458 3 1354 | 0.272 4500 1438 2.5 1340 69.91 6
Shor5 14 [10256| 3 34680 | 0.228 - - 34680 -
Shor6 16 |18885| 4 76318 | 0.308 - 76318 - -
% average improvement 34.5 8.28

45

