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ABSTRACT

The high complexity of circuits which currently consist of several
millions of transistors, can only be managed using a concise design
flow. Recently, the One-Pass Synthesis paradigm came up, i.e. to
consider the whole design process as one flow instead of isolated
steps. In this context, designing circuits based on the mapping of
Binary Decision Diagrams (BDDs) shows several advantages.

While various BDD based approaches for logic minimization
or design for testability have been proposed, in this paper we show
that placement and routing of BDD circuits can be optimized at
a high level of abstraction. Based on algorithms for reducing the
number of nodes and edge crossings, we demonstrate on multiple
benchmarks that significant improvements are possible in reason-
able time.

1. INTRODUCTION

Technological advances in the last decades have allowed the pro-
duction of large chips with millions of gates. Usually, when pro-
ducing a chip, the design flow is split up into several individually
optimized steps. In almost all cases, each one of these steps is
supported by a powerful automated design tool, for example:

• high-level and logic synthesis

• mapping

• place and route

Significant effort has been spent trying to improve these individual
steps, but in many cases, the optimization criterion of consecutive
steps are different and their close interaction has not been con-
sidered sufficiently. Thus, the resulting designs were often sub-
optimal. E.g., a highly optimized technology independent netlist
may produce a suboptimal final design when the mapping onto the
target architecture is done. In many cases the logic optimization
step does not use the underlying basic cell structure on the physical
chip optimally. This can be avoided if the logic synthesis process
takes the criteria of the final mapping and layout step into account.

Normally, several iterations of the complete design process
have to be carried out to get reasonable results. This is a time
consuming and expensive process. Therefore it makes sense to
consider the final layout in earlier phases. The interaction between
the synthesis, placement and routing phases are important since
several quality related criteria are directly influenced. E.g. consid-
eration of the interaction can result in smaller delays, less wastage
area, lower power consumption, less crosstalk and better testabil-
ity. As a promising solution to the resulting problems the One-Pass

Synthesis methodology has been proposed. There are two main
underlying ideas:

• to combine optimization steps that were split before

• to restrict the optimization in one level such that it fits better
on the next

For a more detailed introduction see [1].
One very powerful approach in this context is based on cir-

cuits derived from a one-to-one mapping of BDDs [2]. The re-
sulting circuits have nice properties regarding testability [3, 4] and
power consumption [5]. To avoid crossings in the physical lay-
out, redundant hardware (dummy nodes) can be inserted to obtain
non-crossing ordered BDDs (NCOBDDs) as proposed in [6]. The
dummy node insertion also allows a fine grained pipelining where
every layer corresponds to a stage of a pipeline. Instead of de-
composing the circuit in small macrocells, each containing a small
number of BDD nodes (for example around twenty in [7]), and
then laying out and routing the macrocells, the approach in [6] as
well as the approach presented in this paper use the layered rooted
tree structure of the BDD to generate a placement and routing for
all nodes in one step.

In this paper, starting with a BDD representation whose size is
optimized by using the sifting algorithm [8], we present a method
for reducing wire crossings during BDD mapping without the ad-
dition of dummy nodes. We make use of the layered structure
and the absence of cycles implied by the restricted order of BDDs.
Based on an optimized BDD variable ordering, i.e. the variable
ordering is fixed, we determine for each level an ordering of the
nodes corresponding to multiplexer cells. Experiments show that
the number of crossings can be considerably reduced.

2. PROBLEM DESCRIPTION

We give some basic properties of Binary Decision Diagrams (BDD),
as far as they are important for the purposes of this paper. More
details can be found e.g. in [9].

A reduced ordered Binary Decision Diagram (BDD) as intro-
duced in [2] is a directed acyclic graph G = (V, E) in which a
Shannon decomposition is carried out in each node v that is not a
sink:

fv = xifvxi=0 + xifvxi=1 (1)

xi is called the decision variable in v. In a reduced ordered BDD
each path from a source to a sink is consistent with a given or-
dering of the decision variables. (For an example see Figure 2.)



The size of the BDD is very sensitive to the chosen variable order-
ing, i.e. the BDD size may vary from linear to exponential in the
number of variables for a given function f . In general, improv-
ing the variable ordering of BDDs is NP-complete [10]. However,
efficient heuristic algorithms for improving the variable ordering
are known, in particular the sifting method [8]. Currently, BDDs
are commonly used for efficient representation and manipulation
of Boolean functions, not only in the VLSI CAD community [11].

In the following, we consider synthesis approaches where cir-
cuits are derived from BDDs by a simple one-to-one mapping.
This can easily be done by introducing a multiplexer for every
node and corresponding wires for every edge of the BDD. A small
example for the one-to-one mapping of one BDD node (a) into a
multiplexer circuit (b) is given in Figure 1. Please note, that in the
following BDD nodes are drawn as circles in contrast to derived
multiplexers given as rectangles labeled with the corresponding
decision (input) variable.
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Fig. 1. Example transformation of a BDD (a) into a multiplexer
based circuit (b).

Even though BDDs were not designed to produce the physical
layout of a circuit, there were already very promising approaches
to BDD-based circuit design. (For an overview see [1].) For to-
tally symmetric functions, BDDs have a very regular structure that
can be directly transferred into planar layouts. The nodes are lo-
cally connected to a maximum of four adjacent nodes. This leads
to a layout with less crosstalk and short wires. For non-symmetric
functions an approach to transfer the BDD into a lattice structures
was proposed in [12]. It produces the same layout except for the
fact that additional levels are needed. The main drawback of these
methods is that the number of levels for some functions may be-
come exponential in the number of variables. On the other hand,
the NCOBDDs [6] only require one layer for every input variable
at the cost of additional dummy nodes. Every BDD can be trans-
formed into a NCOBDD by duplicating and reordering the nodes
of the BDD to achieve a planar layout. These dummy nodes are
then directly mapped onto the circuit using additional area and in-
crease the energy consumption.

Due to this, in the following we consider “traditional BDDs”,
i.e. reduced ordered BDDs [2]. They provide a good representa-
tional compromise between regularity and compactness. To reduce
the number of edge crossings of the given BDD in the layout pro-
cess, a crossing reduction algorithm is applied. For an example see
Figure 2.

Then it can be mapped onto a multiplexer based target tech-
nology. This step is an important part for the final layout of the
circuit since unnecessary edge crossings complicate the process of
routing. After this, the algorithm maps the nodes of the BDD to
sub-circuits realizing the corresponding functions.

In the following we formulate the edge crossing reduction prob-
lem as a graph problem and introduce some common terms from
this field: A directed graph G = (V, E) is a multi-layered graph
with d layers if the node set V is partitioned into disjoint subsets
V1, V2, . . ., Vd, i.e. V1 ∪ V2 ∪ . . . ∪ Vd = V and (∀m �= m′)

x3

x2

x1

x2

x3

x4

x3

x2

x1

x2

x3

x4

0 1 0 1

x4x4

x5 x5

(a) (b)

Fig. 2. This example shows a BDD before (a) and after (b) the
crossing minimization.

Vm ∩ Vm′ = ∅, where Vm is called the m-th layer of the graph.
All edges in E connect nodes in different layers. All nodes of the
BDD which are labelled with the same variable can be assigned
to the same layer to obtain a multi-layered graph.

A traditional approach to lay out a directed graph was intro-
duced by [13]. It splits up the layout process into four steps:

• Cycle Removal: To obtain an acyclic graph, as few edges
as possible are reversed.

• Layer Assignment: A proper layering will be computed by
assigning every node to one layer.

• Crossing Reduction: The algorithm computes an ordering
for all nodes on each layer which minimizes the total num-
ber of edge crossings (“multi-layer straight-line crossing
minimization problem”).

• X-coordinate assignment of all nodes.

This directed graph layout framework is well suited to lay out the
BDD structure. Since BDDs are layered directed acyclic graphs,
the goals of the first and the second step are already achieved.

To solve the (exact) multi-layer straight-line crossing mini-
mization problem we have to determine an ordering ordm for all
layers containing all nodes in layer Vm so that the number of cross-
ings is minimized. In the following, a set of orderings ordm,
m ∈ {1, . . . , d}, is called an ordering for the graph. Unfortu-
nately, even minimizing edge crossings in graphs with only two
layers is NP-hard [14] and remains NP-hard if the ordering in
one of the layers is fixed. Therefore the use of heuristic meth-
ods to solve this problem is justified. Many heuristic algorithms
are known from literature, e.g. [15, 13, 16]. In this paper we use
the popular averaging method first introduced by [13] which com-
putes good solutions in a short time.
We then further reduce the number of crossings by post-processing
it with the windows optimization heuristic method [17]. It decom-
poses the graph into smaller subgraphs which contain nodes form
several layer and then computes an optimal ordering for each sub-
problem.

3. PLACEMENT AND CROSSING REDUCTION

In this work we first compute a BDD for a given circuit. The algo-
rithm dynamically reorders the input variables to reduce the num-



ber of BDD nodes using sifting. This step directly influences the
number of multiplexers used to implement the circuit, and thus on
the properties of the resulting layout.
Then the averaging heuristic method is applied to reduce the num-
ber of edge crossings to obtain a good initial ordering which is then
post-processed with the windows optimization algorithm. The av-
eraging method helps to cut down overall run times, since a good
starting point helps to avoid unnecessary calls of the locally opti-
mal crossing reduction algorithm. Pseudo code for the complete
flow is given below:

compute ordering(circuit) {
BDD = Compute BDD using Sifting(circuit)
rord = compute random ordering
ordering = averaging(BDD, rord)
ordering =windowsopt(BDD, ordering)
return ordering

}
In the remaining part of this section the averaging and the windows
optimization algorithm are briefly described.

3.1. Averaging heuristic method

The averaging heuristic method computes the position of node n
on one layer with respect to the nodes on the layer above (below)
which are directly connected to it. (Through the introduction of
dummy nodes that are removed after the ordering has been com-
puted we may assume that there are only edges between adjacent
nodes.) It then sorts the nodes with respect to this pre-computed
value. To compute a solution for the multi-layer straight-line cross-
ing minimization problem the averaging technique makes use of
the so called layer-by-layer sweep:

• Choose an initial ordering.

• Fix the positions of all nodes on the first layer.

• Compute the positions of all nodes on the second layer with
respect to the fixed nodes located on the first layer.

• Fix the positions of the nodes on the second layer and com-
pute the position of the nodes located on the third layer and
so on.

• Start to sweep back, processing the second last layer con-
sidering only the nodes on the last layer until the ordering
of the first layer is computed.

• Repeat the procedure until no further reduction in the num-
ber of crossings is achieved.

3.2. Windows Optimization

We only give a short description of the windows optimization heuris-
tic method. Further details can be found in [17]. An initial order-
ing can be improved in the following way. A series of subsets of
nodes with constant size, typically spreading over several layers,
are extracted and processed with an exact approach with respect
to their adjacent nodes. This approach is based on a dynamic pro-
gramming method which makes use of a lower bound technique
to reduce the search space. Only if the local solution induces a
crossing reduction for the entire graph, is the new ordering used.
The user has a fine grained control on the trade off between run
time and solution quality by choosing the size of the window. The

algorithm starts with a window width of four nodes per layer and a
window depth of two layers. Then the algorithm increases the win-
dow depth to three and finally four layers dynamically to further
reduce the number of crossings.

4. EXPERIMENTAL RESULTS

All algorithms are implemented in C. The experimental results are
based on examples taken from benchmark circuits in [18] and [19].
The experiments were carried out on a 2 GHz personal computer
with 1 GB main memory running the Linux OS. The run times are
given in CPU seconds.

We utilized the CUDD package [20] to compute a BDD for
every circuit. CUDD is a commonly accepted software tool to ef-
ficiently minimize and manipulate BDDs. Sifting [8] was used
during the construction of the BDDs. The averaging heuristic
method from section III.A was used to obtain a good initial embed-
ding of the nodes. As observed in [21, 17], the averaging method
computes high quality results in a short period of time compared to
many other methods used in this field. Then windows optimization
is applied.

In Table 1 the results of the implemented procedures are given.
The second (third) column shows the number of multiplexers for
each circuit without (with) using sifting. Next, in the fourth col-
umn we present the number of edge crossing produced by a ran-
dom permutation of the multiplexers in each layer. The fifth and
sixth columns provide the final results in terms of edge crossing
(computed with the averaging heuristic method and after post-
processing it with the windows optimization technique). The total
run times for the averaging and the windows optimization method
are given in the last two columns.

As already reported in [8] sifting reduces the number of nodes
significantly. For completeness we give the precise numbers with-
out using sifting in the second column. Compared to the averag-
ing procedure, a random assignment of the nodes produces results
which have on average nearly 200 times more crossings. Post-
processing the results with the windows optimization technique
further reduces the number of crossings on average by seven per-
cent.

Table 2 is given to compare our results with the results uti-
lizing the NCOBDDs published in [6]. In the second column the
number of multiplexers required when using the NCOBDD struc-
ture is shown. Finally, the third column presents the number of
multiplexers that are needed to obtain a circuit derived form the
corresponding BDD. The additional dummy nodes in the NCOB-
DDs are necessary to allow a planar layout (and also pipelining).
Of course, our approach does not compute crossing free layouts
but it saves up to 90 % of the multiplexers compared to the NCOB-
DDs given in [6].

5. CONCLUSIONS

We have proposed a new approach to compute placement and rout-
ing for a circuit derived from the acyclic graph structure of the
corresponding BDDs. This placement can be further improved by
reordering the nodes within the layers to reduce the number of wire
crossings. An algorithm was implemented that reduces the number
of multiplexers and the number of wire crossings used. In this way,
layout aspects can be considered at a high level of abstraction, and
therefore in an early design phase. Experiments have shown the ef-



Table 1. Benchmark results of circuits
quality time/s

circuit mplex sift rand av wo av wo
z4ml 33 16 157 3 3 0.27 1
cm138a 26 17 563 10 10 0.23 1
9sym 36 24 1328 8 8 0.49 3
cmb 53 28 2028 11 10 0.58 4
cu 75 31 1851 30 30 0.55 4
decod 41 40 1808 67 63 0.39 6
cm85a 50 36 1548 13 13 0.15 2
x2 51 36 1802 49 42 0.48 5
f51m 55 39 1512 51 48 0.43 3
cm162a 63 41 3477 23 23 0.71 3
pcle 64 41 4874 96 93 0.89 10
pm1 60 43 5587 37 35 0.88 5
i1 90 43 6923 50 50 1 8
cordic 78 49 3833 10 9 1 9
cc 85 60 5417 109 103 0.69 13
lal 128 75 14055 192 183 1 27
unreg 104 81 3379 140 128 0.49 12
count 119 81 43778 229 213 3 83
c8 112 81 18432 296 260 1 42
sct 124 82 9704 139 130 1 16
term1 424 96 18804 73 67 2 31
frg1 280 102 16084 257 244 2 35
pcler8 141 107 27243 336 326 2 30
b9 202 106 26314 181 177 2 36
ttt2 198 121 48158 548 509 3 95
i3 262 132 33421 0 0 3 28
cht 142 124 14889 621 560 0.97 38
comp 174 136 49102 143 135 4 219
alu2 187 168 17448 1578 1523 1 53
i2 1679 205 224872 69 69 17 154
i6 422 214 36755 4090 3806 1 99
apex7 1071 637 195568 1562 1521 7 287
i4 622 337 189885 129 121 8 169
i5 1053 322 193037 1130 1119 7 171
alu4 426 378 133126 5602 5309 4 371
i7 513 396 76898 5810 5273 2 128

ficiency of this approach. Current work focuses on the integration
of the new algorithm into a complete layout environment.
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