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Abstract—With the growing use of Artificial Intelligence var-
ious Neural Processing Units (NPUs) are becoming increasingly
popular. At the core of these processors are the Multiply and
Accumulate (MAC) operations. As processors with complex func-
tionalities become more relevant in the AI era, it is imperative to
have efficient verification strategies to circumvent costly errors.
In this context Polynomial Formal Verification (PFV) has recently
been introduced. As compared to classical formal verification,
PFV ensures not only 100% correctness, but also provides an
estimate of time and space within polynomial bounds. PFV has
successfully been applied for various formal proof engines, like
Binary Decision Diagrams (BDD), Satisfiability (SAT), Answer Set
Programming (ASP), Symbolic Computer Algebra (SCA). BDDs,
SAT and ASP have been used to efficiently verify adders whereas
SCA was applied to multipliers. The question arises how to
exploit the benefits of these polynomially verified sub-components
in solving more complex designs. In this paper we investigate how
this can be applied to NPUs, particularly we show experimental
studies for MAC operations. It is shown that verifiability of
the MAC operation heavily depends on the realization of the
underlying circuit.

Index Terms—SCA, MAC, PFV, RevSCA, Verification, NPU

I. INTRODUCTION

In recent times with the growing use of AI, Neural Pro-
cessing Unit (NPU) is becoming extremely popular [1]. The
most fundamental block in such processors are the Multiply
and Accumulate (MAC) units. As processors with complex
functionalities are becoming more significant in the present AI
era, it is imperative to address the verification challenges to
prevent costly errors. Various formal proof engines like Binary
Decision Diagram (BDD), Satisfiability Solvers (SAT), Answer
Set Programming (ASP) and Symbolic Computer Algebra
(SCA) are used for verifying complex functionalities partic-
ularly arithmetic circuits. A recent work [2] from industry has
targeted to formally verify Dot Product Accumulate Systolic
Units (DPAS) which are considered as a vital unit and are used
in current AI/ML algorithms.

Recently the concept of Polynomial Formal Verification
(PFV) has been introduced and successfully applied [3]–[9].
Using PFV upper bounds for the time and space complexity
for the verification process are proven guaranteeing efficient
run times. In this context, various formal proof engines,
like BDDs, SAT, ASP, and SCA, have been used especially
for verification of arithmetic circuits. E.g. BDDs are found

suitable for adder verification, but for multipliers exponential
lower bounds exist [10]. Whereas SCA can handle specific
class of multipliers within polynomial bounds.

In this work we specifically target the verification of the
MAC operation which is the core of many NPUs. We exploit
the benefits of polynomially verified sub-components in solv-
ing MAC operation. In particular as multipliers can be verified
efficiently using SCA [11], we exploit SCA for MAC unit
verification. For the construction of the MAC unit we have
used an Array Multiplier (AM) and a Ripple Carry Adder
(RCA). First experiments show that it is possible to verify
MAC operations up to 256-bit using SCA-based verification.
Here, it can even be expected from the observed experiments
that polynomial bounds exist for the entire verification run. To
show the effect on verification of the used architecture, we also
report experiments on optimzed MAC designs. It turns out that
then the formal verification can only be carried out up to 8-bits.
Hence, directly transferring the SCA-based method from [11]
(which targets multiplier verification) does not work. Further
investigation is required to extend the SCA-based verification
for MAC. For this, at the end of the paper, we outline some
directions for future work resulting from our findings.

The rest of the paper is organized as follows, Section II pro-
vides the idea of SCA-based verification, Section III details out
the proposed MAC-based verification process. In Section IV
we provide the experimental results, and Section V concludes
the paper with challenges and open problems.

II. SCA BASED VERIFICATION

During the last 10 years several works have been pro-
posed for verification of integer multipliers using SCA [12]–
[19]. SCA-based verification is applied directly on the gate
level [11], [13], [20]. In some cases only specific gate level
netlists are used and in some cases And-Inverter-Graphs
(AIG)s are applied. In the first step, the Specification Poly-
nomial (SP) of a function in terms of input and output is
defined. In the second step a set of Gate Polynomials (GP) is
defined for all possible gate types considered for the function.
Finally the backward rewriting step is performed starting from
the SP. Considering a particular gate order, the backward
rewriting process starts from the primary outputs by using
reverse topological order. For each gate the applicable GPs



are applied and substituted in the SP. After processing the
last gate, the remainder of the SP is evaluated. If after all the
substitutions the remainder is equal to 0 the circuit is bug free,
otherwise it is faulty. The same process can be applied at the
AIG node level as well.

A. Specification Polynomial

In this sub-section we provide the basis before going into
depth of SCA-based verification. For more details see [11].

Definition 2.1: A monomial is defined as a power product
of variables. Also known as a term.

M = mα1
1 mα2

2 · · ·mαn
n width αi ∈ N0

Definition 2.2: A polynomial is a finite sum of monomials
with coefficients in Z:

P = c1M1 + c2M2 + · · ·+ cjMj width cj ∈ Z

A Specification Polynomial (SP) captures the mathematical
functionality of an arithmetic circuit in the form of a poly-
nomial based on its primary inputs and outputs. The main
objective of SCA-based verification is to formally prove that
all assignments are inline with the gate-level netlist or AIG
and must evaluate the specification polynomial to 0. This is
performed using backward rewriting rules. For example the SP
for an arithmetic circuit like a Half Adder (HA) with primary
inputs X, Y and primary outputs C, S and a Full Adder (FA)
with an additional inputs Z are defined as:

SPHA = 2C + S −X − Y = 0

SPFA = 2C + S −X − Y − Z = 0

B. Gate Level Polynomial Evaluation

As mentioned in the previous sub-section, for performing
verification using SCA, firstly the SP of the circuit is defined.
Thereafter each gate polynomial is evaluated from reverse
topological order, i.e. from the outputs to the inputs. This is
performed by dividing the SP with each gate polynomial from
a set of Gate Polynomials (GP). Ideally substitution is used
instead of division. Gate by gate substitution takes place for
each gate polynomial until the SP is evaluated to 0 or there
exists a remainder. If the SP is 0 then the circuit is bug free
else the circuit is buggy.

An example GP set is presented below:
NOT f = 1−X
AND f = XY

OR f = X + Y −XY
XOR f = X + Y − 2XY

Each logic gate is described by its mathematical function f
with inputs X and Y . In the following a backward rewriting
example for a FA circuit using SCA is performed. Fig. 1 shows
the gate-level netlist of a FA. It has five gates and hence five
iterations are required for the backward rewriting. The steps of
the backward rewriting procedure are presented in Fig. 2. We
begin with the SP and then evaluate each gate from the outputs
to the inputs. The notation for the transition from the SP state
i to the next state j is represented as SPi

gate−−−→
GP

SPj , with

gate describing the current gate and GP the corresponding
gate polynomial performed in the current step. Finally after
step 5 the remainder is 0, hence the circuit is verified to be
correct.

Fig. 1: Full adder gate netlist

SP :=2C + S −X − Y − Z = 0

SP
g1−−→
OR

SP1 =2w2 + 2w3 − 2w2w3 + S −X − Y − Z

SP1
g2−−−→

AND
SP2 =2w2 + 2XY − 2w2XY + S −X − Y − Z

SP2
g3−−−→

AND
SP3 =2w1Z + 2XY − 2w1XY Z + S −X − Y − Z

SP3
g4−−−→

XOR
SP4 =2w1Z + 2XY − 2w1XY Z

+ (w1+Z − 2w1Z)−X − Y−Z

=+ 2XY − 2w1XY Z + w1 −X − Y

SP4
g5−−−→

XOR
SP5 =+2XY − 2(X + Y − 2XY )XY Z

+ (X + Y − 2XY )−X − Y

=(−2X − 2Y + 4XY )XY Z

=− 2X2Y Z − 2XY 2Z + 4X2Y 2Z

=− 2XY Z − 2XY Z + 4XY Z = 0

Fig. 2: Backward rewriting steps for the full adder

III. MAC VERIFICATION PROCESS

In this section we discuss about the MAC operation and
how we can perform verification of the MAC unit using SCA.
Fig. 3 shows the MAC unit construction. The MAC unit has
three inputs, A, B and S. A and B are n-bit inputs and S
is a 2n-bit input. Initially, the two inputs A and B are fed
to the multiplier which generates a 2n-bit intermediate result.
This intermediate result is added with S which is also 2n-bit
to generate the final result R which is 2n+ 1 bit wide.

The verification using SCA is performed in two steps: The
Specification Polynomial (SP) for the MAC operation is first
defined. Then the backward rewriting process is performed
from the outputs to the inputs. For this purpose atomic
blocks at the gate-level representation of the MAC circuit
are identified and evaluated, thereafter they are replaced if
possible with a compact polynomial. Techniques to mini-
mize so-called vanishing monomials (see [11]) are applied



Fig. 3: MAC unit construction

to keep the memory usage low. The verification process is
performed using backward rewriting. Finally the remainder
polynomial is evaluated. It reduces to a zero polynomial if
the MAC operation is correct, otherwise faulty. We have used
RevSCA [11] for the verification purpose. RevSCA is extended
to accommodate for MAC verification (see Section III-B).

A. Specification Polynomial

In this sub-section we define the SP for n-bit MAC op-
eration. A MAC operation with primary inputs A,B, S and
primary output R is defined as follows:

R = (A×B) + S (1)

In Eqn. (1) the final result of the operation is denoted by R, the
multiplicand and multiplier by A and B and the accumulation
input by S. According to this definition the Specification
Polynomial (SP) for an n-bit MAC is defined in the following
Eqn. (2):

SPMAC := R2n+1 − (An ×Bn)− S2n = 0 (2)

For example an SP for a 2-bit MAC has the following size:

SPMAC2
:= R5 − (A2 ×B2)− S4 = 0

The full SP for a 2-bit MAC is presented in Eqn. (3).

SPMAC(2) = 16R4 + 8R3 + 4R2 + 2R1 +R0

−
(
(2A1 +A0)× (2B1 +B0)

)
− (8S3 + 4S2 + 2S1 + S0)

(3)

B. SCA-Based MAC Verification

For verifying the MAC operation we have extended the
functionality of RevSCA-2.0 [11]: As RevSCA is targeted for
multipliers we exploited its benefits in verifying MAC. The
core of SCA-based verification is dependent on the identi-
fication of Atomic Blocks (AB). The ABs presented in [11]
are HA, FA and compressor (CM). For verifying the circuit,
starting from the SP, backward rewriting steps are performed
from the outputs to the inputs. The knowledge about the ABs
helps in reducing the number of monomials that appear in
the backward rewriting steps and also limits the search space

for removing vanishing monomials. To incorporate MAC the
operation in RevSCA the following changes have been carried
out:

1) Firstly, a program mode is added to accommodate MAC
and ADD operations apart from multiplication.

2) The SPs modelled for the MAC and ADD operation are
appropriately added in the tool by modifying the class
poly.

3) Unlike multipliers the ADD and MAC operations can
have uneven input width, therefore the offset in the SP
is adjusted to properly automate the entire process of SP
generation.

4) Parameters for memory usage have been incorporated in
the tool.

The input to the tool is an And-Inverted-Graph (AIG)
representation of the MAC. Hence for the backward rewriting
process AIG gate polynomials have to be applied. Internally
the tool generates the ABs and the backward rewriting steps
are performed. In this process the number of monomials are
reduced in each substitution steps and finally if the remainder
is 0, it is confirm that the circuit is bug free. Experimental
result shows that using the extended feature of RevSCA we
can verify simple MAC, multipliers and adders within very
short time period.

IV. EXPERIMENTAL EVALUATION

In this section we provide experimental evaluations for
MAC verification using SCA and compare them to BDD-based
verification. Run times and memory consumption are reported.
All experiments were conducted on a Thinkpad T490 with
Intel i7-8565U CPU having 16GB memory and running on a
1.80GHz clock.

We have generated MAC operation using two methods:
In the first case we have used genmul [21] to generate a
multiplier and a custom made code to prepare a Ripple Carry
Adder (RCA) to combine them in a Verilog module modeling
a MAC operation. The multiplier used in this case is an array
multiplier for the Partial Product Accumulation (PPA) stage
and an RCA is used for the Final Stage Adder (FSA). We have
then used the ABC [22] tool to generate the AIG of the MAC.
The MAC operation generated using this method is termed as
Linear MAC (LMAC). For the second case we have generated
the MAC operation using the behavioral structure provided in
Listing 1.

Listing 1: Behavioral definition of MAC in Verilog
module MAC ( parameter n = 8) (A, B , S , R ) ;

input [ n − 1 : 0 ] A, B ; / / m u l t i p l y
input [ ( 2 * n ) − 1 : 0 ] S ; / / add
output [2* n : 0 ] R ;

a s s i g n R = (A*B) + S ;
endmodule

We have used Yosys [23] for synthesizing the netlist and
then used ABC to generate the AIG. The generated AIG is
fed to our tool for verification. The MAC operation generated



using this method is called Optimized MAC (OMAC), since
some of the original structure of the multiplier and adder might
get removed due to the optimizations carried out by Yosys and
ABC.

A. SCA Verification Results

TABLE I: SCA-based Verification Results for LMAC-
Operations

#Mul. #Add. #Nodes MaxPoly SCA Time (s) Memory (MB)

2 4 46 13 0.00096 4
4 8 186 33 0.00242 5
8 16 730 97 0.00828 7

16 32 2874 321 0.03765 14
32 64 11386 1153 0.28430 44
64 128 45306 4353 3.00483 163

128 256 180730 16897 84.92770 637
256 512 721914 66561 2333.69000 2532

TABLE II: SCA-based Verification Results for OMAC-
Operations

#Mul. #Add. #Nodes MaxPoly SCA Time (s) Memory (MB)

2 4 43 19 0.001 4
4 8 156 49 0.002 5
8 16 613 5819510 1394.910 11629

16 32 - - - -

In this sub-section we provide the results for LMAC and
OMAC. The results for the LMAC and OMAC are presented
in Table I and Table II. The input bit size for the multiplier
(#Mul) and the adder (#Add) are given in the first two
columns. The third column provides the number of nodes
(#Nodes) of the AIG and the maximum polynomial is shown in
column four (MaxPoly). MaxPoly is the maximum number of
monomials occurring during backward rewriting. The last two
columns present the verification time in seconds and memory
usage in megabyte, respectively. For the LMAC operation
Table I shows that MAC scales very well using SCA-based
verification. Results from 2-bit up to 256-bit are generated with
limited memory usage. The OMAC results in Table II shows
that results could only be provided for 2-, 4- and 8-bit. For 16-
bit the machine runs out of memory (16GB of RAM and 16GB
of SWAP partition). This clearly shows even for smaller bit
size that MAC cannot be handled using SCA if the structural
design of the MAC operation is not chosen well. E.g. for
8-bit MAC the OMAC design has maximum polynomial of
5,819,510, therefore an explosion of intermediate monomials
could not be prevented. When compared to 256-bit MAC in
Table I only a maximum polynomial of 66,048 is generated.
This is due to the fact that for LMAC more atomic blocks
could be found due to structural benefit which is not possible
for OMAC.

Fig. 4 illustrates the performance of SCA-based verification
for LMAC operations. The 512-bit adder shown in Fig. 4a took
0.21 seconds for the verification and uses 25 MBs of memory.
The 256 multiplier in Fig. 4b took 2,264 seconds and 2,513

(a) 512-bit adder

(b) 256-bit multiplier

(c) 256-bit MAC

Fig. 4: SCA-based verification for a 256-bit multiplier, 512-bit
adder and 256-bit MAC

MBs of memory and Fig. 4c showing the 256-bit MAC which
can be verified within 2,333 seconds using 2,532 megabyte of
memory. Fig. 4b and Fig. 4c depicts that the MAC operation
itself does only take a few more backward rewriting steps for
the verification than the multiplication operation alone. From
all the sub-figures in Fig. 4 it can be seen for an LMAC-
operation the maximum polynomial size is generated at the
very beginning of the substitution process at step number zero,
after that the polynomial size slowly decreases over the time
converging to zero in the end.

Looking at the memory consumption counted in number of
monomials for LMAC (see Fig. 4), it can be seen that it is
steadily decreasing and never grows significantly in between.
In contrast for OMAC (see Fig. 5) for some intermediate
steps the number increases. This can already be seen for the
adder and multiplier in Fig. 5a and Fig. 5b, respectively. For
the OMAC operation it becomes much worse as depicted in
Fig. 5c: the number of intermediate monomails does not only
grow, it explodes between backward rewriting steps 50 and
135. This explosion of intermediate monomials does not allow
for verification of OMAC of size greater than 8-bit with the
given memory limits.

B. Comparison with BDD

MAC-operations are comprised of multiplication and ad-
dition operations. Multipliers can generally be verified using



(a) 16-bit adder

(b) 8-bit multiplier

(c) 8-bit MAC

Fig. 5: SCA-Based verification for optimized 8-bit multiplier,
16-bit adder and 8-bit MAC

SCA-based verification approaches and adders using BDDs.
Therefore we analyse the suitability of using BDD-based
representation for verification for MAC-operations in this sub-
section.

In Fig. 6 we show the performance comparison of BDD
generation against the entire SCA-based verification process
for LMAC. The SCA-based approach could deliver results up
to 256-bits whereas the BDD graph generation could be done
for only limited number of bits (up to 11-bits). The memory
consumption for the LMAC is shown in Fig. 6a. For 11-bits
the construction of the LMAC BDD uses 11.56GB whereas
SCA only uses 9MB and even for 256-bits SCA requires
only 2.53 GB. Fig. 6b shows the LMAC time required for
the BDD and SCA. The maximum time taken by SCA for
the entire verification of a 11-bit MAC operation is about
14.10 milliseconds whereas the BDD generation process takes
about 903 seconds. From 10 to 11-bits the time for the BDD
generation grows from 140 to 903 seconds. This sharp increase
of time can also be observed for the SCA-based verification as
well, but it happens for much larger bit sizes (i.e. from 128 to
256-bits). These data clearly shows the benefit of using SCA
over BDD for MAC verification.

C. Future Direction

From our studies several directions for future research can
be derived:

Choice of Architecture Extensive study is required on the
influence of various architectures of adders and multipliers
for MAC. The main idea is to analyze which designs
affects the verification process.

Composition for Verification It is known that multipliers can
be efficiently verified using SCA and adders can be verified
using BDDs. Further investigation is needed to explore
how the composition of these methods can influence the
MAC verification process.

Choice of Proof Engines Choice of proof engines plays a
vital role in the verification process. An extensive study is
required to choose a correct proof engine like either SAT,
ASP, BDDs or SCA.

Hybrid Proof-Engines Not only the choice of the proof
engine is essential but also some recent work has demon-
strated that hybrid proof engines can be more beneficial. In
this regard further analysis is required to determine what
kind of hybrid proof engine can influence verifiability of
the MAC unit.

Word-Level Approaches SCA-based verification rely mainly
on bit-level evaluation, so far no word-level evaluation, like
SAT Modulo Theory or Word-level Decision Diagrams is
used in the context of MAC. Some study shows that the
use of higher level of abstraction can influence the overall
verification process.

Exploiting Approximation Instead of using a 2n-bit adder, a
single n-bit adder could be placed in the MAC operation
construction, i.e. we perform some kind of approximation.
As it may be happen that, it is hard to verify the complete
circuit but an approximate circuit could be verifiable.

Improved Substitution Rules In SCA-based verification the
substitution order from outputs to inputs plays a significant
role in intermediate result generation. This in turn might
blows up the number of monomials generated during the
backward rewriting process. To identify a suitable substi-
tution order further investigation needs to be performed.

Identification of Atomic Blocks Identification of atomic
blocks plays a vital role in SCA-based verification. So far
only HA, FA and CM blocks are identified. More atomic
block identification needs to be performed. Some domain
specific language can be defined for atomic blocks which
can aid the verification process.

V. CONCLUSION

In this paper we show the first results for the MAC unit
verification by exploiting Symbolic Computer Algebra. We first
define the specification polynomial and then perform backward
rewriting to verify the circuit. After the substitution process
if the remainder is zero then the circuit is bug free else the
circuit is buggy. We extend the RevSCA tool for verifying
the MAC unit. We have performed experimentation on a
range of benchmarks generated by various tools. Experimental
results reveal that it is possible to verify large MAC unit
consisting of linear multiplier and adder within very short
period of time. Although when the structure of the adder or
multiplier is modified, even verifying a 16-bit MAC unit is



(a) LMAC Memory (b) LMAC Time

Fig. 6: BDD-generation time and memory usage compared with SCA-based verification time and memory usage

not possible. Hence the quality in terms of the efficiency of
verification process is greatly dependent on the realization of
the underlying structure. This reveals that further investigation
is required to polynomially verify MAC unit efficiently.
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