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Abstract—With the rapid increase in the size and the com-
plexity of digital circuits, the error rate in the design process
is getting higher. In order to avoid the enormous financial
loss due to the production of buggy circuits, using scalable
formal verification methods is essential. The scalability of a
verification method for a specific design is proven by showing
that the method has polynomial space and time complexities.
Unfortunately, not all verification methods have a polynomial
complexity, particularly when it comes to the verification of
complex designs.

In this paper, we propose a novel design modification method
for polynomial formal verification of complex designs. Complex
designs consist of several smaller units that can be verified
polynomially using a specific verification method. However,
there is not a verification technique that verifies the whole
design (including all units) in polynomial space and time. Our
novel method first detects the suitable verification method for
each design unit and then makes them visible to the verification
process with minor design modifications. Thus, the verification
can be carried out polynomially which was not possible with
a single verification technique and without design modification
before. The experimental results confirm the efficiency of our
method for the verification of complex integer multipliers.

Keywords-polynomial verification; design modification; com-
plexity; multiplier;

I. INTRODUCTION

The size and complexity of digital circuits are increasing
rapidly. Back in 1970, an Intel 4004 processor only had
2, 250 transistors. It could only support a limited number of
instructions, and it was working at a very low frequency.
However, the digital circuits nowadays are much larger,
sometimes even consists of billions of transistors. Moreover,
they are usually designed based on sophisticated algorithms,
leading to fast but complex architectures. The big size and
the high complexity of modern digital circuits make them
extremely error-prone during the different design phases. For
example, a mistake by the designer during the design of
the Register Transfer Level (RTL) description or a failure
in the synthesis process can lead to a buggy architecture.
The implementation and production of these buggy designs
cause a catastrophe, resulting in huge financial losses. This
includes, e.g. the Intel Pentium bug in 1994, the New York
blackout in 2003, and a design flaw in Intel’s Sandy Bridge
chipset in 2011.

Therefore, an important phase after the design of a digital

circuit is to ensure its correctness. Formal verification and
validation are two techniques to check the correctness of
a digital circuit against its specification. In validation, it
is accomplished through simulation; however, exhaustive
simulation for the big designs is generally infeasible. On the
other hand, formal verification takes advantage of rigorous
mathematical reasoning to prove that a design meets all or
parts of its specification [1], [2]. Several formal verification
methods have been proposed to verify digital circuits. Every
year, researchers come up with new verification methods
to prove the correctness of specific types of circuits. These
methods are usually fast and efficient in practice. However, a
question remains unanswered for most of these approaches:
Are they always scalable?

In order to correctly answer the question, we should first
calculate the space and time complexity of verification meth-
ods. A verification approach is scalable if it has polynomial
complexity, i.e. its space and time complexity is bounded by
O(nm) where n is the number of circuit’s inputs and m is a
positive number. Recently, several works have been done in
the field of polynomial formal verification of adders [3], [4],
[5], multipliers [6], [7], Arithmetic Logic Units (ALUs) [8],
totally symmetric functions [9], and tree-like circuits [10].
Unfortunately, polynomial formal verification is not always
possible for complex designs due to two possible reasons:
1) the space or time complexity is exponential; thus, the
method is not scalable, 2) the method is a heuristic; thus,
it might report good results in practice but its complexity
cannot be calculated. A verification method with exponential
or unknown complexities is unreliable because it is not
scalable, or its scalability (i.e. the growth of verification run-
time and the memory usage with respect to the circuit’s size)
is unpredictable.

In this paper, we show that minor modifications in de-
signs can make the polynomial formal verification possible.
Digital circuits usually consist of several units, connected
to perform a specific function. The polynomial verification
of these circuits using only one verification method is not
always possible. However, each unit inside the circuit can be
individually verified with a formal method whose space and
time complexity is polynomially bounded. The polynomial
formal verification of each unit results in the polynomial
formal verification of the whole design which was not



possible with only one method. However, the boundaries of
design units are not always visible after the design process,
as the design under verification is usually a flattened gate-
level netlist without any hierarchical information. We show
that some minor modifications in the design can make
the boundaries visible. Thus, we can apply a polynomial
formal verification method to each unit. As a case study, we
focus on the integer multipliers as the polynomial formal
verification of them is usually impossible. We depict that the
design modification can make different stages of a multiplier
visible to the verification process. Then, we use two formal
verification approaches, i.e. Symbolic Computer Algebra
(SCA) and Binary Decision Diagram (BDD) to verify the
stages.

The remainder of the paper is structured as follows:
The next section introduces the preliminaries needed in the
paper. Section III discusses the challenges of polynomial
formal verification for complex designs. In Section IV,
we propose our novel design modification method for the
polynomial verification. Section V presents the application
of the proposed method for the formal verification of in-
teger multipliers. The experimental results are reported in
Section VI. Finally, Section VII concludes the paper.

II. PRELIMINARIES

In this section, first, we introduce the general structure
of a multiplier, which is our case study for the design
modification. Then, we review the SCA- and BDD-based
verification, which we later use for the verification of
modified multipliers.

A. Multiplier Structure

Figure 1 shows the general structure of an integer multi-
plier consisting of three stages: Partial Product Generator
(PPG), Partial Product Accumulator (PPA), and Final Stage
Adder (FSA). The PPG stage generates partial products from
the multiplier and the multiplicand inputs. Then, the PPA
stage reduces the partial products by multi-operand adders
and computes their sum. Eventually, the sum is converted to
the corresponding binary output at the FSA [11], [12].

Several algorithms have been proposed to implement each
stage of an integer multiplier. The architectures generated by
them have some pros and cons in terms of design parameters,
e.g. area, delay, power, and the number of wiring tracks.
The designer can choose between different algorithms to
achieve the design goal, e.g. minimizing the chip area. For
example, Booth PPG [13] generates fewer partial products
compared to Simple PPG; thus, it reduces the overall area
of the multipliers with long operands. However, it has a
higher design and logic complexity. As another example, the
Wallace tree [14] and balanced delay tree [15] are two well-
known algorithms for implementing the PPA stage. Wallace
tree guarantees the lowest overall delay, but it has the largest
number of wiring tracks. On the other hand, the balanced

delay tree requires the smallest number of wiring tracks but
suffers from the highest overall delay compared to other
algorithms. As the last example, ripple carry adder and carry
look-ahead adder are two algorithms for the implementation
of the FSA. The ripple carry adder has the lowest area, but it
suffers from a large delay. In contrast, the carry look-ahead
adder has a much smaller delay, but it occupies more area.
In the rest of the paper, we use the notation [α ◦ β ◦ γ] to
refer to a multiplier consisting of the stages: PPG α, PPA
β, and FSA γ.

Partial Product Generator
(PPG)

Partial Product Accumulator
(PPA)

Final Stage Adder
(FSA)

Multiplier Multiplicand

Product

Figure 1: General multiplier structure

B. SCA-based Verification

Definition 1. A monomial is the power product of variables
in the following form:

t = xα1
1 xα2

2 . . .xαn
n with αi ∈ N0 (1)

A monomial with a coefficient is called a Term.

Definition 2. A polynomial is a finite sum of monomials
with coefficients in field k:

f =
∑
j

cjtj with cj ∈ k (2)

In SCA, the division is denoted by p F−→ r, where F is a
set of polynomials and r is the remainder. For example, if
p = xy, f1 = x− z, and f2 = yz, then xy

f1−→ yz
f2−→ 0. To

perform the division of xy by f1, first f1 is multiplied by y
to produce the same leading monomial xy as p, so f1y =
xy−yz. Subsequently, the subtraction is performed, i.e. p−
(f1y) = xy − (xy − yz) = yz, which is the result of the
first division. Finally, yz is divided by f2 to get remainder
0.

In SCA-based verification of arithmetic circuits, the gate-
level netlist and the specification polynomial are given as
inputs, and the task is to formally prove that the specification



polynomial and the arithmetic circuit are equivalent. The
specification polynomial is a polynomial determining the
function of an arithmetic circuit based on its inputs and
outputs. For example, the specification polynomial for the
2-bit multiplier of Figure 2(a) is SP = 8Z3 +4Z2 +2Z1 +
Z0 − (2a1 + a0)(2b1 + b0) where 8Z3 + 4Z2 + 2Z1 + Z0

describes the 4-bit output, and (2a1+a0)(2b1+b0) indicates
the multiplication of the 2-bit inputs.

a1 b1 a0 b0

w1 w2 w3

w4

Z3 Z2 Z1 Z0

g1 g2

g3 g4

g5 g6 g7 g8

(a) 2-bit multiplier

SP := 8Z3 + 4Z2 + 2Z1 + Z0 − (4a1b1 + 2a1b0 + 2a0b1 + a0b0)

SP
pg1−−→ SP1 := 8w1w4 + 4Z2 + 2Z1 + Z0 − (4a1b1 + 2a1b0 + 2a0b1 + a0b0)

SP1

pg2−−→ SP2 := 4w1 + 4w4 + 2Z1 + Z0 − (4a1b1 + 2a1b0 + 2a0b1 + a0b0)

SP2

pg3−−→ SP3 := 4w1 + 4w2w3 + 2Z1 + Z0 − (4a1b1 + 2a1b0 + 2a0b1 + a0b0)

SP3

pg4−−→ SP4 := 4w1 + 2w2 + 2w3 + Z0 − (4a1b1 + 2a1b0 + 2a0b1 + a0b0)

SP4

pg5−−→ SP5 := 2w2 + 2w3 + Z0 − (2a1b0 + 2a0b1 + a0b0)

SP5

pg6−−→ SP6 := 2w3 + Z0 − (2a0b1 + a0b0)

SP6

pg7−−→ SP7 := Z0 − (a0b0)

SP7

pg8−−→ r := 0

(b) Backward rewriting steps

Figure 2: 2-bit multiplier and backward rewriting steps

The gates of an arithmetic circuit can be modeled as
polynomials determining the relation between output and
inputs. The polynomials of basic Boolean gates are as
follows:

z =¬a⇒ pg := z − 1 + a, z = a ∨ b⇒ pg := z − a− b+ ab,

z =a ∧ b⇒ pg := z − ab, z = a⊕ b⇒ pg := z − a− b+ 2ab
(3)

The polynomials in (3) are in the form of pg = x −
tail(pg) where x is the gate’s output, and tail(pg) is a
function based on the gate’s inputs.

The gate polynomials for the 2-bit multiplier of Fig-
ure 2(a) are:

pg1 := Z3 − w1w4

pg2 := Z2 − w1 − w4 + 2w1w4

pg3 := w4 − w2w3

pg4 := Z1 − w2 − w3 + 2w2w3

pg5 := w1 − a1b1

pg6 := w2 − a1b0

pg7 := w3 − a0b1

pg8 := Z0 − a0b0

(4)

Assume that the signals of an arithmetic circuit are
ordered based on the reverse-topological order (i.e. from

outputs toward inputs). The specification polynomial SP
and the gate-level netlist are equivalent, iff the remainder
of dividing SP by gate polynomials becomes zero. This
division is known as Gröbner basis reduction. For the
theory of Gröbner basis and its application to verification
of arithmetic circuits we refer to [16], [17].

The steps of dividing SP by pg1 , . . . , pg8 for the 2-bit
multiplier of Figure 2(a) are shown in Figure 2(b). The
final remainder of the division is equal to zero, hence the
multiplier is bug-free. Please note that all variables in the
polynomials are Boolean. Thus, xn can be replaced by x.
Furthermore, for integer arithmetic circuits, dividing SPi
by a gate polynomial pgi = xi − tail(pgi) is equivalent to
substituting xi by tail(pgi) in SPi. For example, to obtain
the result of the first division step in Figure 2(b), Z3 can
be substituted by w1w4 in SP . The process of dividing
the specification polynomial by gate polynomials (or equiv-
alently substituting gate polynomials in the specification
polynomial) is called backward rewriting.

C. BDD-based Verification

Definition 3. A Binary Decision Diagram (BDD) is a
directed, acyclic graph. Each node of the graph has two
edges associated with the values of the variables 0 and
1. A BDD contains two terminal nodes (leaves) that are
associated with the values of the function 0 or 1.

Definition 4. An Ordered Binary Decision Diagram (OBDD)
is a BDD, where the variables occur in the same order in
each path from the root to a leaf.

Definition 5. A Reduced Ordered Binary Decision Diagram
(ROBDD) is an OBDD that contains a minimum number of
nodes for a given variable order. The ROBDD of a Boolean
function is always unique.

The ITE operator (If-Then-Else) is used to calculate the
results of the logical operations in BDDs:

ITE(f, g, h) = (f ∧ g) ∨ (f̄ ∧ h) (5)

The basic binary operations can be presented using the
ITE operator:

f ∧ g = ITE(f, g, 0),

f ∨ g = ITE(f, 1, g),

f ⊕ g = ITE(f, g, g),

f � g = ITE(f, g, g),

f̄ = ITE(f, 0, 1) (6)

ITE can be also used recursively in order to compute the
results:

ITE(f, g, h) = ITE(xi, ITE(fxi , gxi , hxi ), ITE(fxi
, gxi

, hxi
))
(7)

where fxi (fxi ) is the positive (negative) cofactor of f with
respect to xi, i.e., the result of replacing xi by the value 1
(0).



Algorithm 1 If-Then-Else (ITE)
Input: f , g, h BDDs
Output: ITE BDD

1: if terminal case then
2: return result
3: else if computed-table has entry {f, g, h} then
4: return result
5: else
6: v = top variable for f , g, or h
7: t = ITE(fv=1, gv=1, hv=1)
8: e = ITE(fv=0, gv=0, hv=0)
9: R = FindOrAddUniqueTable(v, t, e)

10: InsertComputedTable({f, g, h}, R)
11: return R

The algorithm for calculating ITE operations is presented
in Algorithm 1. The result is computed recursively based
on Eq. (7) in this algorithm. When calculating the results
of ITE operations for the f , g, h BDDs, the arguments for
subsequent calls to the ITE subroutine are the sub-diagrams
of f , g and h.

In order to formally verify a circuit, we need to have
the BDD representation of the outputs. Symbolic simulation
helps us to obtain the BDD for each primary output. During
a simulation, an input pattern is applied to a circuit, and
the resulting output values are checked to see whether they
match the expected values. On the other hand, symbolic
simulation verifies a set of scalar tests (which usually cover
the whole input space) with a single symbolic test. Symbolic
simulation using BDDs is done by generating corresponding
BDDs for the input signals. Then, starting from primary
inputs, the BDD for the output of a gate (or a building block)
is obtained using the ITE algorithm. This process continues
until we reach the primary outputs. Finally, the output BDDs
are evaluated to see whether they match the BDDs of the
circuit.

III. CHALLENGES OF FORMAL VERIFICATION

Despite the rapid progress of formal verification methods,
it is not possible to prove the correctness of many digital
circuits in polynomial time and space. It is due to the fact
that either 1) the formal method has an exponential time and
space complexity in theory and practice or 2) it is a heuristic;
thus, it is impossible to prove the polynomial behavior in
theory in spite of the good experimental results.

Integer multipliers are good examples of circuits whose
polynomial formal verification is usually not possible. Here,
we summarize the results of applying some well-known
verification methods to multipliers:

1) It has been proven that the size of BDDs for the out-
puts of a multiplier grows exponentially with respect
to the size of the multiplier [18]. Therefore, BDD-

based method cannot support the verification of integer
multipliers with big input sizes in practice.

2) The run-time of verifying an integer multiplier using
SAT-based verification method increases exponentially
with respect to the size of the multiplier. Thus, similar
to BDD-based method, SAT-based verification fails to
prove the correctness of large multipliers.

3) It has been proven in [6] and [7] that the word-level
polynomial verification of structurally simple multi-
pliers whose second and third stage are only made of
half-adders and full-adders is possible using *BMD
and SCA-based techniques, respectively. Moreover,
several SCA-based verification methods have tried
to come up with some heuristics in order to attack
the hard problem of verifying structurally complex
multipliers [19], [20], [21], [22], [23], [24]. They
report good result in practice; However, proving the
polynomial behavior of them is impossible in theory.

The example of verifying an integer multiplier clearly
shows that polynomial formal verification of complex cir-
cuits using only one verification technique is not always pos-
sible. However, complex circuits usually consist of smaller
units that can be verified polynomially. For instance, a
structurally complex multiplier can be verified in polynomial
time and space if we use the suitable verification method for
each stage (see Figure 1):
• *BMD and SCA-based methods can polynomially

prove the correctness of the first and the second stages
of a multiplier.

• BDD-based verification has polynomial time and space
complexity for the final stage of a multiplier (i.e. final
stage adder).

Thus, choosing the right verification method for each unit
results in the successful polynomial formal verification of
the whole design. However, in order to consider each unit
independently during the verification, the design hierarchies
should be available, which is not always the case. The
circuit under verification is usually a flattened gate-level
netlist without any information about the hierarchies and the
boundaries of the units. This makes the separate verification
of each unit impossible in practice.

In order to overcome this challenge, we come up with a
new approach that includes minor design modifications. The
modifications make the boundaries of the units inside the
circuit visible to the verification process. As a result, we can
verify each unit independently using a suitable verification
method.

IV. DESIGN MODIFICATION METHOD

In this section, we present our novel design modification
technique for polynomial formal verification of complex
circuits. Our technique consists of two main phases: De-
termining the suitable verification method for each unit and



modifying the design in order to make the units visible to
the verification process.

A. Determining Suitable Verification Methods

The first phase of our design modification method is the
determination of the suitable verification approach for each
individual unit. To do so, we iterate through all design
units and assign a verification method based on the type
of the unit. The space and time complexity of the assigned
verification method should be polynomial. Please note that
if a group of connected units can be verified together, we
assign a verification method to the whole group, i.e. the
entire group can be verified at the same time using the
determined method.

Figure 3 shows a complex circuit consisting of six units.
The units are depicted with Ui, where 1 6 i 6 6. To perform
the first phase of the design modification, we iterate through
the units and assign the suitable verification method Gi to
them. As the units U2 and U3 are connected and can be
verified together, we consider them as a group and assign a
verification method G2 to the group. Similarly, the units U4

and U5 form a group.

G1

U1

U2 U3

U4 U5

U6

9 5

G2

G3

G4

Figure 3: Assigning the suitable verification methods to the
design units

B. Modifying Design for Verification

After determining the suitable verification method for
each unit or group of units, we should make them visible
to the verification process. This phase consists of two main
steps:
• The outputs of each unit (or group of units) are set as

the new outputs of the circuit. We call these outputs
Verification Outputs (VO) as they are only used during
the verification. If the outputs of a unit are the Primary
Outputs (POs) of the circuit, we do not need new VOs
since we can directly use POs for the verification.

• A multiplexer is added to the inputs of the units (or
group of units). The first input of the multiplexer is
connected to the inputs of the unit. The second input
is connected to new inputs. We call these new inputs
Verification Inputs (VI) as they are only used during
the verification process. If the inputs of a unit are the

Primary Inputs (PIs) of the circuit, we do not need new
VIs since we can directly use PIs for the verification.
We use a single select signal for all multiplexers, which
is called Verification Mode (VM).

In the modified circuit, if the VM is set to zero (0) the
circuit is working in the normal mode. Thus, PIs and POs
are the only valid inputs and outputs of the circuit, and the
values of VIs and VOs do not have any role in the function
of the circuit. On the other hand, if the VM is set to one (1),
the circuit enters the verification mode. In the verification
mode, VIs and VOs are the valid inputs and outputs of the
design. Therefore, if we apply values to V Ii, which is the
verification input of the unit Ui, we get the output values in
V Oi. Please note that during the verification, each unit or
group of units is totally isolated from other units, and it can
verified be separately.

PI / VI1

n

t

k

VO1

k

VI2

k

VM
0 1

PO / VO2

n

B1

B2

Partial Product Generator

Partial Product Accumulator

Final Stage Adder

k

Figure 4: Modified multiplier for the formal verification

Figure 4 shows the application of the design modification
approach on an integer multiplier. During the first phase
(i.e. determining a suitable verification method), we realize
that the first and the second stages of the multiplier are
connected and can be verified together using the SCA-
based verification method. Thus, we consider them as a
group of units. The final stage of the multiplier is an adder,
and it can be verified polynomially using the BDD-based
method. Now, we need to make the group of the first and
the second stages B1 as well as the final stage B2 visible to
the verification process. In the second phase of the design
modification, we set the outputs of B1 as the new outputs of
the circuit V O1. Since the outputs of B2 are connected to
the POs, we do not need new outputs for V O2. The inputs
of B1 are the PIs; thus, no multiplexer is required and we
can directly use them as V I1. We put a multiplexer in the
inputs of B2 and connect the new inputs V I2 to its second



input.

V. MODIFIED MULTIPLIERS VERIFICATION

In this section, we show how the modified multiplier is
now verified polynomially using two verification methods.

First, the VM signal is set to one (1) in order to enter
the verification mode. We start with the verification of B1

whose inputs (V I1) and outputs (V O1) are now accessible
in the verification mode: It has been shown that SCA-
based verification proves the correctness of the first and the
second stages of a multiplier polynomially for almost all
architectures, including simple partial product generator and
Booth partial product generator for the first stage, and array,
Wallace tree, and Dadda tree for the second stage of the
multiplier [7].

HA

HA

FAFA

FAFA

A1B0 A0B0A0B1A1B1A2B0A0B2A0B3A1B2

HA

A3B1A1B3 A2B1

FA

A3B0A2B2A2B3 A3B2

A3B3

𝑝0
(0)

𝑝0
(1)

𝑝0
(2)

𝑝1
(2)

𝑝2
(2)

𝑝0
(3)

𝑝1
(3)

𝑝3
(3)

𝑝2
(3)

𝑝0
(4)

𝑝1
(4)𝑝2

(4)

𝑝3
(4)

𝑝0
(5)

𝑝1
(5)

𝑝2
(5)

𝑝0
(6)

𝑝1
(6)

Figure 5: The first and the second stages of a multiplier

Figure 5 depicts the first and the second stages of a mul-
tiplier. The first stage has a simple partial product generator
architecture. To simplify the design and avoid confusion, we
have omitted the AND gates and shown their outputs with
AiBi, where Ai and Bi are V I1. The second stage of the
multiplier has an array structure, where the multi-operand
adders (half-adders and full-adders) are used to reduce the
partial products. The partial products are named pwi , where w
is the weight or significance. Before starting the SCA-based
verification, we determine the specification polynomial. The
outputs of the circuit (i.e. V O1) are the partial products that
their weights are available. A partial product pwi appears as
the word-level form 2wpwi in the specification polynomial.
Thus, the SP for Figure 5 is as follows:

SP := 26p61 + 26p60 + 25p52 + 25p50 + 24p43 + · · ·+ p00

− (8A3 + 4A2 + 2A1 + A0)× (8B3 + 4B2 + 2B1 + B0)
(8)

Starting from V O1, the gate polynomials are substituted
in SP step by step until we reach V I1 (see Section II-B
for more details). If we get zero remainder, B1 (i.e. the
first and the second stages of the multiplier) is correct;
otherwise, it is buggy. since B1 is mostly made of half-
adders and full-adders, we can use the half-adder’s and full-
adder’s polynomials during backward rewriting:

For example, 26p60 + 25p52 is substituted directly with
25A2B3 + 25A3B2 + 25p51 ; thus, we avoid the large

intermediate polynomials resulted from the substitution of
gates’s polynomials.

Theorem 1. The SCA-based verification of the first and
the second stage of a multiplier has quadratic O(n2) space
complexity and quartic O(n4) time complexity with respect
to the number of input bits.

Proof: A multiplier receives two inputs with n bits.
The output of the second stage consists of two numbers
with a maximum of n − 1 bits, which should be added
together by the final stage adder. Therefore, the specification
polynomial (SPi) has a maximum of 2n−2+n2 monomials
(see Eq. (9)), where 2n − 2 is the maximum size for the
word-level description of the output, and n2 is the size
of the polynomial obtained by multiplying the word-level
description of the inputs.

SP := 2n−2p
(n−2)
1 + 2n−2p

(n−2)
0 + 2n−3p

(n−3)
1 + · · ·+ p

(0)
0

− (2n−1An−1 + · · ·+ A0)× (2n−1Bn−1 + · · ·+ B0) (9)

The total number of half-adders and full-adders in the
second stage of a multiplier is O(n2). The substitution
of each half-adder and full-adder polynomial increases the
size of the current polynomial (SPi) by zero and one
monomial, respectively. Thus, after substituting all half-
adders and full-adders, the size of the current monomial
increases by a maximum of n2 monomials. The first stage
of the multiplier consists of AND gates whose polynomials
are in the form AiBj . The substitution of each AND gate
polynomial reduces the size of the current polynomial by
two until zero remainder is obtained. As a result, the space
complexity of verifying the first and second stages of a
multiplier is O(n2).

In each step of backward rewriting, we first search the
current polynomial for the proper variable for the substitu-
tion. The maximum size of the specification polynomial is
2n− 2+n2 and it is increased by one during the backward
rewriting of the second stage. Thus, the computational
complexity of the backward rewriting for the second stage
equals:

O(

n2−1∑
i=0

(2n− 2 + n2 + i)) = O(n4) (10)

The size of the current polynomial is decreased by two
during the backward rewriting of the first stage. Since there
are n2 AND gates in the first stage, the computational
complexity is equal to:

O(

n2−1∑
i=0

(2n− 2 + 2n2 − 2i)) = O(n4) (11)

As a result, the total time complexity of verifying the first
and second stages of a multiplier is O(n4).



Table I: Results of verifying different multiplier architectures

Benchmark Size #Gates

Run-times (seconds)
Proposed

method Commercial [25] [17] [26] [27] [19] [23]

SP◦BD◦KS
16×16 2,101 0.01 50.00 TO TO TO TO TO 0.09

BP◦WT◦CS 1,821 0.02 47.00 TO TO TO TO TO 0.14
SP◦DT◦LF

32×32

8,046 0.11 TO TO TO TO TO 64.62 0.38
SP◦WT◦CL 12,066 0.14 TO TO TO TO TO 1,045.89 0.87
SP◦BD◦KS 8,577 0.11 TO TO TO TO TO TO 0.76
SP◦AR◦CK 7,780 0.12 TO TO TO TO TO TO 0.28
BP◦AR◦RC 6,314 0.26 TO 2.90 TO 0.02 TO 51.19 0.81
BP◦CT◦BK 5,766 0.27 TO TO TO TO TO 227.41 1.39
BP◦OS◦CU 7,357 0.25 TO TO TO TO TO TO 1.30
BP◦WT◦CS 6,640 0.27 TO TO TO TO TO TO 1.02
SP◦DT◦LF

64×64

32,680 1.72 TO TO TO TO TO 2,105.74 5.09
SP◦WT◦CL 52,083 1.84 TO TO TO TO TO TO 16.53
SP◦BD◦KS 34,065 1.77 TO TO TO TO TO TO 12.05
SP◦AR◦CK 31,944 1.71 TO TO TO TO TO TO 3.07
BP◦AR◦RC 24,442 4.54 TO 37.18 TO 0.09 TO 882.52 14.36
BP◦CT◦BK 21,872 4.57 TO TO TO TO TO 1,729.33 28.53
BP◦OS◦CU 26,821 4.55 TO TO TO TO TO TO 23.73
BP◦WT◦CS 24,830 4.59 TO TO TO TO TO TO 41.48
SP◦WT◦BK

128×128 131,683 16.38 TO TO TO TO TO TO 142.22
SP◦DT◦LF 131,297 17.04 TO TO TO TO TO TO 153.60
SP◦WT◦BK

256×256 526,520 98.07 TO TO TO TO TO TO 3,773.21
SP◦DT◦LF 525,531 98.58 TO TO TO TO TO TO 5,622.45
SP◦WT◦BK

512×512 2,103,610 827.39 TO TO TO TO TO TO 67,493.30
SP◦DT◦LF 2,101,205 836.12 TO TO TO TO TO TO 114,257.87

Stage 1 ⇒ SP: Simple partial product generator BP: Booth partial product generator TO: Time-Out (150 hrs)
Stage 2 ⇒ AR: Array BD: Balanced delay tree DT: Dadda tree WT: Wallace tree CT: Compressor tree OS: Overturned-stairs tree
Stage 3 ⇒ RC: Ripple carry BK: Brent-Kung LF: Ladner-Fischer CL: Carry look-ahead KS: Kogge-Stone CK: Carry-skip CS: Carry select

CU: Conditional sum

Now, we focus on the verification of B2 whose inputs
(V I2) and outputs (V O2) are accessible in the verification
mode: BDD-based method reports very good results when
it comes to the verification of adders. In order to prove the
correctness of the final stage adder, we first apply the input
BDDs to V I2. Then, the BDDs for the outputs of gates are
computed using ITE operation (see Section II-C for more
details). This process continues until we reach V O2 and
obtain the BDDs for the outputs. Finally, the output BDDs
are evaluated to see whether they match the BDDs of a
correct adder.

Theorem 2. The BDD-based verification of the final stage
adder has polynomial space and time complexity with re-
spect to the number of input bits.

Recently, it has been proven in [3], [4], [5] that the poly-
nomial formal verification of various adder architectures,
including ripple carry adder, conditional sum adder, carry
look-ahead adder, and parallel prefix adders is possible using
BDD-based verification.

The polynomial formal verification of B1 and B2 in the
modified multiplier of Figure 4 results in the polynomial
formal verification of the whole circuit, which was not
possible by using only one verification method and without
design modification.

VI. EXPERIMENTAL RESULTS

The efficiency of our design modification method is evalu-
ated using a wide variety of structurally complex multiplier

architectures. The multipliers with 16 × 16, 32 × 32, and
64 × 64 sizes have been generated with the AOKI gener-
ator [28]. This generator can build multiplier architectures
only up to 64 bits per input. Therefore, we have generated
multipliers up to 512 input bits using our own multiplier
generator [29]. Then, the generated multipliers are modified
based on Figure 4 in order to make the stages visible to
the verification process. Moreover, the SCA-based and the
BDD-based methods have been implemented in C++. The
experiments have been carried out on an Intel(R) Xeon(R)
CPU E3-1270 v3 3.50 GHz with 32 GByte of main memory.

In Table I, we report the results of verifying different
modified multiplier architectures in the verification mode.
The Time-Out (TO) has been set to 150 hours for all exper-
iments. The first column of Table I presents the architecture
of the multiplier based on its stages (see abbreviations
below the table). The second column Size shows the size
of the multiplier based on the input bits before the design
modification. The number of gates for each architecture is
given in the third column #Gates.

The fourth column of Table I reports the run-time of our
proposed method. The remaining columns present the run-
times of the most recent state-of-the-art formal verification
methods. As can be seen, our approach can verify all mul-
tipliers with different architectures and sizes. It outperforms
all the existing state-of-the-art formal verification methods
by several orders of magnitude.

The run-times of seven state-of-the-art techniques are
reported in the table: While Commercial reports the run-



times of the commercial verification tool Onespin, the re-
maining subcolumns give the run-times of some of the most
recent SCA verification approaches. Please note that these
approaches work on unmodified multipliers. The commercial
tool only verifies 16 × 16 multipliers. The verification
methods of [25], [17], [26], [27] only verify a few archi-
tectures and time-out for the rest. The proposed method
in [19] supports the verification of more architectures. Fi-
nally, RevSCA 2.0 [23] verifies all multiplier architectures;
however, its run-time is huge especially for the architectures
bigger than 128× 128 input sizes.

VII. CONCLUSION

In this paper, we have proposed a novel design modifica-
tion method for polynomial formal verification of complex
designs. We showed that some minor changes in the design
can make the units visible to the design process. Then, each
unit can be verified independently using a suitable formal
verification method. Thus, we can prove the correctness of
complex circuits in polynomial time and space, while it was
not possible with only one verification method and without
design modification. We particularly applied our method
to the multiplier architectures and proved that polynomial
formal verification of complex multipliers becomes possible.
The experimental results showed that our method allows for
verification of a wide variety of multiplier architecture with
more than 2 million gates.
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