
Logic Design using Memristors:
An Emerging Technology

(Embedded Tutorial)

Saeideh Shirinzadeh∗ Kamalika Datta† Rolf Drechsler∗‡
∗Department of Mathematics and Computer Science, University of Bremen, Bremen, Germany

†Department of Computer Science and Engineering, National Institute of Technology Meghalaya, India
‡Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

Email: kdatta@nitm.ac.in, {s.shirinzadeh,drechsler}@uni-bremen.de

Abstract—This paper provides an introduction to memristor,
which is considered as the fourth circuit element along with
resistor, inductor and capacitor. Memristors possess some unique
properties, i.e. it can change the resistance under voltage control
and can retain its value even after the voltage is withdrawn.
Another property of memristors is their small feature size which
makes them useful for design of ultra-compact memory systems.
In addition, the resistive switching property of memristors allows
to execute logic primitives and thus can also be used for imple-
menting logic functions using various logic design styles studied
in this paper. The paper also discusses memristor fabrication,
circuit models, methods for implementing logic functions, and
the various computing methodologies that can be used viz. near-
memory computing and in-memory computing.

Index Terms—Memristor, IMPLY, MAGIC, in-memory com-
puting, logic synthesis

I. INTRODUCTION

The memristor has been considered by scientists as the
fourth fundamental circuit element after resistor, capacitor
and inductor. Chua predicted the existience of memristors in
1971 [1], as a circuit element that directly relates magnetic flux
and charge. The current-voltage characteristic of a memristor
exhibits a pinched hysteresis loop, that allows switching of
resistive states. In 2008, a group of researchers in the HP
Labs were successful in fabricating a device [2] using a TiO2
material doped with oxygen vacancy, which has similar resistive
switching properties. The memristor has the unique property
that its resistance value can be changed by applying a suitable
voltage across it, and the resistance value does not change even
if the voltage is withdrawn. Subsequently, various other research
groups successfully demonstrated the fabrication of devices
with similar properties [3], [4]. One of the biggest advantages
that memristors offer is their extremely small size as compared
to conventional MOS transistors. In fact, a memristor can be
fabricated with feature size as small as 9 nm2 [5].

Due to their ability to memorize past states, memristors
can be used to build high capacity non-volatile resistive
memory systems. Because of their extremely small sizes and
regular structure, they can be very conveniently fabricated in
a crossbar array. Over and above applications of memristors
in memory systems, several works have been reported where
they have been used for the implementation of logic functions
and interconnections. There are several design styles for

implementing logic functions using memristors, two of which
are briefly stated below.

a) In memristor IMPLY logic [6], memristors can be used
to realize the material implication operation (A→ B =
A′ + B). The initial values of A and B, and also the
result are stored as resistance values in memristors. To
implement a complex function, several IMPLY operations
may need to be done in a particular sequence.

b) The MAGIC design style [7] uses only memristors to
implement logic gates, where the inputs are applied
as resistance values. MAGIC gate realizations can be
mapped to crossbar arrays, and offer flexibility and
scalability.

c) Recently, a number of works have been carried out
on memristor crossbar arrays [8], [9], where a two-
dimensional grid of memristors is created. By suitably
initializing the memristors to known states, and applying
suitable voltages to the rows and columns, logic functions
can be computed as determined by the current flowing
through the array. One problem with this approach is
the existence of sneak paths in the crossbar, through
which unwanted currents may start flowing resulting in
erroneous output. However, because of the highly dense
nature of the crossbar, this approach holds great potential.

II. MEMRISTOR: FABRICATION AND MODELING

The memristor represents a non-linear relationship between
electrical charge and magnetic flux [1], as shown in Fig. 1(a).
In 2008, Strukov et al. fabricated a memristor device at HP
Lab. They used a TiO2 material sandwiched between two
platinum electrodes, with one of the regions doped with oxygen
vacancy (TiO2−x) (see Fig. 1(b)). The doped region has a lower
resistivity than the undoped region. By applying a suitable
voltage across the device, the doped region can be expanded
or contracted thereby resulting in a change in resistance. When
the voltage is withdrawn, the states of the oxygen vacancy
carriers remain unchanged, and thus the device can remember
or memorize its last resistance value. In addition to TiO2,
several other materials have also been explored by researchers.

A. Memristor Modeling
Memristors can be used in non-volatile storage applications,

as well as for implementing logic operations. In typical logic



(a) (b)

Fig. 1. (a) Relationship between fundamental circuit elements. (b) Schematic
diagram of TiO2 memristor

operations, logic values are represented as distinct resistive
states of the memristor. The resistive state of a memristor
can be switched by applying voltages of suitable polarity and
magnitude across it. For analyzing memristor based circuits,
various circuit models for memristors have been proposed. This
allows a designer to simulate the circuit designs using standard
circuit simulation tools and analyze their performance. Some
of the simulation models that have been proposed are:

1) Linear ion drift model [2]
2) Simmons tunnel barrier model [10]
3) Threshold adaptive memristor model (TEAM) [11]
4) Voltage threshold adaptive memristor model

(VTEAM) [12]
One of the first memristor models to be proposed is the

linear ion drift model, which is based on the simplified view
of the HP memristor as shown in Fig. 1(b). In this model, the
memristor is viewed as a combination of two variable resistors
in series, one corresponding to the doped region and the other
to the undoped region. The width of the doped region w is
referred to as the state variable, and determines the conductivity
of the memristor.

The following equations describe the drift-diffusion velocity
and the time varying voltage in this model:

dw
dt

=
µvRoni(t)

D
(1)

v(t) =

(
w(t)

D
Ron +

(
1− w(t)

D
Ro f f

))
i(t) (2)

where D is the width of the memristor, µv is the average ion
mobility of the TiO2 region, and w(t) is the thickness of the
doped region as a function of time t, also called the state
variable. Ron is the resistance when the width of the doped
region w(t) is D, and Ro f f is the resistance when w(t) is 0.
The total memristance of the device is given by:

M(q) = Ro f f

(
1− µvRon

D2 q(t)

)
(3)

where v(t), i(t) and q(t) respectively denote the voltage, current
and total charge flowing through the device at time t.

To overcome the limitations of the model when w approaches
the boundaries of the device, and also to introduce non-
linearities in ion drift, various window functions have been

RG

P Q

VCOND VSET

(a)

p q q′

0 0 1
0 1 1
1 0 0
1 1 1

(b)

Fig. 2. IMPLY operation. (a) Implementation of IMPLY using memristors.
(b) Truth table for IMPLY (q′← p IMPLY q = p+q) [15].

proposed, like Joglekar’s window function [13], Biolek’s
window function [14], etc. The other memristor models directly
incorporate non-linear behavior in the ion drift phenomena and
as such are more accurate but also more computation intensive.
Some of the recently proposed models like TEAM [11] and
VTEAM [12] are widely used by researchers.

III. LOGIC SYNTHESIS WITH MEMRISTORS

In this section, we study two design styles for memristors,
i.e., Material Implication (IMPLY) [15] and Memristor-Aided
LoGIC (MAGIC) [7]. For the IMPLY style, we survey the
use of known logic representations including Binary Decision
Diagram (BDD), And-Inverter Graph (AIG), and Majority-
Inverter Graph (MIG) for logic synthesis using memristors.

A. IMPLY Design Style

In [15], it was shown that Material Implication (IMPLY) can
be executed using memristive switches. IMPLYtogether with
FALSE operation, i.e., assigning the output to logic 0, makes
a complete set to express any Boolean function [15]. This
enables to synthesize arbitrary logic functions on memristive
crossbars.

Fig. 2(a) shows the implementation proposed in [15] for an
IMPLY gate [15]. The implementation needs two memristors
denoted by P and Q which are connected to a load resistor
RG. The gate is controlled by three voltage levels VSET, VCOND,
and VCLEAR. VCLEAR and VSET can be independently applied
to the memristor to set it to 0, i.e., the FALSE operation,
and 1, respectively. To perform IMPLY, two voltage levels
VSET and VCOND should be simultaneously applied to P and Q.
The interaction of devices under the aforementioned voltage
controls executes IMPLY according to truth table shown in
Fig. 2(b) [15].

1) BDD based Synthesis: The starting point for BDD based
synthesis is to realize the logic primitive designating each
graph node, i.e., a 2-to-1 multiplexer (MUX), with memristors.
Fig. 3 shows the MUX realization proposed for this purpose
in [16]. This realization executes the MUX function within six
steps performed in five memristors. Memristors S, X , and Y
store the inputs and the two others, A and B, are required for
the IMPLY operations. The corresponding computational steps
are as follows:

1: S = s,X = x,Y = y,A = 0,B = 0
2: a← s IMPLY a = s̄
3: a← y IMPLY a = ȳ+ s̄
4: b← a IMPLY b = y · s
5: s← x IMPLY s = x̄+ s
6: b← s IMPLY b = x · s̄+ y · s



RG

S X Y A B

Vs Vx Vy Va Vb

Fig. 3. The realization of MUX with memristors using IMPLY style [16]

The first step initializes the memristors with input variables
or 0. Each of the remaining steps include a single IMPLY
operation which evaluates the MUX function in step 6.

The methodology to evaluate a BDD can be sequential [16],
i.e., node by node, or parallel [16], [17], [18], i.e., level by level,
which is studied in this paper. For a given Boolean function, the
parallel approach maps the corresponding BDD representation
to a netlist of memristors using the MUX realization shown in
Fig. 3. The approach starts computing a BDD from the bottom
level of the graph and allocates one crossbar row to each
node of the level. All the nodes in the level are computed in
parallel in separate rows which means six time steps for a level.
Thus, the total number of steps to evaluate the whole BDD is
six times the number of BDD levels. The memristors storing
the results of the computed level are then directly used as
input memristors for the consecutive level. According to MUX
realization, the number of memristors required for computing
by this approach is equal to five times the maximum number
of nodes in any BDD level.

Table I shows the number of steps and memristors required
for implementing a BDD on a memristive crossbar. As the
table shows, the presence of complemented edges and fanouts
also increases the costs. Every complemented edge in the
BDD needs to be inverted by an IMPLY operation (see step
2), which requires one extra memristor and time step. The
required IMPLY operations for all complemented edges in
a level can be performed in parallel, and thus for any level
possessing ingoing complemented edges only one extra step
is required. Moreover, to avoid data distortion the values of
nonconsecutive fanouts should be copied to be used at fanout
targets. The copy operation can be performed simultaneously
in the first initialization step but still needs an extra memristor.

To lower the number of memristors and computational steps
simultaneously, i.e., finding a trade-off between both cost
metrics, a bi-objective optimization algorithm can be used.
A genetic algorithm was proposed for this purpose (see [17],
[19]). The general framework of the algorithm is based on
NSGA-II (Non-dominated Sorting Genetic Algorithm) [20]
which has been experimentally proven useful for solving NP-
complete problems such as BDD optimization. Fig. 4 shows a
BDD representing a function with four input variables and two
outputs before and after optimization. As shown in the figure,
both of the number of memristors and computational steps
have decreased in the optimized BDD, while the number of
nodes has increased. According to Table I, this improvement is
due to the reductions in the number of nonconsecutive fanouts
and levels with complemented edges.

TABLE I
THE COST METRICS OF IMPLY DESIGN STYLE FOR DIFFERENT LOGIC

REPRESENTATIONS

Metric Definition\Value

Ni No. of nodes in the ith level
CEi No. of ingoing complemented edges in the ith level
REi No. of ingoing regular edges in the ith level
FO Maximum no. of nonconsecutive fanouts in any BDD level
D The depth of the graph
LCE No. of levels with ingoing complemented edges
LRE No. of levels with ingoing regular edges
M No. of memristors
S No. of steps

BDD #M = max
0≤i≤D

(5 ·Ni +CEi)+FO #S = 6 ·D+LCE

AIG #M = max
0≤i≤D

(3 ·Ni +REi) #S = 3 ·D+LRE

MIG #M = max
0≤i≤D

(6 ·Ni +CEi) #S = 10 ·D+LCE

y1 y2

x2

x4

x1 x1

x3

1

#nodes: 6
FO: 1
CE: 1

N: 2
LCE : 4

(a) Initial
#M = 12, #S = 28

y1 y2

x3

x2

x1

x4

x3

x2

x4

1

#nodes: 8
FO: 0
CE: 1

N: 2
LCE : 3

(b) Optimized
#M = 11, #S = 27

Fig. 4. Cost metrics of logic synthesis with memristors for an arbitrary BDD,
(a) before (Initial), and (b) after optimization (Optimized)

2) AIG based Synthesis: A similar procedure presented for
BDDs can be used for AIG based synthesis using memristors.
Realization of a NAND gate using the IMPLY operation has
been proposed in [15] as per the following.

1: X = x,Y = y,A = 0
2: a← x IMPLY a = x̄
3: a← y IMPLY a = x̄+ ȳ

For crossbar implementation, the realization above can be
used together directly for nodes with complemented edges
while it needs a negation for regular edges. Using the parallel
evaluation method explained before, the nodes of each AIG
level are evaluated simultaneously, such that the employed
memristors can be reused for the successive levels. After com-
puting each level, the memristors in a level are automatically
updated with the results of the IMPLY operations. Then, the
memristors are used as the inputs of the upper level and this
procedure is continued until the target function is evaluated.

Crossbar implementation of an AIG requires as many NAND
gates as the maximum level size, i.e., the number of nodes in the
level, over the entire graph. The major part of the corresponding



Sense amplifiers

Column decoders and voltage drivers

R
ow

de
co

de
rs

an
d

vo
lta

ge
dr

iv
er

s

. . .

. . .

. . .

..
.

..
.

..
.

..
.

. . .

R11 R12 R13 R1m

R21 R22 R23 R2m

Rn1 Rn2 Rn3 Rnm

(a)

3

1 2level 1

level 2

f = x⊕ y⊕ z

x

x y z y x
(b)

#R = 6

(c)

Fig. 5. Standard memristive crossbar for the presented synthesis approach.
(a) MIG representing a three bit XOR gate, and (b) upper-bound crossbar for
its crossbar implementation.

number of memristors and time steps for implementation is
three times the number of required NAND gates and three
times the number of AIG levels, respectively (see Table I). The
values in the table also include additional memristors needed
for the required NOT operations, i.e., the regular edges in the
realization.

The costs shown in Table I can be reduced with respect to
the number of time steps or devices, addressing the latency
and area of the resulting implementations. ABC [21] provides
commands for rewriting AIGs to more efficient ones. To lower
the number of required memristors, the command dc2 can be
used to lower the number of nodes in the graph.

Latency of the designs can also be reduced before mapping
them to their corresponding netlist of memristors by the ABC
command if -x -g. The command minimizes the depth of the
AIG which is indeed the most significant term in the number
of time steps because of being multiplied by a factor of three.
Applying any of these commands iteratively can considerably
reduce the targeted cost metric.

3) MIG based Synthesis: The realization for the majority
gate using the IMPLY operation was proposed in [22] and is
as the following:

01: X = x,Y = y,Z = z
A = 0,B = 0,C = 0

06: c← y IMPLY c = x+ y

02: a← x IMPLY a = x̄ 07: c← z IMPLY c = x · z+ y · z
03: b← y IMPLY b = ȳ 08: a = 0
04: y← a IMPLY y = x+ y 09: a← b IMPLY a = x · y
05: b← x IMPLY b = x̄+ ȳ 10: a← c IMPLY a = x · y+ y · z+ x · z.

The realization needs ten IMPLY steps and six memristors.
However, it is worth mentioning that a majority based design
style beyond the scope of this paper was proposed in [23] and
was shown more efficient when using MIGs [22].

The cost metrics for the parallel evaluation of MIG based
approach using IMPLY are given in Table I. The values in the
table are obtained similarly to the explanation given for BDDs
and AIGs but according to the realization of majority gate. The
complete set of logic axioms to optimize an arbitrary MIG to
a logically equivalent MIG with smaller number of nodes or
levels was proposed in [24]. In [18], several MIG optimization
algorithms have been proposed which can be employed to
lower the cost metrics of crossbar implementation with respect
to both area and latency.

Fig. 5(a) shows a standard multi-row/column memristive
crossbar required for presented synthesis approach. For the
sake of clarity, we present step-by-step implementation of an
example MIG shown in Fig. 5(b). The MIG has a maximum
level size of 2 which needs an upper bound of 12 (2×6)
memristors placed in two rows besides one more for the ingoing
complemented edges (see Fig. 5(c)). As Table I suggests, the
computation needs 22 steps, 2×10 for the two levels and two
more steps for the complemented edges. The implementation
steps are listed below:

Initialization: Ri j = 0;

1: Loading variables for level 1: R11 = x,R12 = y,R13 = z;
R21 = x,R22 = y,R23 = z;

2: Negation for node 1: R17← x IMPLY R17 : R17 = x̄;

3-11: Computing level 1: node 1: R14 = M(x̄,y,z);
node 2: R24 : M(x,y,z);

12: Loading variables for level 2: R11 = x,R12 = M(x,y,z),R13 = M(x̄,y,z)
R14 = R15 = R16 = R17 = 0;

13: Negation for node 3: R17← R12 IMPLY R17 :
R17 = R12 = M(x,y,z);

14-22: Computing level 2 (root node): R14 = M(M(x̄,y,z),x,M(x,y,z));

The names Ri1 to Ri6 in the implementation steps above
respectively designate the resistance states of the memristors
shown by X ,Y,Z,A,B, and C used for the realization of the
majority gate. For initialization, all of the memristors in the
entire crossbar are cleared. Since IMPLY needs all the variables
to be stored in the same horizontal line, there may be a need
to have several copies of primary inputs or intermediate results
at different rows. This is shown in step 1, where each variable
of nodes 1 and 2 are loaded into two memristors in both rows.
Step 2 computes the complemented edge, i.e., showed by a
dot, of node 1 in the seventh memristor considered for this
case at the end of first row, R17. Steps 3-11 compute both
nodes at level one which updates R14 and R24 by the results
of the computations. Step 12 loads the inputs of level 2 which
includes a single node, i.e., the root node. The complemented
edge originating at node 2 is negated in step 13, and then the
root node is computed in step 22.

B. MAGIC Design Style

MAGIC is the acronym for memristor aided logic [7], which
is a stateful logic design style where the resitance values
represent the logic states. The input(s) and output values are
stored in different memristors. All basic gates (NOT, AND,



OR, NOR, NAND) can be implemented using the MAGIC
design style, as illustrated in Fig. 6.

Fig. 6. Basic gates realized using the MAGIC design style.

A MAGIC gate operation requires two sequential steps:
i) In the first step the output memristor is initialized to a

known value (either 0 or 1). For non-inverting gates like
AND/OR it is initialized to 0, while for inverting gates
like NOT/NOR/NAND it is initialized to 1.

ii) In the second step a suitable voltage V0 is applied to
the input memristor(s). The voltage across the output
memristor depends upon the logical state of the input
and output memristor, and switches accordingly.

Fig. 7. 2-input MAGIC NOR gate and equivalent circuit mapped in crossbar

Though all gates can be implemented using the MAGIC
design style; however, only NOR and NOT gate can be mapped
to memristor crossbars. A crossbar consists of horizontal and
vertical nanowires, where the memristors are fabricated at the
junctions. Fig. 7 shows the crossbar mapping of a 2-input NOR
gate. For synthesizing larger boolean functions, the functions
are first represented in terms of NOR and NOT gates, and then
various mapping techniques [25], [26] are used to map the
gates to the crossbar.

IV. NEAR MEMORY AND IN-MEMORY COMPUTING:
CHALLENGES AND IMPLEMENTATION ISSUES

A. In-Memory Computing

As explained in Section III, both of the two discussed
styles for logic-in-memory computing result in sequences of
computational steps. Accordingly, lowering the number of steps

as well as the number of memristors are considered important
objectives for in-memory computing architectures [27]. For this
purpose, usually memristors storing the intermediate results are
reused for computation in the successive steps to avoid usage
of extra steps or devices [28]. The successive switching of
some memristors compared to the other devices in a memristive
crossbar results in an unbalanced write traffic. Considering the
fact that the resistive switching devices have basically low
write endurance, i.e., in the best cases about 1010 [29] to 1011

write counts [30], this problem can lower the reliable lifetime
of the entire crossbar architecture.

Using IMPLY for synthesis, unbalanced distribution of writes
happens due to the lack of commutativity property, which
results in higher write traffic in the memory cell storing the
output of the operation. For example in [15], an implementation
for the NAND gate requiring two memristors and three time
steps was proposed. The implementation needs to switch one
memristor, the so-called work device, at each of the three
steps while the other memristor is switched only once for
initialization which is called input memristor. Similarly, in
[31], a synthesis approach has been proposed which considers
only two work memristors besides N input devices, where N
is the number of input variables of the Boolean function. In
this case, the work devices wear out fast and therefore lower
the lifetime of the design. In such implementations, the write
traffic can be distributed more evenly only by allocating extra
devices to replace those with high write counts. This also costs
additional steps to copy the contents of memristors which is
often avoided for the sake of efficiency.

B. Near-Memory Computing

In [26] Thangkhiew et al. presented a near-memory map-
ping scheme, where various adder circuits were mapped to
memristive crossbar array using the MAGIC design style. The
term near-memory signifies that the input memristors need to
be configured prior to the evaluation as opposed to in-memory
computing, where the inputs are already present in memory.
Broadly two mapping techniques are discussed, serial and
parallel. In serial mapping the gates are evaluated one by one,
and in parallel mapping, several gates are evaluated in a single
time step. For carrying out the operations, several voltages [25]
need to be applied to the rows/columns of the crossbar as:

a) A voltage Vset applied in column i and GND to row j
initializes the memristor at (i, j) to 1.

b) A voltage Vclear applied in column i and GND to row j
initializes the memristor at (i, j) to 0.

c) A voltage Vo applied to the columns corresponding to
inputs of a gate, and GND to the column corresponding
to the output, performs the NOR gate operation.

d) During a NOR gate operation, a voltage Viso applied to
a row i disables the gate operation in row i.

To reduce the hardware cost, a level-wise mapping approach
is presented in which the gates are mapped level by level. To
illustrate the parallel and level-wise mapping let us consider
the circuit shown in Fig. 8(a).

The snapshot for the evaluation of gates in level 1 is shown
in Fig. 8(b). It can be observed that in level 1 the inputs (A,C



(a) (b) (c)
Fig. 8. (a) Evaluation of Level 1. (b) Evaluation of Level 2

and B,D) and output (E,F) of the two gates are aligned in
columns. First the gate input values are all initialized to 0.
Then some of the inputs are selectively initialized to 1. For
instance, in Fig. 8(b), if memristor A is at logic 1 and C is
at logic 0, then Vset is applied to C1 and Viso is applied to
R2. After these initialization steps the evaluation of level 1 is
performed by applying Vo and GND to the columns. Next, the
outputs from level 1 are read and stored in buffers. In level 2,
all the cells in the crossbar are cleared by performing the reset
operation. Then the inputs are read from the buffer and the
memristors are again initialized. Then the evaluation is carried
out as shown in Fig. 8(c).

V. CONCLUSION

A brief introduction to memristors and its applications in
logic design has been discussed in this paper. After introducing
the IMPLY design style, three scalable synthesis approaches
using BDDs, AIGs, and MIGs are discussed in some detail.
Finally, the MAGIC design style is discussed and various issues
in crossbar mapping and evaluation are also highlighted.

REFERENCES

[1] L. Chua, “Memristor – The missing circuit element,” IEEE Trans. Circuit
Theory, vol. 18, no. 5, pp. 507–519, Sep 1971.

[2] D. B. Strukov, G. S. Snider, D. R. Steward, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, no. 7191, pp. 80–83, May
2008.

[3] N. Duraisamy, N. M. Muhammad, H. C. Kim, J. D. Jo, and K. H.
Choi, “Fabrication of Tio2 thin film memristor device using electro-
hydrodynamic inkjet printing,” Thin Solid Films (Elsevier), vol. 520, pp.
5070–5074, 2012.

[4] E. M. Gale, A. Adamatzky, and B. L. Costello, “Fabrication and
modelling of titanium dioxide memristors,” in RSC Younger Members
Symposium, 2012. [Online]. Available: http://eprints.uwe.ac.uk/17057

[5] A. Sinha, M. S. Kulkarni, and C. Teuscher, “Evolving nanoscale
associative memories with memristors,” in Proc. of 11th IEEE Conference
on Nanotechnology, Aug 2011.

[6] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C.
Weiser, “Memristor-Based Material Implication (IMPLY) Logic: Design
Principles and Methodologies,” IEEE Trans. VLSI Syst., vol. 22, no. 10,
pp. 2054–2066, Oct 2014.

[7] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. Friedman,
A. Kolodny, and U. Weiser, “MAGIC – Memristor-Aided Logic,” IEEE
Trans. Circuits Syst. II, vol. 61, no. 11, pp. 895–899, Nov 2014.

[8] S. N. Truong and K. S. Min, “New memristor-based crossbar array
architecture with 50% area reduction and 48% power saving for matrix-
vector multiplication of analog neoromorphic computing,” Journal of
Semiconductor Technology and Science, vol. 14, no. 3, pp. 356–363,
June 2014.

[9] A. Velasquez and S. K. Jha, “Automated synthesis of crossbars for
nanoscale computing using formal methods,” in Proc. IEEE/ACM Intl.
Symp. on Nanoscale Architectures, 2015.

[10] J. G. Simmons, “Electric tunnel effect between dissimilar electrodes
separated by a thin insulating film,” Journal of applied physics, vol. 34,
no. 9, pp. 2581–2590, 1963.

[11] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, “TEAM:
threshold adaptive memristor model,” IEEE Trans. Circuits Syst. I, vol. 60,
no. 1, pp. 211–221, 2013.

[12] S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny, “VTEAM:
A general model for voltage-controlled memristors,” IEEE Trans. Circuits
Syst. II, vol. 62, no. 8, pp. 786–790, Aug 2015.

[13] Y. N. Joglekar and S. J. Wolf, “The elusive memristor: properties of
basic electrical circuits,” European Journal of Physics, vol. 30, no. 4, p.
661, 2009.

[14] D. Biolek, V. Biolkova, and Z. Biolek, “SPICE model of memristor with
nonlinear dopant drift,” Radioengineering, 2009.

[15] J. Borghetti, G. Snider, P. Kuekes, J. Yang, D. Stewart, and R. Williams,
“Memristive switches enable stateful logic operations via material
implication,” Nature, vol. 464, no. 7290, pp. 873–876, 2010.

[16] S. Chakraborti, P. Chowdhary, K. Datta, and I. Sengupta, “BDD based
synthesis of Boolean functions using memristors,” in IDT, 2014, pp.
136–141.

[17] S. Shirinzadeh, M. Soeken, and R. Drechsler, “Multi-objective BDD
optimization for RRAM based circuit design,” in IEEE International
Symposium on Design and Diagnostics of Electronic Circuits & Systems,
2016, pp. 46–51.

[18] S. Shirinzadeh, M. Soeken, P.-E. Gaillardon, and R. Drechsler, “Logic
synthesis for RRAM-based in-memory computing,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., 2017.

[19] S. Shirinzadeh, M. Soeken, and R. Drechsler, “Multi-objective BDD
optimization with evolutionary algorithms,” in Genetic and Evolutionary
Computation Conference, 2015, pp. 751–758.

[20] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, 2002.

[21] Berkeley Logic Synthesis and Verification Group, “ABC–
A System for Sequential Synthesis and Verification,”
http://www.eecs.berkeley.edu/ alanmi/abc/, 2005.

[22] S. Shirinzadeh, M. Soeken, P.-E. Gaillardon, and R. Drechsler, “Fast logic
synthesis for RRAM-based in-memory computing using majority-inverter
graphs,” in Design, Automation & Test in Europe, 2016, pp. 948–953.

[23] P. Gaillardon, L. G. Amarù, A. Siemon, E. Linn, R. Waser, A. Chat-
topadhyay, and G. De Micheli, “The programmable logic-in-memory
(PLiM) computer,” in Design, Automation & Test in Europe, 2016, pp.
427–432.

[24] L. G. Amarù, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter
graph: A novel data-structure and algorithms for efficient logic optimiza-
tion,” in Design Automation Conference, 2014, pp. 194:1–194:6.

[25] N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, “Logic Design Within
Memristive Memories Using Memristor-Aided loGIC (MAGIC),” IEEE
Trans. Nanotechnol., vol. 15, no. 4, pp. 635–650, July 2016.

[26] P. L. Thangkhiew, R. Gharpinde, P. V. Chowdhary, K. Datta, and
I. Sengupta, “Area efficient implementation of ripple carry adder using
memristor crossbar arrays,” in IEEE International Design and Test
Symposium, 2016, pp. 142–147.

[27] M. Soeken, P. Gaillardon, S. Shirinzadeh, R. Drechsler, and G. De Micheli,
“A PLiM computer for the internet of things,” IEEE Computer, vol. 50,
no. 6, pp. 35–40, 2017.

[28] S. Shirinzadeh, M. Soeken, P. Gaillardon, G. De Micheli, and R. Drech-
sler, “Endurance management for resistive logic-in-memory computing
architectures,” in Design, Automation & Test in Europe, 2017, pp. 1092–
1097.

[29] H. Y. Lee, Y. S. Chen, P. S. Chen, P. Y. Gu, Y. Y. Hsu, S. M. Wang, W. H.
Liu, C. H. Tsai, S. S. Sheu, P. C. Chiang, W. P. Lin, C. H. Lin, W. S.
Chen, F. T. Chen, C. H. Lien, and M. J. Tsai, “Evidence and solution
of over-reset problem for HfOX based resistive memory with sub-ns
switching speed and high endurance,” in IEEE International Meeting on
Electron Devices, 2010, pp. 19.7.1–19.7.4.

[30] Y. B. Kim, S. R. Lee, D. Lee, C. B. Lee, M. Chang, J. H. Hur, M. J. Lee,
G. S. Park, C. J. Kim, U. I. Chung, I. K. Yoo, and K. Kim, “Bi-layered
RRAM with unlimited endurance and extremely uniform switching,” in
Symposium on VLSI Technology, 2011, pp. 52–53.

[31] E. Lehtonen, J. Poikonen, and M. Laiho, “Two memristors suffice to
compute all Boolean functions,” Electronics Letters, vol. 46, pp. 230–231,
2010.


