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Abstract—Recent advancements in memristor technology and
Resistive Random Access Memory (RRAM) have made in-memory
computing an alternative to tackle the limitations of traditional
von Neumann architecture. Although significant progress has
been achieved in the synthesis and mapping of Boolean func-
tions within crossbar arrays using styles like IMPLY, MAGIC
and Majority, verification processes have been relatively less
explored. In this paper, a comprehensive method is presented
for the synthesis, mapping and verification of multi-input NOR-
based MAGIC in-memory design on RRAM crossbars. Our
contributions are twofold: firstly, we extend crossbar micro-
operations tailored for multi-input NOR logic enabling precise
mapping. Secondly, a verification tool processes the modified
representation and compares it against the golden reference
design using Boolean Satisfiability (SAT) formula and Satisfiability
Modulo Theory (SMT) solver. Experiments were conducted on the
ISCAS’85 benchmark suite which shows the efficiency of multi-
input MAGIC NOR compared to the existing 2-input NOR-based
MAGIC design.

Index Terms—Memristor, Synthesis, Verification, MAGIC
Micro-operations, Multi-input

I. INTRODUCTION
The growing demand for efficient computing has empha-

sized in-memory computing with memristors and Resistive
Random Access Memory (RRAM), enabling data processing
directly within memory to reduce latency and enhance energy
efficiency [1]. Memristors are promising candidates for logic
design due to their unique ability to simultaneously store
and process data. Furthermore, they offer key advantages,
including non-volatility, high switching speeds and low power
consumption. Their small size and consistent construction
make them suitable for fabrication in a crossbar array [2].
Memristor research spans neuromorphic computing [3], [4],
testing [5], [6], device modeling [7], [8], and circuit de-
sign [9]–[11], with the latter playing a crucial role in mapping
logic functions to memristor crossbars.
Previous research [11]–[14] has primarily focused on devel-
oping algorithms and methods for the synthesis and mapping
of logic functions, commonly employing Majority or MAGIC
design styles. These studies primarily address synthesis results
such as the required number of cycles and crossbar size.
However, a major challenge persists: the lack of attention to

verifying the accuracy of the mapping process. A compre-
hensive synthesis and verification process has been introduced
for Majority-based design in [5], [15] and [16], as well as
for MAGIC-based design in [6], specifically focusing on 2-
input NOR-based MAGIC design. However, no comparable
framework has been proposed for a generalized multi-input
NOR MAGIC design style. This research addresses this gap
by extending the crossbar micro-operation representation for
multi-input NOR MAGIC mapping. Additionally, we develop
a synthesis, mapping and verification process using the Z3
SMT solver to validate the design against a golden reference.
Experimental results using the ISCAS’85 benchmark show the
effectiveness of the proposed approach. The major contribu-
tions of this paper are summarized below:

• We extend crossbar micro-operations for multi-input
MAGIC-based mapping, which can efficiently represent
the operations to be performed on the crossbar.

• An equivalence checking flow is developed, where SAT
formulas generated from the original (golden) spec-
ifications and their corresponding multi-input micro-
operations are verified using the Z3 solver.

• We validate the proposed method by running ISCAS´85
benchmark suits [17], generating netlists of multi-input
NOR gates for performance analysis.

The rest of this paper is organized as follows. Section II
provides the necessary background and related works. In
Section III we present the multi-input mapping and verification
methodology. Section IV discusses the experimental results,
followed by concluding remarks in Section V.

II. BACKGROUND AND RELATED WORKS

A. MAGIC Design Style

Memristor-Aided loGIC (MAGIC) has been introduced in
[9], a technique where logic states are represented by re-
sistance values. The NOR operation in the MAGIC design
style is performed in two steps: first, the output memristor
is initialized to 1 (high-resistive state); second, a voltage V0

is applied to the input memristors, with the output connected
to the ground. If both inputs are 0, the output remains at 1;
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Fig. 1. MAGIC implementation of 2-inputs and n-inputs NOR gate.

if one or more inputs are 1, the output switches to 0. The
MAGIC design style can only map NOR and NOT gates to the
crossbar due to its structural constraints. However, since NOR
is an universal gate, any logical operation can be decomposed
into NOR gates. Fig. 1 shows the row-wise implementation
of 2-input and n-input NOR gates, using one row with three
columns for the 2-input gate and n + 1 columns for the n-
input gate. Larger Boolean functions are synthesized using
NOR and NOT gates, which are then mapped to the crossbar
through various mapping techniques [11]–[14].

B. Related Works

Even though researchers have investigated the synthesis and
mapping of Boolean functions to memristor crossbars [11]–
[14], few studies have specifically addressed verifying the
mapping process. Furthermore, most existing mapping and
synthesis techniques do not automatically generate micro-
operations. While synthesis and verification of majority-based
logic design are the primary focus of studies such as [5],
[15] and [16], their execution methods differ and are not
directly applicable to MAGIC-based design. Specifically, [5]
employs a Z3 solver for verification, while [16] uses Deci-
sion Diagrams (DD) to verify adder circuits. Research on
MAGIC-based crossbar mapping [11], [13] has mainly focused
on performance metrics such as crossbar size and cycle
count, without addressing the representation of crossbar micro-
operations. Notably, [11] examines the synthesis results for
multi-input MAGIC NOR gates but does not provide a detailed
analysis of crossbar-level micro-operations. More recently, the
automated formal verification technique veriSIMPLER [6] has
been introduced to verify the MAGIC-based synthesis and
mapping method proposed in [11]. However, complete results
for ISCAS’85 benchmarks were not provided. Furthermore, no
comprehensive mapping and verification approach for multi-
input NOR designs currently exists.
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Fig. 2. The Multi-input MAGIC general flow of synthesis, mapping and
verification.

III. MULTI-INPUT SYNTHESIS, MAPPING AND
VERIFICATION

This section outlines the proposed synthesis, mapping and
verification method for multi-input MAGIC-based logic design
in memristive crossbars. It first explains the mapping algorithm
and micro-operation representation then details the verification
process.

A. Overall Mapping Process

The general synthesis, mapping and verification approach
is shown in Fig. 2, where the given function specification
in Verilog form (.v) serves as the golden representation. The
first step in the synthesis process is converting the Boolean
function from Verilog into a netlist of NOT and multi-input
NOR gates using the ABC synthesis tool [18]. For crossbar
mapping, a level-wise scheduling algorithm, As Late As Pos-
sible (ALAP), partitions the gates into levels: L1, L2, ..., LL.
Next, a crossbar mapping tool maps the scheduled NOT/NOR
netlist (NL(NOT/NOR)) into the crossbar array, enabling
parallel evaluation of independent gates within each level.
Memristor micro-operations for gate evaluation are generated
in a (.m) file. Notably, this study also addresses the mapping
of buffers and constant inputs, which were overlooked in
previous works [11], [13]. The mapping algorithm for Boolean
functions in a memristor crossbar are detailed in Algorithm 1.

B. Multi-input Crossbar Representation

This section describes the crossbar micro-operation format
generated by the synthesis and mapping tool for evaluating
multi-input NOR MAGIC gates. The following cases specify
the specifications for NOT and MAGIC NOR gate operations:

1) NOT gate: A NOT gate is equivalent to an n-input NOR
gate with identical inputs. While mapping a NOT gate,
two scenarios must be considered:

a) NOT gate with primary input: the general format is:
<row_num> False <col1> </PI1> <col2>
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Algorithm 1: The Mapping Algorithm in Memristor
Crossbar

1: Input: Function specification in Verilog form (.v)
2: Output: Micro-operations with extension (.m)
3: Begin
4: NL(NOT/NOR) = ABC Synthesis(F )
5: L1, L2, . . . , LL = ALAP (NL(NOT/NOR))
6: for each Level do
7: for each gate gi in Level do
8: if (gi is NOT ∥ NOR) then
9: if (gi- input ∈ Primary Inputs (PI)) then

10: MapParallel(row-wise) PI to crossbar
11: else
12: MapParallel(row-wise) address of intermediate

gate to crossbar
13: end if
14: end if
15: end for
16: end for
17: End

</PI1> ... <output_coln> True

b) NOT gate with intermediate gate as input: the general
format is:
<row_num> False <col1> <Rn×Cm> <col2>

<Rn×Cm> ... <output_coln> True

2) n-input NOR gate: While mapping the NOR gate, three
scenarios need to be considered:

a) NOR gate with primary inputs: the general format is:
<row_num> False <col1> </PI1> <col2>

</PI2> ... <output_coln> True

b) NOR gate with intermediate gates as inputs: the
general format is:
<row_num> False <col1> <Rn×Cm> <col2>

<Rn×Cm> ... <output_coln> True

c) NOR gate with primary inputs and intermediate gates
as inputs: the general format is:
<row_num> False <col1> <Rn×Cm> <col2>

</PI1> ... <output_coln> True

The <row_num> specifies a row number in the crossbar,
with the value False/True applied to that row. <col1>,
<col2>, etc., refer to specific column numbers. </PI1> and
</PI2> represent primary input variables, as defined in the
input Verilog file while Rn×Cm denote the locations of input
gates in the crossbar i.e. n-th row and m-th column. If there
are no dependencies among gate inputs, gates at the same level
can be executed simultaneously after initialization. For multi-
input NOR gates, it is important to consider the maximum
number of inputs across all gates to ensure that they can be
executed simultaneously without input dependency issues. If
a gate has fewer inputs than the maximum input, a filler value
of False is used for the remaining inputs. This ensures that
all gates align with the maximum input requirement, enabling
simultaneous processing. The output column for each gate is
set to True, as the output memristors must be initialized to

1 for MAGIC evaluation.
An example is presented for full adder in Fig. 3 which rep-

resent the Verilog representation and NOR3 micro-operations.
The topologically sorted netlist consists of six levels, with
comments indicated by lines starting with #. The full adder
requires no buffers, it has three inputs (a, b, cin), and two
outputs (carry at 1 × 18 and sum at 0 × 18). Each gate
requires n+1 crossbar columns—n for inputs and one for the
output—where n is the maximum input count at each level.
The total number of columns is determined by the maximum
input count per level added with the output, while the highest
number of gates at any level defines the required number
of rows. The following six lines outline the MAGIC micro-
operations for a full adder using NOR3 netlist on the crossbar:

1) At level 0 two primary inputs are negated. For this
purpose two NOT gates are placed in row 0 and 1, sharing
columns for parallel execution. The first gate uses /a as
input (column 0 and 1) and sets column 2 to True for
the output memristor, while the second NOT gate uses
/b with the same column settings. The gates are then
evaluated.

2) At level 1, two NOR2 gates use the primary inputs and
outputs from the previous level. The first gate takes /a
and memristor at 1×2 (¬/b) as inputs, while the second
takes /b and memristor at 0×2 (¬/a) as inputs. Input
values are read and copied to these memristors. Columns
3, 4, and 5 map the gates, and finally evaluation takes
place.

3) Level 2 contains two NOR2 gates and one NOT gate. The
first and third gates use primary inputs, while the second
gate reads inputs from 1×5 and 0×5 and copies them to
1×6 and 1×7. The output memristors are initialized to
True, and gate evaluation follows.

4) Level 3 includes one NOR3 gate and three NOR2 gates.
The second gate uses primary input /cin and the
memristor at 1×8 as inputs, while the other gates use
inputs from previous levels. Since the maximum number
of input is three, a filler value of False is added in
column 11 for the second, third, and fourth gates. Output
memristors are initialized to True, and the gates are
evaluated accordingly.

5) Level 4 consists of two NOR2 gates. The first gate takes
inputs from 3×12 and 2×12, then copies them to location
0×13 and 0×14. The second gate reads inputs from 1×12
and 0×12, and copies them to 1×13 and 1×14. Finally it
is evaluated.

6) Level 5 consists of two NOT gates. The first gate takes its
input from 1×15, and the second gate takes its input from
0×15. These inputs are then copied to locations 0×16 and
0×17 for the first gate, and to 1×16 and 1×17 for the
second gate. After initialization, the gates are evaluated.

C. Verification Process

The first step in the verification process is to convert the
original input specification and crossbar micro-operation into
a format suitable for equivalence checking using a SAT solver.
Here we are verifying whether the generated micro-operation
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  name full_adder
  input a, b, cin
  output carry, sum

  Outputs are placed at :
  carry -> 1x18
  sum -> 0x18

  Buffers are placed at :

  #L0
  0 False 0 /a 1 /a 2 True
  1 False 0 /b 1 /b 2 True
  #L1
  0 False 3 /a 4 1x2 5 True
  1 False 3 /b 4 0x2 5 True
  #L2
  0 False 6 /cin 7 /a 8 True
  1 False 6 1x5 7 0x5 8 True
  2 False 6 /cin 7 /cin 8 True
  #L3
  0 False 9 1x5 10 0x5 11 2x8 12 True
  1 False 9 /cin 10 1x8 11 False 12 True
  2 False 9 2x8 10 0x2 11 False 12 True
  3 False 9 0x8 10 1x2 11 False 12 True
  #L4
  0 False 13 3x12 14 2x12 15 True
  1 False 13 1x12 14 0x12 15 True
  #L5
  0 False 16 1x15 17 1x15 18 True
  1 False 16 0x15 17 0x15 18 True

Verilog File ( .v) 

Micro-operation File ( .m) 

module full_adder ( a, b, cin, carry, sum  );
    input a, b, cin;
    output carry, sum;
    wire n6, n7, n8, n9, n10, n11, n12, n14,
            n15, n16, n17, n18, n19;
    INVX1     g00(.A(a), .Y(n6));
    INVX1     g01(.A(cin), .Y(n7));
    NOR2X1 g02(.A(n7), .B(n6), .Y(n8));
    INVX1     g03(.A(b), .Y(n9));
    NOR2X1 g04(.A(cin), .B(a), .Y(n10));
    NOR2X1 g05(.A(n10), .B(n9), .Y(n11));
    NOR2X1 g06(.A(n11), .B(n8), .Y(n12));
    INVX1     g07(.A(n12), .Y(carry));
    NOR2X1 g08(.A(n9), .B(a), .Y(n14));
    NOR2X1 g09(.A(b), .B(n6), .Y(n15));
    NOR3X1 g10(.A(n15), .B(n14), .C(n7), .Y(n16));
    NOR2X1 g11(.A(n15), .B(n14), .Y(n17));
    NOR2X1 g12(.A(n17), .B(cin), .Y(n18));
    NOR2X1 g13(.A(n18), .B(n16), .Y(n19));
    INVX1    g14(.A(n19), .Y(sum));
endmodule

Fig. 3. Verilog and Micro-Operation File Format for Full Adder with Multi-
inputs NOR gate.

actually realizes the specified function. The verification pro-
cess is depicted in Fig. 2. First, a parser reads the micro-
operations and converts them into Verilog specifications (.v).
Using the ABC tool [18], we then create And-Inverter Graphs
(AIGs) for both the original input in Verilog format and
the Verilog file generated by the parser. Next, the AIGER
tool [19] is employed to convert the AIGs into CNF clauses in
DIMAC format. The AIGs from both files are first processed
by AIGER, and then the aigtoaig command is used to
generate (.aag) files for CNF clause creation. We then apply
the aigtomiter command to the (.aag) files to generate
a miter circuit. The miter circuit is represented in DIMAC
format as CNF clauses. Once the DIMAC file is fed into the
Z3 solver [20], the solver returns either SAT or UNSAT. If the
mapping is equivalent to the original Verilog specification, the
result will be UNSAT; if not, it will return SAT, indicating a
mismatch between the mapping and the original specification.
The verification process is further explained with an example.

Example 1. Consider a simple logic circuit shown in Fig. 4
1 . Fig. 4 2 displays the reference Verilog design and the

MAGIC-generated Verilog file. Using the ABC tool, both files
are converted into AIGs in binary format (.aig), as shown in
Fig. 4 3 . The first line of the AIG file contains a header
with the total number of nodes, inputs, latches, outputs, and
AND gates. The following lines define the AND gates, with
identifiers like i0, i1, followed by the label names. These
binary AIGs are then converted to ASCII format (.aag), as
shown in Fig. 4 4 . A miter circuit is generated, which
combines both AIGs in ASCII format (.aag) (Fig. 4 5 ),
which is then used to generate the CNF format (.dimacs) for
the Z3 solver, as shown in Fig. 4 6 . The CNF file contains a
header specifying the formula type, the number of variables,
and the number of clauses, followed by clause representation
as ORs of literals. Finally, Z3 confirms SAT/UNSAT in Fig. 4
7 , indicating whether the two circuits are equivalent or not.

IV. EXPERIMENTAL RESULTS

This section summarizes the experimental results. A set of
functions from the ISCAS’85 benchmark suites [17] has been
used. The mapping and parser tools which convert crossbar
micro-operations into Verilog, are implemented in C++. Other
tools like the ABC tool [18], the Python interface of the Z3
solver [20], and AIGER tool [19] have been used for synthesis
and verification process. All the experiments have been run on
a Thinkpad P14s with Intel i7-4750U CPU having 1.70 GHz
clock and 40 GB RAM.

A. Mapping Results
The synthesis and mapping results using the ISCAS’85

benchmark suite [17] are shown in Table I. The first three
columns list each circuit’s name, the number of Primary Inputs
(PI) and the number of Primary Outputs (PO). The next
twelve columns show the synthesis results for NOR2, NOR3
and NOR4 netlists, including the crossbar size (CBS), total
latency (LT ) (calculated as the sum of write and evaluation
latencies), accurate total latency (LTA) (calculated as the sum
of read, write and evaluation latencies) and micro-operation
generation time (St), reported in seconds. The following two
columns list the crossbar size (CBSS) and the total latency
(LTS) (calculated as the sum of initialization/writing ’1’ to
the output memristors and evaluation latencies), as reported
in SIMPLER [11] for NOR2 netlists. Finally, the last seven
columns compare the crossbar size and latency of the proposed
NOR2 mapping method with those of NOR3, NOR4, and
SIMPLER [11], calculated as NOR2results-PM divided by either
NOR3results-PM or NOR4results-PM and NOR2results-S divided
by NOR2results-PM , where results-PM refers to the proposed
method and results-S denotes the SIMPLER [11] method.
Moreover, the ’-’ indicates unavailable results for c17 bench-
mark in SIMPLER [11].

Table I shows that, among the eleven circuits, seven achieve
better crossbar size, and ten achieve better latency with
both NOR3 and NOR4 netlists compared to NOR2 netlists.
Specifically, NOR4 netlists reduce the accurate total latency
(LTA) by 4.78% and 31.43% compared to NOR3 and NOR2,
making NOR4 the best choice for latency-sensitive appli-
cations. This improvement is attributed to NOR4 requiring
fewer gates, which reduces logic levels and consequently, the
read, write, and evaluation times. However, NOR3 netlists
are more compact, requiring 5.94% less crossbar area than
NOR4, as the higher fan-in of NOR4 gates necessitates more
memristor cells, resulting in larger crossbar sizes. Moreover,
SIMPLER [11] is more area-efficient than our method because
it maps operations to a single row of the memristor crossbar to
achieve the required functionality, while also supporting cell
reuse. However, our method achieves a 6.4× lower average
latency when read latency is excluded from the calculation. To
ensure a fair comparison with SIMPLER [11], which excludes
read latency in its total latency evaluation, we analyze two
scenarios: (i) total latency excluding read latency and (ii)
accurate total latency including read latency. While our method
achieves better latency reduction in the first scenario, it incurs
a higher total latency when read latency is included, providing
a more precise evaluation of overall latency compared to
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MAGIC Generated Verilog

     module circuit(Gin1, Gin2,             
                         Gin3, Gout1); 
         input   Gin1, Gin2, Gin3;
         output Gout1;
         wire     n1, n2, n3, n4;
         not (n1, Gin1);
         not (n2, Gin3);
         nor (n3, n2, n1);
         nor (n4, Gin2, n3);
         not (Gout1, n4);
    endmodule

     module circuit(Gin1, Gin2,             
                                 Gin3, Gout1); 
         input   Gin1, Gin2, Gin3;
         output Gout1;
         wire     new1, new2;
         assign new1 = ~(Gin1 | Gin2);
         assign new2 = ~(Gin2 | Gin3);
         assign Gout1 = ~(new1 | new2);
    endmodule

Reference Verilog 

Verilog (.v)

aig 5 3 0 1 2
11
i0 Gin1
i1 Gin2
i2 Gin3
o0 Gout1

aig 6 3 0 1 3
12
i0 Gin1
i1 Gin2
i2 Gin3
o0 Gout1

aag 5 3 0
1 2
2
4
6
11
8 6 2
10 9 5
i0 Gin1
i1 Gin2
i2 Gin3
o0 Gout1

aag 6 3 0
1 3
2
4
6
12
8 5 3
10 7 5
12 11 9
i0 Gin1
i1 Gin2
i2 Gin3
o0 Gout1

Binary Format
 (.aig)

ASCII Format
 (.aag)

aag 11 3 0
1 8
2
4
6
23
8 5 3
10 7 5
12 11 9
14 6 2
16 15 5
18 17 13
20 16 12
22 21 19
i0 Gin1
i1 Gin2
i2 Gin3
o0 miter

p cnf  9
18
-4 -1 0
-4 -2 0
4 1 2 0
-5 -2 0
-5 -3 0
5 2 3 0
-6 -4 0
-6 -5 0
6 4 5 0
-7 1 0
-7 3 0
7 -1 -3 0
-8 -2 0
-8 -7 0
8 2 7 0
9 8 -6 0
9 -8 6 0
-9 0

Miter 
(.aag)

CNF 
(.dimacs)

Z3
SAT/UNSAT--------------------------------------------------------------------------------

=> miter.dimacs, unsat, 0.0009 seconds, 0.0008513927459716797 seconds

2 3 4 5 6

7

Fig. 4. Simple Example Showing Verification Process.

SIMPLER [11]. Additionally, synthesis results for higher-
input NOR gates (e.g., NOR5 and NOR6) show no significant
differences in area or latency compared to NOR3 and NOR4
for the proposed approach.

B. Verification Results
Table II presents the verification results for the ISCAS’85

benchmark suite [17] using our proposed approach. The first
column lists each circuit’s name. The next twenty-one columns
report the evaluation result (S(SAT) or U(UNSAT)), the
number of clauses (NCL), the number of variables (NV ar),
the time taken by the parser to create the Verilog file from
the micro-operations (tP ), the duration required to generate
the Miter circuit and CNF clauses (tM ), the time spent
verifying the CNF clauses with Z3 (tZ3) and the overall
verification time (Tt = tP + tM + tZ3) for NOR2, NOR3,
and NOR4 netlists. The following two columns show the
number of clauses (NCL(vS)) and verification time (t(vS))
reported by veriSIMPLER [6] for NOR2 netlists. The last
column shows the improvement of our verification method
over veriSIMPLER [6], calculated as the ratio t(vS)/Tt. All
times are reported in seconds, with ’-’ indicating unavailable
results for certain benchmarks.

The verification tool verifies the functional correctness
of the proposed multi-input micro-operations across all IS-
CAS’85 benchmark functions for NOR2, NOR3, and NOR4
netlists. The verification results show a decrease in the number
of clauses (NCL) and variables (NV ar) when using NOR3 and
NOR4 netlists compared to NOR2 netlists, for all benchmark
functions. Specifically, NOR3 netlists result in an average
reduction of 9.37% in clauses and 5.68% in variables, while
NOR4 netlists achieve reductions of 5.12% in clauses and
1.37% in variables. However, the average runtime, which
includes miter generation, parsing and verification with Z3,
has slightly increased. The runtime for NOR3 is approximately
1.52× longer and for NOR4, it is about 1.06× longer compared

to NOR2 netlists. The observed differences can be attributed to
the trade-off between reduced clause and variable counts and a
slight increase in runtime. NOR3 and NOR4 gates simplify the
circuit by consolidating complex functions into a single gate,
reducing clauses and variables, but slightly increasing runtime.
This reduction simplifies the verification model, potentially
easing solver demands. However, the higher fan-in of NOR3
and NOR4 gates slightly increases the complexity of miter
generation, parsing and verification, leading to minor runtime
increases compared to NOR2. Overall, the reduction in clauses
and variables significantly enhances memory efficiency and
scalability, making the slight runtime increase a reasonable
trade-off. For a fair comparison, we only compare our ver-
ification results for NOR2 netlists with veriSIMPLER [6],
which evaluates only NOR2. Table II highlights the runtime
improvements for the NOR2 netlists achieved by our proposed
method compared to veriSIMPLER [6]. Notably, results for
four ISCAS’85 benchmarks (c1355, c6288, c2670, and c7552)
are unavailable for veriSIMPLER [6]. For the remaining
benchmarks, the proposed method demonstrates an average
runtime improvement of approximately 6× for the NOR2
netlist.

This improvement is attributed to two key factors: (i) gener-
ating clauses after parsing the micro-operations into interme-
diate gate-level Verilog is more efficient than deriving them
directly from the micro-operations, and (ii) while veriSIM-
PLER [6] processes each primary output (PO) iteratively, the
proposed approach forms the complete miter first and gener-
ates CNF clauses for a single evaluation. Additionally, while
veriSIMPLER [6] rely on [11] which overlooks the efficient
synthesis of buffers and constants, the proposed method ad-
dresses these gaps by selecting benchmarks with specific fea-
tures such as constants directly driving outputs, primary inputs
exclusively driving outputs, and primary inputs acting both
as NOR gate inputs and output drivers. These considerations
strengthen the robustness of our synthesis method for multi-
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TABLE I
SYNTHESIS AND MAPPING RESULTS FOR ISCAS’85 BENCHMARK

Proposed Multi-input MAGIC Method SIMPLER Improvement

Circuit NOR2 NOR3 NOR4 NOR2 NOR2 vs NOR3 NOR2 vs NOR4 SIMPLER vs NOR2

Name #PI #PO CBS LT LTA St(s) CBS LT LTA St(s) CBS LT LTA St(s) CBSS LTS CBS LTA CBS LTA CBS LT LTA

c17 5 2 4x13 17 30 0.0004 4x13 17 30 0.0004 4x13 17 30 0.0004 - - 1 1 1 1 - -
c432 36 7 17x118 158 503 0.003 10x96 125 289 0.002 13x90 112 260 0.001 62 237 2.08 1.74 1.71 1.93 0.03 1.5 0.4
c499 41 32 64x81 111 714 0.005 63x67 87 577 0.005 63x67 85 556 0.005 110 620 1.22 1.23 1.22 1.28 0.02 5.5 0.8
c880 60 26 39x95 126 664 0.004 44x97 123 499 0.004 51x75 137 475 0.003 142 512 0.86 1.33 0.96 1.39 0.03 4.06 0.7
c1355 41 32 64x83 113 700 0.005 63x70 91 593 0.005 63x67 85 556 0.005 111 619 1.20 1.18 1.25 1.25 0.02 5.4 0.8
c1908 33 35 51x127 169 792 0.005 39x102 130 569 0.005 39x114 139 535 0.004 122 588 1.62 1.39 1.45 1.48 0.01 3.4 0.7
c3540 50 22 68x146 195 1652 0.015 86x131 165 1169 0.010 91x142 172 1047 0.010 192 1434 0.88 1.41 0.76 1.57 0.01 7.3 0.8
c6288 32 32 58x358 477 2865 0.028 36x348 437 2410 0.022 36x373 461 2403 0.022 149 2938 1.65 1.18 1.54 1.19 0.007 6.2 1.04
c2670 233 32 75x83 110 1118 0.009 68x77 97 787 0.008 62x82 100 736 0.007 383 891 1.18 1.42 1.22 1.51 0.06 8.1 0.7
c5315 178 32 58x358 202 2428 0.028 178x103 130 1548 0.020 172x117 143 1501 0.020 351 2002 1.13 1.56 1.03 1.61 0.01 9.9 0.8
c7552 207 32 126x125 166 3006 0.026 119x156 197 1950 0.024 113x173 212 1824 0.022 535 2227 0.84 1.54 0.80 1.64 0.01 13.4 0.7

AVG 83 26 8742.45 167.63 1315.63 0.0116 7614.27 145.36 947.36 0.009 8094.72 151.18 902.09 0.009 215.7 1211.3 1.24 1.36 1.17 1.44 0.02 6.4 0.7

TABLE II
VERIFICATION RESULTS FOR ISCAS’85 BENCHMARK

Proposed Multi-input MAGIC Verification Method veriSIMPLER Improvement

Circuit NOR2 NOR3 NOR4 NOR2 veriSIMPLER vs NOR2

Name S/U NCL NV ar tP tM tZ3 Tt S/U NCL NV ar tP tM tZ3 Tt S/U NCL NV ar tP tM tZ3 Tt NCL(vS) Tt(vS) t(vS)/T t

(s) (s) (s) (s) (s) (s) (s) (s) (s) (s) (s) (s) (s)

c17 U 24 48 0.001 0.051 0.007 0.059 U 24 48 0.001 0.051 0.007 0.059 U 24 48 0.001 0.051 0.007 0.059 531 0.250 4.24
c432 U 477 1284 0.005 0.053 0.016 0.074 U 423 1163 0.005 0.080 0.009 0.094 U 481 1335 0.004 0.080 0.015 0.099 921 0.375 5.07
c499 U 962 2574 0.012 0.054 0.046 0.112 U 715 2075 0.013 0.080 0.065 0.158 U 786 2280 0.013 0.090 0.058 0.156 1738 1.829 16.33
c880 U 814 2109 0.010 0.054 0.056 0.120 U 676 1836 0.009 0.090 0.040 0.139 U 730 1987 0.008 0.070 0.068 0.146 1805 0.519 4.33

c1355 U 1070 2898 0.013 0.195 0.034 0.242 U 1027 2907 0.013 0.080 0.085 0.178 U 1098 3112 0.013 0.080 0.059 0.152 - - -
c1908 U 948 2598 0.012 0.056 0.127 0.195 U 762 2228 0.011 0.080 0.108 0.199 U 794 2319 0.011 0.080 0.076 0.167 2390 1.141 5.85
c3540 U 2166 6219 0.026 0.059 2.578 2.663 U 1982 5863 0.024 0.080 4.745 4.849 U 2114 6235 0.022 0.080 2.766 2.868 673 1.657 0.62
c6288 - 4816 14163 0.052 0.065 T.O. - - 5635 16730 0.070 0.090 T.O. - - 5635 16730 0.070 0.090 T.O. - - - -
c2670 U 1679 4299 0.029 0.057 0.032 0.118 U 1300 3515 0.027 0.080 0.032 0.139 U 1332 3598 0.025 0.080 0.031 0.136 - - -
c5315 U 3871 10512 0.112 0.065 0.342 0.519 U 3253 9335 0.107 0.090 0.417 0.614 U 3379 9700 0.106 0.090 0.353 0.549 6494 3.063 5.90
c7552 U 4450 12366 0.094 0.068 0.370 0.532 U 3486 10344 0.096 0.090 0.433 0.619 U 3694 10919 0.090 0.090 0.432 0.612 - - -

AVG U 1934.27 5370 0.033 0.07 0.36 0.46 U 1753 5094.90 0.034 0.08 0.59 0.70 U 1824.27 5296.63 0.033 0.08 0.38 0.49 2650.28 1.18 6.04

input NOR-based MAGIC in-memory design. Verification also
confirms the accuracy of the crossbar micro-operations.

V. CONCLUSION

In this paper, we present a comprehensive methodology for
the synthesis, mapping, and verification of multi-input NOR-
based MAGIC in-memory design on RRAM crossbars. Our
approach introduces a standardized framework for crossbar
micro-operations tailored to multi-input NOR logic, ensur-
ing accurate mapping and efficient verification. Experimental
results demonstrate the method’s effectiveness, with NOR4
netlists outperforming NOR2 in both mapping latency and
verification, achieving reduced clauses (NCL) and variables
(NV ar) with only a minor increase in runtime. These improve-
ments enhance memory efficiency and scalability. Compared
to existing methods, our approach achieves an average of
6× faster verification performance for NOR2 netlists while
ensuring robust handling of buffers and constants, effectively
addressing the limitations of previous techniques. In future
work, we aim to optimize the verification process by reducing
runtime and clause generation, extend the methodology to
larger, fault-tolerant systems, and explore other in-memory
logic styles.
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