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Abstract—The need for performance and energy efficiency by
expanding technologies such as internet-of-things devices and
artificial neural networks (ANNs) has led to the exploration of
in-memory computing paradigms, specifically utilizing resistive-
switching memory (RSM) based analog and multilevel matrix-
vector multipliers (MVMs). However, nonidealities in these MVMs
cause larger-than-expected deterioration in the output quality
and introduce errors with potentially catastrophic consequences
in safety-critical applications such as autonomous vehicles, med-
ical diagnosis, and control systems. Therefore, to enable the
use of MVMs in such applications, the error bounds of the
MVMs must be formally verified, which, to our knowledge,
remains unaddressed. In this paper, we aim to address this
gap with a formal verification methodology for finding the
maximum possible error in resistive-switching-based multilevel
MVMs. We introduce three approaches to compute the maximum
error and provide a polynomial-time solution as our primary
contribution, which reduces the computation time by up to 2181
times. Additionally, we provide a tracing feature for error source
identification and debugging, enabling targeted enhancements of
the design. We demonstrate the methodology’s efficiency with a
timing analysis and its effectiveness through a case study using
the metrics of a fabricated design from the literature. We made
the source code of our software implementation publicly available
to promote further research in the use of multilevel MVMs in
safety-critical applications.

Index Terms—memristors, neuromorphics, resistive RAM, for-
mal verification, analog computing.

I. INTRODUCTION

Multilevel matrix-vector multipliers (MVMs) represent the
intersection of two emerging computing paradigms: in-memory
computing (IMC) and analog computing. IMC aims to re-
duce the energy consumption and latency of data-intensive
applications by performing computations in the memory units
themselves, thereby reducing the data movement between the
memory and the processing units [1]. Analog computing, on
the other hand, aims to perform computations in a single step,
using all of the available voltage range, thereby reducing the
energy consumption and latency of the computation [2].

The main structural component of multilevel MVMs is a
resistive-switching memory (RSM) device [3]. Arranged as a
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crossbar, these devices store the entries of the multiplication
matrix and take simultaneously part in the multiplication
operation, thereby avoiding the bottleneck of data movement
between memory and processing units. Furthermore, this op-
eration is performed with an analog circuit in a single step,
further reducing the energy consumption, latency, and area
requirement of the computation [4].

By combining IMC and analog computing paradigms, mul-
tilevel MVMs provide a promising solution for the challenges
faced by artificial neural networks (ANNs) and internet-of-
things (IoT) devices.

ANNs play an essential role in the era of emerging AI
applications such as large language models, visual recognition,
image generation, and autonomy. In light of this expansion
and the need for ever-increasing capabilities, the parameters
of ANNs are increasing dramatically. However, the separation
of processing and data units in the von Neumann architecture
creates a bottleneck for these data-intensive ANNs, which
causes significant latency and excess energy consumption.

The IMC paradigm has been used to alleviate this bottle-
neck, resulting in lower latency and power consumption [1].
However, analog and multilevel MVMs have the advantage of
being both IMC and using analog computing for the matrix-
vector multiplications that ANNs heavily rely on [2].

Similarly, IoT devices are becoming increasingly integral to
our daily lives, with applications ranging from smart homes to
smart cities. These devices must be energy-efficient, as they
are often battery-powered and are expected to operate for long
periods without human intervention.

Matrix-vector multiplications are a common operation in
many IoT applications, such as signal processing and linear
algebra operations. Furthermore, data-intensive applications
such as inferencing on ANNs are embedded in IoT devices
due to the increasing demand for edge computing. Multilevel
MVMs provide a significant reduction in energy consumption
and latency for these applications.

Offsetting these advantages, a major challenge in multilevel
MVMs is errors caused by nonidealities including process
variations, parasitic resistances, device nonlinearity, impre-
cise conductance adjustments, device aging, and inaccuracies
in digital-to-analog converters (DACs) and analog-to-digital
converters (ADCs) [3], [4]. While ANNs can tolerate a degree



of imprecision [5], this tolerance has its limits. To make these
systems practical, several attempts have been made to reduce
the error of multilevel MVMs [6], including optimization of
weight-to-conductance mappings [7]–[9], retraining of ANN
weights [10], [11], usage of ANN architecture with error sup-
pression and compensation [12], usage of committee machines
[13], and the use of redundant neurons and synapses [14].

Similarly, measuring the error of multilevel MVMs has also
been a subject of focus, with approaches based on simulations
[15], emulations [16], and testing [17]. However, finding av-
erages, stochastic distributions of errors, or equivalence errors
[18] is not sufficient for safety-critical applications such as
autonomous vehicles, medical diagnosis, and control systems,
where MVM errors could lead to catastrophic consequences.
For such applications, the error of utilized MVM devices
must be guaranteed to stay below the safety margin of the
application. Formally verifying the error bounds could provide
the necessary guarantees for these applications, as evidenced
by the increased interest in formally verified approximation
error (called relaxed equivalence checking) in the field of
approximate computing [19], [20].

Contribution: In this paper, we aim to address this need
for guaranteed error bounds in resistive-switching-based mul-
tilevel MVMs, with what we believe to be the first formal
verification methodology in this direction. We present three
approaches to compute the maximum error and introduce a
polynomial-time solution as our primary contribution. Further-
more, we also provide a tracing feature to identify the sources
of errors. We demonstrate the efficiency of our methodology
with a timing analysis and its effectiveness with a case study
using the metrics of a fabricated multilevel MVM from the
literature [21].

The next section summarizes the necessary background
information relevant to this work and introduces notation.
Section III presents three formal verification approaches, the
tracing capability, as well as an overview of our software
implementation. In Section IV we present the results of our
experiments and conclude the paper with Section V.

II. PRELIMINARIES

In this section we give some background information, define
the problem, and introduce notation. We first conceptually
describe our formal verification approach, then introduce mul-
tilevel MVMs, and finally describe the source of errors in these
devices.

A. Analog Formal Verification

Before delving into the intricacies of the methodology,
it is useful to mention the differences between the formal
verification in this study and the more familiar digital for-
mal verification. Digital formal verification [22], [23], which
becomes increasingly applicable thanks to advances in poly-
nomial methods [24], [25], focuses on verifying the structure
of hardware designs, such as logic gates at the gate level
and hardware description code at the register-transfer level.
In contrast, analyzing the circuit structure of the crossbar in
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Fig. 1: Schematic of a Multilevel Matrix-Vector Multiplier

Figure 1, as discussed in the final paragraph of Section II-B,
easily reveals that it performs a matrix-vector multiplication.

However, the analog nature of the computation introduces
unwanted inaccuracies due to variances and rigid design
parameters. These inaccuracies lead to erroneous computation
results.

The methodology presented here uses the analog computa-
tion’s properties to formally verify that errors are either zero
or remain within a certain bound.

B. Multilevel Matrix-Vector Multipliers

Multilevel MVMs using resistive-switching devices have the
structure in Figure 1. The variable resistors represent 2- and 3-
terminal RSM devices such as resistive random access memory
(RRAM), phase change memory (PCM), ferroelectric field-
effect transistor (FeFET), and floating-gate field-effect tran-
sistor (FGFET). When 3-terminal devices are used, extra row
or column connections are required to operate the resistances.
However, for the purpose of assessing functional correctness,
these connections can be ignored, and 2-terminal devices can
be assumed.

The purpose of this structure is to execute the operation
y⃗ = Wx⃗, where W is an M×N sized matrix, with M number
of multiply-accumulate (MAC) operations of the form

yi = w⃗i · x⃗ =

N∑
j=1

wijxj (1)

where w⃗i = [wi1, wi2, . . . , wiN ] and i = 1..M .
This MAC operation (hereinafter called the symbolic MAC

operation) is realized as an analog computation by loading
the weights wij into the variable conductances Gij and the
input signals xj into the DACs to produce the analog voltages
Vj . The analog counterpart to the symbolic MAC operation,
Ii =

∑N
j=1 GijVj , is then realized with the columns in

Figure 1 using Ohm’s law (IGij
= GijVGij

) for multiplication
(notice Vj = VGij

in Figure 1, as all the RSMs in the
same row share the same voltage) and Kirchhoff’s current
law (Ii =

∑N
j=1 IGij

) for summation. The output of the
MAC operation, yi, is then obtained by converting the cur-
rents Ii using current-input ADCs. We denote the mappings
between the symbolic and analog variables with the functions
Gij = fG(wij), Vj = fV (xj), and yi = fy(Ii). The variables
wij and xj are multilevel, as discussed in the next section.



C. Errors in Multilevel Matrix-Vector Multipliers

Ideally, if the functions fG, fV , and fy were identity
functions, the crossbar would operate correctly and without
errors. However, employing identity functions is impractical
in terms of power consumption, and is problematic in terms
of physical constraints. Furthermore, the fG function cannot be
practically realized as an identity function due to inaccuracies
in the conductances such as process variations, environmental
factors, and device aging. This issue is mitigated by limiting
the MAC operation to a finite number of levels (hence,
multilevel) and adjusting fV and fy accordingly. Therefore,
the entries of W and x⃗ are given by wij ∈ {0, 1, ..., wmax}
and xj ∈ {0, 1, ..., xmax}.

When using this approach, the computation’s range and
precision is not necessarily limited to wmax and xmax, since
the MVM can be enhanced by employing a positional number
system using multiple columns for a single MAC operation
[26]. The presented methodology is applicable to this exten-
sion as is, since it verifies the MVMs in a column-by-column
fashion.

The functions fG, fV , and fy are designed by considering
device- and process-specific limitations and variations. Since
our verification methodology applies to all possible realiza-
tions of these functions, we do not delve further into the details
of their realizations and point the reader to the reviews on the
subject [4], [27].

It is however important to mention that even though the
functions fG and fV are precisely designed, the variations
in the RSM devices and the DACs can cause the functions to
differ from their intended values. This can create a discrepancy
between the analog and symbolic counterparts of the MAC op-
eration and can cause errors. We denote the intended functions
with fGnom

and fVnom
, the set of all possible functions with

FG and FV , and the minimum and maximum values of the
functions with fGmin

, fGmax
, fVmin

, and fVmax
.

On a side note, even if the functions fG and fV were
precise (i.e. voltages and conductances were set with absolute
precision), an erroneous design of these functions can also
cause errors, a situation that we illustrate in the case study
given in Section IV-B.

The goal of the methodology introduced in the next sec-
tion is to find the maximum error caused by the discussed
discrepancies,

δyi,max = max
w⃗i,x⃗
fG,fV

(∣∣∣∣ N∑
j=1

wijxj − fy

( N∑
j=1

fG(wij)fV (xj)

)∣∣∣∣
)
(2)

where the search space variables are constrained to their
respective sets w⃗i ∈ ZN

[0,wmax]
, x⃗ ∈ ZN

[0,xmax]
, fG ∈ FG, and

fV ∈ FV . In the rest of the paper, we refrain from explicitly
writing the sets of these variables for brevity.

III. METHODOLOGY

In this section, we present our formal verification methodol-
ogy that finds the maximum error for resistive-switching-based

multilevel MVMs. We begin by presenting three approaches
for computing δyi,max in Sections III-A, III-B, and III-C.
Section III-A, introduces the most basic solution, and is
a prerequisite for the other two. Section III-B introduces
a symmetry-based approach that is more efficient than the
basic solution, but still has an exponential time complexity.
Section III-C introduces the solution with polynomial time
complexity, our primary contribution. Afterwards, we describe
the tracing feature of the methodology in Section III-D.
Finally, Section III-E, provides an overview of our software
implementation and presents the algorithm that drives the
polynomial-time solution given in Section III-C.

A. Transformation for Computability

The maximization in (2) is not computable because FV and
FG contain infinitely many elements, as they represent real-
world, continuous variances. In this section, we remove fV and
fG from the search space to transform (2) into a computable
form, where δyi,max is computed separately for all columns
of the crossbar array (for all i = 1..M ).

We start with two key properties. First, both fV and fG
are independent of w⃗i and x⃗. Second, for any given w⃗i and
x⃗, the expression to the left of the minus sign in (2) is a
constant, while the expression to the right is a function of
fV and fG. Since the absolute difference between a variable
and a constant is maximum when the variable is either at its
minimum or maximum value, we get

δyi,max = max(δyi,maxmin
, δyi,maxmax

) (3)

where

δyi,maxmin
= max

w⃗i,x⃗

(∣∣∣∣ N∑
j=1

wijxj− min
fG,fV

(
fy

( N∑
j=1

fG(wij)fV (xj)

))∣∣∣∣
)

δyi,maxmax
= max

w⃗i,x⃗

(∣∣∣∣ N∑
j=1

wijxj−max
fG,fV

(
fy

( N∑
j=1

fG(wij)fV (xj)

))∣∣∣∣
)

Given that calculating δyi,maxmin
and δyi,maxmax

is very
similar, we only focus on the latter for brevity in the rest
of the paper.

The association between analog and symbolic MAC oper-
ations suggests that the output function fy is designed such
that an increasing current at the output of the crossbar column
corresponds to a non-decreasing symbolic output. Therefore,
we can safely assume that the function fy is non-decreasing,
and we get

δyi,maxmax
= max

w⃗i,x⃗

(∣∣∣∣ N∑
j=1

wijxj − fy

(
max
fG,fV

( N∑
j=1

fG(wij)fV (xj)

))∣∣∣∣
)

Furthermore, since the functions fG and fV only produce
non-negative values, all of the terms in the summation are
individually maximized for fG = fGmax

and fV = fVmax
, and

we get

δyi,maxmax
= max

w⃗i,x⃗

(∣∣∣∣ N∑
j=1

wijxj − fy

( N∑
j=1

fGmax
(wij)fVmax

(xj)

)∣∣∣∣
)

(4)



The search space of the maximization in (4) is the Cartesian
product of the state spaces of w⃗i and x⃗, denoted as ZN

[0,wmax]

and ZN
[0,xmax]

, respectively. The number of elements in the
search space is therefore (wmax + 1)N (xmax + 1)N .

Definition 1. Brute Force Algorithm (BFA): An algorithm that
exhaustively searches the entire space of the maximization in
(4) to compute δyi,maxmax

(and similarly δyi,maxmin
) and finds

δyi,max with (3). The time complexity of this algorithm is
O(wN

maxx
N
max).

B. Search Space Reduction through Symmetry

Notice that in (4), the order of the elements in w⃗i and
x⃗ does not affect the outcome, provided their relative orders
remain unchanged. This is attributed to the commutative and
associative properties of the summation operators. Therefore,
the search space of the maximization in (4) can be reduced
from permutations of the elements to only their combinations.

Since the relative orders in w⃗i and x⃗ must be preserved, we
introduce an abstraction to w⃗i and x⃗ as follows:

δyi,maxmax
= max

p⃗∈PN

(∣∣∣∣ N∑
j=1

pj − fy

( N∑
j=1

fImax,pj
(pj)

)∣∣∣∣
)

(5)

where P is a set containing all possible wijxj values, and

fImax,pj (pj) = max

({
fGmax(wij)fVmax(xj) : wijxj = pj

})
(6)

In the reformulation of (5), the order of vector p⃗ does not
impact the value of δyi,maxmax

. To consider only a unique
permutation, we mandate that the elements of p⃗ form a non-
decreasing sequence (pi ≤ pj for i < j), and we get

δyi,maxmax
= max

p⃗∈PN
ndec

(∣∣∣∣ N∑
j=1

pj−fy
( N∑

j=1

fImax,pj (pj)

)∣∣∣∣
)

(7)

where
PN
ndec =

{
p⃗ ∈ PN : pi ≤ pj for i < j

}
Definition 2. Symmetry-Based Algorithm (SBA): An algorithm
that uses (7) to compute δyi,maxmax

(and similarly δyi,maxmin
)

and finds δyi,max with (3).

C. Recursive Decomposition and Dynamic Programming

In the following, we show that the task of finding δyi,maxmax

can be divided into smaller subproblems and that a polynomial
time complexity can be achieved with dynamic programming.

Before a recursive decomposition can be achieved, we must
redefine the maximization problem expressed in (4) in terms
of the symbolic output value yi:

δyi,maxmax
= max

yi∈Sy(N)

(∣∣∣∣yi − fy
(
fImax,yi(yi, N)

)∣∣∣∣
)

(8)

where

Sy(N) =

{
w⃗i · x⃗ :

(
w⃗i ∈ ZN

[0,wmax]

)
∧
(
x⃗ ∈ ZN

[0,xmax]

)}
(9)

and

fImax,yi
(yi, N) = max

({ N∑
j=1

fGmax
(wij)fVmax

(xj)

:
(
w⃗i · x⃗ = yi

)})
(10)

To see that this is a valid reformulation, notice that the set
Sy(N) includes all possible w⃗i · x⃗ values. Furthermore, the
maximization in (8) is done over all w⃗i and x⃗ values, as in
(4). To see this, notice that for all w⃗i and x⃗ values, there
exists a yi ∈ Sy(N) such that the constraint w⃗i · x⃗ = yi in the
predicate of the set-builder notation in (10) is satisfied.

At this point, we focus on calculating fImax,yi(yi, N). The
error δyi,maxmax

is then found by iterating over all yi ∈ Sy(N).
Calculating fImax,yi

(yi, N) can be divided into smaller sub-
problems by using the following theorem:

Theorem 1. For any n ∈ N[2,N ] and y ∈ Sy(n)\{0, 1}, we
have

fImax,yi
(y, n)=max

({
fImax,yi

(ysub, nsub)+fImax,yi
(y−ysub, n−nsub)

: (nsub ∈ N+
≤n−1) ∧ (ysub ≥ y/2)

∧ (ysub∈ Sy(nsub)) ∧ (y − ysub∈ Sy(n− nsub))
})
(11)

The four conditions in the predicate of (11) are explained
in the proof below.

Proof. We start from the definition of fImax,yi
(yi, N) given in

(10). We have

fImax,yi
(y, n) = max

({ n∑
j=1

fGmax
(wij)fVmax

(xj) :
(
w⃗i · x⃗ = y

)})
= max

({ ∑
j∈S1

fGmax
(wij)fVmax

(xj) +
∑
j∈S2

fGmax
(wij)fVmax

(xj)

:

(∑
j∈S1

wijxj +
∑
j∈S2

wijxj = y

)
∧ (S1 ⊔ S2 = N+

≤n) ∧ (|S1| ∈ N+
≤n−1) ∧ (ysub ≥ y/2)

∧ (ysub ∈ Sy(|S1|)) ∧ (y − ysub ∈ Sy(|S2|))
})

where ysub =
∑

j∈S1
wijxj .

Here we have grouped the fGmax(wij)fVmax(xj) terms into
two disjoint, nonempty partitions and expanded the search
space to include all feasible partitions S1 and S2, in accor-
dance with the constraints. The constraint that the wijxj terms
sum to y is still present, the constraint S1⊔S2 = N+

≤n enforces
a disjoint partition, and the constraint |S1| ∈ N+

≤n−1 enforces
that neither S1 nor S2 is empty.

Furthermore, since the wijxj terms of S1 and S2 collec-
tively add up to y, one of them must add up to at least y/2.
We designate S1 as this set with the constraint ysub ≥ y/2 to
prevent double checking identical partitions.

The statements (ysub ∈ Sy(|S1|)) and (y−ysub ∈ Sy(|S2|))
are always true, since Sy(|S1|) and Sy(|S2|) include every
possible

∑|S1|
j=1 wijxj and

∑|S2|
j=1 wijxj value, respectively (see

(9)). Therefore, they do not constrain the set-builder.



Note that the total sums of fGmax
(wij)fVmax

(xj) within
each set, S1 and S2, are independent. Since for independent
terms the sum is maximized when each individual term is
maximized, we have

fImax,yi
(y, n) = max

({
max

({∑
j∈S1

fGmax(wij)fVmax(xj) :
(∑
j∈S1

wijxj = ysub

)})
+max

({∑
j∈S2

fGmax
(wij)fVmax

(xj) :
(∑
j∈S2

wijxj = y − ysub

)})
: (S1 ⊔ S2 = N+

≤n) ∧ (|S1| ∈ N+
≤n−1) ∧ (ysub ≥ y/2)

∧ (ysub ∈ Sy(|S1|)) ∧ (y − ysub ∈ Sy(|S2|))
})

We then change the variable names of wij and xj , and denote
|S1| as nsub (implying |S2| = n− nsub) to get

fImax,yi(y, n) = max

({
max

({nsub∑
j=1

fGmax
(wij)fVmax

(xj) :
(nsub∑
j=1

wijxj = ysub

)})

+max

({n−nsub∑
j=1

fGmax
(wij)fVmax

(xj) :
(n−nsub∑

j=1

wijxj = y − ysub

)})
: (nsub ∈ N+

≤n−1) ∧ (ysub ≥ y/2)

∧ (ysub ∈ Sy(nsub)) ∧ (y − ysub ∈ Sy(n− nsub))

})
which, per the definition of fImax,yi

(y, n) in (10), simplifies
to (11).

The recursive relation in (11) is complete with the base
cases

fImax,yi
(0, n) = n · fImax,pj

(0) ∀n ∈N+
≤N

(12a)

fImax,yi
(1, n) = (n−1)fImax,pj

(0) +fImax,pj
(1) ∀n ∈N+

≤N

(12b)
fImax,yi

(y, 1) = fImax,pj
(y) ∀ y ∈Sy(1)

(12c)

where fImax,pj
is defined as in (6).

Calculating fImax,yi(yi, N) with the recursive relation in
(11), along with the base cases, still leads to exponential time
complexity. However, we can use dynamic programming to
calculate fImax,yi

(yi, N) in polynomial time as follows:

Definition 3. Dynamic-Programming-Based Alg. (DPBA): An
algorithm that computes δyi,maxmax

by finds fImax,yi(yi, N)
for all yi ∈ Sy(N) and using Equation (8). It stores
fImax,yi

(y, n) as a table with (max(Sy(N)) + 1) rows and
N columns. The table is populated in a bottom-up manner,
starting with the base cases in (12), and using (11) for the rest
of the table. It also similarly calculates δyi,maxmin

and finds
δyi,max with (3). The time complexity of this algorithm will
be analyzed in Section III-E.

D. Trace Generation

Generating a trace to pinpoint when the maximum error
occurs is crucial since it allows the precise identification of the
worst-case scenario, facilitating targeted design improvements.
We mark the values that result in δyi,maxmax

with a superscript
asterisk (∗).

Since BFA iterates over w⃗i and x⃗, finding w⃗i
∗ and x⃗∗ is

straightforward. However, for SBA and DPBA, these values
are not directly calculated.

Since SBA iterates over p⃗, we get p⃗∗. We then find w⃗i
∗ and

x⃗∗ by reversing the abstraction in (6):

w⃗i
∗ = [w∗

i1, . . . , w
∗
iN ]

x⃗∗ = [x∗
1, . . . , x

∗
N ]

: (w∗
ij , x

∗
j ) = fw∗

ij ,x
∗
j
(p∗j ) for j ∈ N+

≤N

(13)
where

fw∗
ij ,x

∗
j
(p∗j ) = argmax

wij ,xj

({
fGmax

(wij)fVmax
(xj) : wijxj = p∗j

})
For DPBA, w⃗i

∗ and x⃗∗ can be found by analyzing the sub-
problems. Since we will need these values for the subproblems
too, we generalize the notation to w⃗i

∗(y, n) and x⃗∗(y, n) for
the maximization of fImax,yi

(y, n). Vectors w⃗i
∗ and x⃗∗ are

then found by
w⃗i

∗ = w⃗i
∗(y∗, N)

x⃗∗ = x⃗∗(y∗, N)
(14)

where y∗ is the y value that maximizes fImax,yi(y,N).
On the other hand, for all n ∈ N[2,N ] and y ∈ Sy(n)\{0, 1},

we find w⃗i
∗(y, n) and x⃗∗(y, n) from the subproblems by

w⃗i
∗(y, n) =

[
w⃗i

∗
y∗
sub(y,n),n

∗
sub(y,n)

, w⃗i
∗
y−y∗

sub(y,n),n−n∗
sub(y,n)

]
x⃗∗(y, n) =

[
x⃗∗
y∗
sub(y,n),n

∗
sub(y,n)

, x⃗∗
y−y∗

sub(y,n),n−n∗
sub(y,n)

]
(15)

for y∗sub(y, n) and n∗
sub(y, n) that maximize fImax,yi

(y, n).
Since this is defined only for y ≥ 2 and n ≥ 2, we need to

give the base cases w⃗i
∗(0, n), x⃗∗(0, n), w⃗i

∗(1, n), and x⃗∗(1, n)
for n ∈ N+

≤N . We also need to give the base cases w⃗i
∗(y, 1)

and x⃗∗(y, 1) for y ∈ Sy(1). We find these by first finding
p⃗∗(0, n), p⃗∗(1, n), and p⃗∗(y, 1) as follows:

p⃗∗(0, n) = 0⃗
1×n

∀n ∈ N+
≤N (16a)

p⃗∗(1, n) =
[

0⃗
1×nl−1

, 1
]

∀n ∈ N+
≤N (16b)

p⃗∗(y, 1) = [y] ∀ y ∈ Sy(1) (16c)

and then finding the respective w⃗ and x⃗ vectors with (13).
The traces w⃗i

∗ and x⃗∗ can be used to make targeted design
improvements since they pinpoint the worst-case scenario. We
have demonstrated this use case in the case study given in
Section IV-B.

E. Implementation

We have developed a Python package1 incorporating BFA,
SBA, and DPBA along with additional functions, as illustrated

1https://github.com/KCaglarCoskun/multi-level-mvm-verification

https://github.com/KCaglarCoskun/multi-level-mvm-verification


BFA

DPBA

 
 
 
 
 

 

Config 
loader

SBAconfig.yaml

Legend Functions Variables

Fig. 2: Block diagram overview of the implementation.

1: Sy(1)←
{
wijxj : wij ∈Z[0,wmax]∧xj ∈Z[0,xmax]

}
▷ See (9)

2: fImax,pj
(·)← (6)(fGmax

, fVmax
)

3: fImax,yi
(·, ·)← Initialize table with −∞

4: (w⃗i
∗(·, ·), x⃗∗(·, ·))← Initialize empty table

5: (y∗sub(·, ·), n∗
sub(·, ·))← Initialize table with zeros

6: fImax,yi
(0, n)← (12a)( fImax,pj

(·) )
7: fImax,yi

(1, n)← (12b)( fImax,pj
(·) )

8: fImax,yi
(y, 1)← (12c)( fImax,pj

(·) , Sy(1) )
9: (w⃗i

∗(0, n), x⃗∗(0, n))← (13)( (16a) )
10: (w⃗i

∗(1, n), x⃗∗(1, n))← (13)( (16b) )
11: (w⃗i

∗(y, 1), x⃗∗(y, 1))← (13)( (16c)(Sy(1) ) )
12: for n ∈ N[2,N ] ▷ See Theorem 1 for lines 12–17
13: for y ∈ N[2,ymax(n)]

14: for nsub ∈ N+
≤n−1

15: for ysub ∈ N[y/2,y]

16: if fImax,yi(y,n) < fImax,yi(ysub,nsub)
+ fImax,yi

(y−ysub,n−nsub)
17: fImax,yi

(y,n)← fImax,yi
(ysub,nsub)
+ fImax,yi

(y−ysub,n−nsub)
18: y∗sub(y, n), n

∗
sub(y, n)← ysub, nsub ▷ See (15)

19: if n = N
20: Sy(N)← Sy(N) ∪ {y}
21: δyi,maxmax

, y∗ ← (8)(Sy(N), fy(·), fImax,yi
(·, N))

22: TRACE(y∗, N ) ▷ Fills w⃗i
∗(y∗, N) and x⃗∗(y∗, N)

• For clarity we assume that w⃗i
∗(·, ·), x⃗∗(·, ·), y∗sub(·, ·),

n∗
sub(·, ·), N , wmax, and xmax, are globally available to all

functions in the pseudocode.
• At Line 16, we consider −∞ < −∞ to be false.

Algorithm 1: Dynamic-Programming-Based Algorithm

by the simplified block diagram in Figure 2. For clarity, we
have omitted some utility functions from the diagram, such as
a timer function used in the timing analysis, and only show the
parameters and variables relevant to calculating δyi,maxmax

, as
we described the calculation of only δyi,maxmax

in Section III.
Nevertheless, the implementation also calculates δyi,maxmin

by
mirroring the algorithms and finds δyi,max with (3).

DPBA returns the same results as BFA and SBA with lower
time complexity and is our main contribution. Therefore, and
for the sake of brevity, we omit the pseudocode for BFA and
SBA, presenting only DPBA’s pseudocode in Algorithm 1.
As we have done in Section III-E, we present the relevant
pseudocode only for calculating δyi,maxmax

, since finding
δyi,maxmin

is a dual problem.
At the beginning of the algorithm, some values that will be

needed later are calculated at lines 1 and 2, and the dynamic

1: function TRACE(y, n)
2: if w⃗i

∗(y, n) and x⃗∗(y, n) are already calculated
3: return
4: TRACE(y∗sub(y, n), n

∗
sub(y, n))

5: TRACE(y − y∗sub(y, n), n− n∗
sub(y, n))

6: (w⃗i
∗(y, n), x⃗∗(y, n))← (15)

7: return

Algorithm 2: Trace Generation Function

programming tables are initialized at lines 3–5. Then, the base
cases are calculated at lines 6–11. The table fImax,yi(·, ·) is
filled in a bottom-up manner at lines 12–17, using the recursive
relation in Theorem 1. Line 18 is necessary for efficient tracing
and lines 19 and 20 are needed since Sy(N) is not known in
advance. Finally, δyi,maxmax

is calculated at line 21 and the
trace is generated at line 22.

Note that, in Line 13 we should have y ∈ Sy(n)\{0, 1} as
seen in Theorem 1. However, we utilize the set N[2,ymax(n)]

instead, with ymax(n) defined as nwmaxxmax. This is because
the set Sy(n) is not known in advance, and the set N[2,ymax(n)],
which is a superset of Sy(n)\{0, 1}, is used to ensure that no
y values are omitted. Any y that is not in Sy(n) will result in
fImax,yi(y, n) = −∞, and will not affect the final result. The
same reasoning applies to Line 15. Furthermore, since for any
y ∈ Sy(N), fImax,yi

(y,N) is bigger than −∞, Sy(N) can be
generated with Line 20.

The TRACE function, as given in Algorithm 2, implements
the recursion given in (15) to find w⃗i

∗(y∗, N) and x⃗∗(y∗, N)
by calculating only the necessary cells of the tables w⃗i

∗(·, ·)
and x⃗∗(·, ·).

The time complexity of DPBA is the sum of the time
complexity of the nested loops at lines 12–20 and the
time complexity of the call to TRACE in line 22. Every
operation inside the for loops (Lines 16 to 20) is con-
stant time, therefore the time complexity of the nested
loops is O(Nymax(N)Nymax(N)) = O(N2ymax(N)2) =
O(N2(Nwmaxxmax)

2) = O(N4w2
maxx

2
max).

To analyze the time complexity of the call to TRACE in
Algorithm 1, at line 22, we find a maximum bound to the
recursion depth and to the number of TRACE instances at any
depth d. The recursion depth is capped at d ≤ N , since the
number of rows decreases with every recursion (nsub < n). To
find a bound to the number of processes at any depth d, notice
that the local n values of all TRACE processes at the same
depth add up to N , since the local n values of the two calls at
lines 4 and 5 sum up to the n value of the parent caller. Since
n is minimally 1, the maximum number of TRACE processes
per level is N . Therefore, the total number of calls to TRACE
is at most N2. Since the concatenation and copy operations in
line 6 take O(N) time, the total time complexity of the call
to TRACE by DPBA is O(N3).

The time complexity of DPBA is therefore

O(N4w2
maxx

2
max +N3) = O(N4w2

maxx
2
max)

In the next section, we will conduct experiments with the



TABLE I: Results of the Timing Analysis

Runtime

N wmax xmax BFA SBA DPBA Speedupa δyi,max

10 3 3 1751 s 0.08 s 0.09 s - 1.81
20 3 3 -b 2.05 s 1.36 s 1.5× 3.62
40 3 3 -b 204 s 20 s 10× 7.24
80 3 3 -b 3.23h 331 s 35× 14.47

10 7 7 -b 1043 s 2.55 s 409× 9.85
20 7 7 -b -b 39.6 s >2181× 19.7
40 7 7 -b -b 638 s - 39.4

a Speedup from SBA to DPBA
b Terminated after exceeding 24 hours

implementation to demonstrate the efficiency and effectiveness
of the proposed methodology.

IV. EXPERIMENTAL EVALUATION

In this section, we conduct two experiments to demonstrate
the efficiency and effectiveness of our methodology. First, we
perform a timing analysis by running the methodology with
all three algorithms, incrementally increasing the complexity
of the analyzed MVM. Then, we assess the methodology’s
effectiveness by analyzing a recently fabricated MVM from
the literature with real-world parameters.

All computations were performed on an octa-core AMD
Ryzen 7 PRO 4750U machine with 32 GB RAM.

A. Timing Analysis

In this section, we conduct a timing analysis using a
multilevel MVM with the function mappings

fGnom
(w) =

323 µS
wmax

w fVnom
(x) =

5V

xmax
x

fGmin(w) = 0.99fGnom(w) fVmin(x) = 0.99fVnom(x)

fGmax(w) = 1.01fGnom(w) fVmax(x) = 1.01fVnom(x)

fy(I) =
wmaxxmax

fGnom
(wmax)fVnom

(xmax)
I

The parameters N , wmax, and xmax as well as the timing
and error results are displayed in Table I. It is clearly seen
from the runtimes and speedup values that DPBA is more
efficient and scalable than BFA and SBA. BFA is not able to
solve the problem for N ≥ 20 under 24 hours due to its high
time complexity, and SBA is not able to solve the problem for
N ≥ 20 when wmax = 7 and xmax = 7. On the other hand,
DPBA is able to solve these problems in minutes thanks to its
polynomial time complexity.

The δyi,max values are, as expected, the same for all
algorithms. We further observe that the δyi,max values increase
with N , wmax, and xmax. This is due to the accumulation of
errors for increased N , and the increased y values for increased
wmax and xmax.

B. Case Study: A Fabricated 32× 32 MVM

In this case study, we analyze a fabricated 32 × 32 MVM
[21] using its measured, post-fabrication parameters. The
device employs three-terminal FGFETs, whose gate voltage
is used to set the conductance between the drain and source

TABLE II: Conductances per State of the Fabricated MVM

w 0 1 2 3
fGmin

(w) (µS) 0 0 0 0
fGmax(w) (µS) 0.67 3.68 8.57 14.63
fGnom(w) (µS) 0.23 1.04 2.29 4.98

terminal. The input voltage Vj is applied to the drain terminal
and only takes an on (Vj = 1 V) or off (Vj = 0 V) state.
Therefore, we have xmax = 1. The input voltage is considered
precise, which gives us

fVmin
(x) = fVmax

(x) =

{
0 if x = 0

1 if x = 1

The maximum symbolic value for the weights is wmax = 3
which are set with the gate voltages -4 V, -6 V, -8 V, and -10 V.
The corresponding conductances have a very wide spread as
seen in terms of arbitrary units in [21, Fig. 2]. We compute the
conductances in Siemens from the data provided along with
the paper, resulting in the mappings fGmin

(w) and fGmax
(w)

given in Table II.
The MVM facilitates the measurement of the column-wise

output current, by converting it into a voltage with a trans-
impedance amplifier and providing a voltage terminal for
readouts. Therefore, any fy function may be used during
applications. For an initial analysis, we use the gain that was
used to convert the impedances into arbitrary units, i.e., we
use fy(I) = 2× 106I .

Applying the methodology, we find δyi,max = 96. This is
due to the very wide range of the conductance values. In fact,
for all states, the minimum observable conductance is zero,
which means that for any applied input, the output may be
zero. This simply means that the technology is not ready for
safety-critical applications that require error bounds. Next, we
will analyze possible future improvements to the technology.

We assume that the precision of the conductances is im-
proved such that the minimum and maximum conductances are
10% below and above the nominal conductances, respectively,
and fit a second-order fy function to the data, resulting in

fy(I) = min(0.156× 109 · I2 + 8.79705× 105 · I, 96)

For this case, we get δyi,max = 20.29 at

w⃗i
∗=
[
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0 3 3 3 3 3 0 3 3 0 0 0 3 3 0 3 0

]
x⃗∗=

[
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

]
Next, we assume that the conductances can be set exactly to

the nominal values, but still get a maximum error of δyi,max =
11.35 at

w⃗i
∗=
[
3 3 3 3 3 3 3 3 3 3 3 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]
x⃗∗=

[
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

]
We see from the trace that the maximum error is related
to the conductance state 3. Indeed, as seen in Table II, the
conductance increases by a factor of 2.17 from state 2 to state
3. When the conductance of state 3 is lowered to 3.45 µS, we
get δyi,max = 4.08.



Therefore, for safety-critical applications requiring error
bounds, it is necessary to both improve the precision of the
conductances and to adjust conductance values.

V. CONCLUSION

In this paper, we have introduced a methodology for finding
formally verified error bounds to resistive-switching-based
multilevel MVMs. We have proposed our polynomial-time
algorithm, DPBA, and demonstrated its efficiency and scal-
ability through a timing analysis. We have also demonstrated
the methodology’s effectiveness through a case study with a
fabricated MVM, particularly in analyzing error bounds and
guiding future device improvements.

To ensure the correctness of our methodology, we have
provided the proof of Theorem 1. The applicability to real
devices is solely dependent on the correct choice of FG and
FV . To account for real-world inaccuracies, FG and FV can
be chosen bigger for a conservative analysis.

Next, we plan to use this formal verification methodology to
create a framework that optimizes ANN weight to conductance
mappings such that the error bounds are minimized. Further-
more, we plan to analyze error mitigation methods, such as the
retraining of ANN weights and the use of redundant neurons
and synapses.
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