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Abstract—The ever-increasing functionality of modern elec-
tronic systems and reduced time-to-market constraints have
significantly altered the typical design flow. One possible solution
to deal with this rising complexity is to increase the level of
abstraction toward the Electronic System Level (ESL). At the ESL,
modeling system as a Virtual Prototype (VP) using SystemC and
its Transaction Level Modeling (TLM) framework has become
an industry-accepted solution in the last decade. VP design
exploration, analysis, debugging, and integration of ever-changing
functional requirements can be made faster, more accurate, and
errorless with the help of a strong design understanding method.

This paper presents a comprehensive automated design under-
standing methodology that enables designers to trace detailed
information related to the VPs structure and behavior. The
proposed methodology includes three main phases which are
data extraction, analysis, and visualization. Experimental results
including a real-world VP-based system show the advantages of
our methodology such as its accuracy and applicability.

I. INTRODUCTION

Modern embedded systems consist of many different func-
tional blocks, including multiple (third-party) Intellectual
Property (IP) cores, various on-chip interconnects, and mem-
ories. The exponential increase in the functionality of System-
on-Chips (SoCs) and reduced Time-to-Market (TTM) con-
straints have significantly altered the design process to meet
the high market demand.

One possible solution to handle the complexity of the
electronic systems is to raise the level of abstraction towards
the Electronic System Level (ESL) [1]. At the ESL, among
the existing hardware modeling languages, SystemC [2] has
become the de-facto standard modeling language that is used
to describe systems as a Virtual Prototype (VP). A VP is
an abstract and executable software model that is typically
implemented using SystemC and its Transaction Level Mod-
eling (TLM) [3] framework. By this means, a system can be
prototyped quickly and used as a reference model for lower
levels of abstraction. Moreover, before the actual hardware
is manufactured, designers can test or evaluate the software
parts of an embedded system. Thus, it acts as the standard
communication platform among system designers, embedded
software developers, and hardware engineers along the design
process [4].

However, this modern VP-based design flow still has weak-
nesses, in particular, due to the significant manual effort
involved for analysis (e.g., perform design space exploration
for the next generation of SoCs, debug, verify or synthesize
the existing SoCs) as well as modeling tasks (e.g., test new
features and validate the capabilities of SoCs) which is both
time consuming and error-prone. Although the simulation-
based technique is still the predominant way to handle the

tasks mentioned above (due to VP complexity), using them
requires accurate knowledge about VPs’ structure and behav-
ior. This initial step in the design process is called Design
Understanding. However, analyzing a given SystemC-based
VP for design understanding goal is a non-trivial task. Mainly
because C++ (and thus also SystemC, which is a library for the
former) is inherently hard to analyze due to 1) the countless
compiler-specific dialects that a source code may be written
in, and 2) the executable binary format which may be heavily
optimized.

In this paper, a comprehensive automated design under-
standing methodology is presented, enabling designers to
accurately trace the structure and behavior of a given SystemC-
based VP. The proposed methodology consists of three main
phases: data extraction, analysis, and visualization. In the first
phase, the static and run-time information of a given VP
is extracted from two perspectives: the debugger-based and
the compiler-based approaches. The debugger-based approach
takes advantage of the GNU Debugger (GDB) as its underlying
infrastructure. It provides designers with a non-intrusive anal-
ysis solution that only requires the executable model of VPs.
Thus, in case of legacy or third-party IPs where the source
code may not be available at all, it is the only applicable
solution. The compiler-based approach is based on the flexible
Clang compiler. It introduces a fast analysis technique that
scales very well with an arbitrary complexity of VPs or their
running software (or application). In the second phase, the
retrieved information is translated into a set of Intermediate
Representation (IR) models, presenting the whole system’s
behavior (which is based on simulation) and structure in
well-structured formats. Finally, to enhance the understanding
process of a given VP’s intricacy, in the last phase, these IR
models are used to visualize the VP’s structure in an XML
format, and its behavior as Unified Modeling Language (UML)
diagrams.

II. BACKGROUND AND MOTIVATION

In this section, we first give a brief introduction to the
SystemC TLM-2.0 framework. Then, state-of-the-art VPs de-
sign understanding methods are discussed. Finally, with a
motivating example, we show the necessity of needing a strong
design understanding approach at the ESL.

A. SystemC TLM-2.0
SystemC is a C++ based system-level design language pro-

viding an event-driven simulation kernel. TLM-2.0 framework
(as the current standard) introduces the transaction concept
allowing designers to describe a model in terms of abstract



TABLE I: Different types of the TLM-2.0 transaction.
TM TT Communication Interface Call Return Status Phase Transition
LT T0 b_transport TC -

AT

T1 nb_transport_fw TC BRQ
T2 nb_transport_fw TU→TC BRQ→BRP→ERP
T3 nb_transport_fw TU→TA BRQ→BRP→ERP
T4 nb_transport_fw/nb_transport_bw TU→TA→TA BRQ→ERQ→BRP→ERP
T5 nb_transport_fw/nb_transport_bw TU→TC BRQ→ERQ→BRP
T6 nb_transport_fw/nb_transport_bw TU→TC BRQ→BRP
T7 nb_transport_fw/nb_transport_bw TU→TU BRQ→ERQ→BRP→ERP
T8 nb_transport_fw/nb_transport_bw TA→TC BRQ→BRP
T9 nb_transport_fw/nb_transport_bw TA→TA→TC BRQ→BRP→ERP
T10 nb_transport_fw/nb_transport_bw TA→TU BRQ→BRP→ERP
T11 nb_transport_fw/nb_transport_bw TA→TA→TC→TC BRQ→ERQ→BRP→ERP
T12 nb_transport_fw/nb_transport_bw TA→TA→TC BRQ→ERQ→BRP
T13 nb_transport_fw/nb_transport_bw TA→TA→TU BRQ→BRP→ERP

TM: Timing Model TT: Transaction Type TC: TLM_COMPLETED TA: TLM_ACCEPTED TU: TLM_UPDATED
BRQ: BEGIN_REQUEST BRP: BEGIN_RESPONSE ERQ: END_REQUEST ERP: END_RESPONSE

communication using the base protocol and standard interfaces
(e.g.,b_transport and nb_transport). A transaction is a data
structure (i.e., a C++ object) passed through TLM modules
using function calls. A TLM module may include initiators
(generating transactions), interconnects (acts as a transaction
router), and targets (responds to the incoming transactions).
Communication between two TLM modules in a VP can be
performed based on two-timing models, Loosely-timed (LT),
and Approximately-timed (AT). The LT model is appropriate
for the use case of software development while the AT model
for architectural exploration and performance analysis. The LT
model is implemented using the blocking transport interface
(b_transport) allowing only two-timing points (request and re-
sponse) to be associated with each transaction. The AT model
is implemented using the non-blocking transport interface
(nb_transport) providing multiple phases and timing points
for a transaction. Due to the combination of these phases and
timing points, 13 unique transaction types are defined in the
base protocol. In summary, Table I shows different transaction
types (column TT) of the TLM-2.0 base protocol and describes
them based on the communication interface call, return status
of the interface call and the transaction’s phase transitions.

B. Related Work

Analyzing SystemC-based VPs for design understanding
goal is an active field of research. Several methods have
been developed to achieve this goal, each of them with its
features and issues. These methods can be divided into two
main categories based on whether they rely on static or hybrid
techniques.

Static approaches rely on extracting information from the
source code or its compiled binary model using parsers [5]–
[10] or existing C++ front-ends [11]–[13]. They do not (by
definition) analyze the execution of the models. Their results
can only describe some information related to the structure of
a model and in the best case, can be represented in an Abstract
Syntax Tree (AST).

Hybrid approaches [14]–[19] use the best features of the
static and dynamic methods to extract the designs’ struc-
ture. The extracted structural information is linked using a
post-process analysis. To monitor the VP model’s behavior,
they usually utilize the extracted structural information of the
VP to access its run-time behavior. Current hybrid methods
that can analyze SystemC VPs’ behavior have been developed
in different ways such as manually modifying the source code,
altering the existing SystemC library, interfaces, kernel or
compiler.
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Fig. 1: Architecture of the LT_AT_BUS VP.

Overall, existing design understanding solutions mostly
suffer from the following drawbacks which are in short 1) low
degree of automation [16], 2) limiting language constructs [9]–
[11], 3) lack of precise VPs’ behavior extraction [10], [14],
[15], [17], [18], and 4) lack of supporting TLM constructs [14],
[15], [18].

C. Motivating Example

Consider the third-party LT_AT_BUS VP (inspired by [20])
shown in Fig. 1 that the documentation is not available (or
poorly written). The VP includes six modules that differentiate
based on underlying base protocol transactions: two initiators
(Initiator_A, Initiator_B), one interconnect (LT_AT_BUS), and
three targets (Memory_A, Memory_B, and Memory_C). The
Initiator_A module communicates with target modules through
LT_AT_BUS by generating four types of AT transactions. Two
types T0 and T4 to access Memory_A (each type for different
memory address ranges), and types T1 and T2 to access Mem-
ory_B and Memory_C, respectively. The Initiator_B module
generates transactions of type T3 to communicate with all
target modules. For example, consider the communication
between Initiator_A and Memory_A (the gray components in
Fig. 1). The Initiator_A module generates transaction types
T0 and T4 to access memory address range (0x00 to 0x0A)
and (0x0B to 0xFF) of the Memory_A module based on
the functions call and timing phases described in Table I,
respectively. Now consider a scenario that may happen during
the design process. Designers decide to reuse or revise some
modules of the VP. For example, they want to modify the AT
base protocol transaction type T4 of the Initiator_A module
and change it to T1, including fewer transition phases to gain
performance. This modification also needs to be applied to
the LT_AT_BUS and Memory_A to properly build a commu-
nication path between the initiator and target modules through
the interconnect. Before any changes can be applied to the
VP, it needs to be adequately understood. However, lacking
(proper) documentation makes the understanding process very
complicated.

III. DESIGN UNDERSTANDING METHODOLOGY

In this section, we explain the three phases of our proposed
methodology in detail.

A. Data Extraction

The first phase of the proposed design understanding
methodology is to access both the static and run-time informa-
tion of a given VP describing its structure and behavior (which
is defined in terms of transaction). The structure of a given
VP refers to the data that is described in the VP’s source code
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Fig. 2: Overview of the Debugger-based approach.

consisting of the modules’ types (initiator, interconnect or tar-
get), binding information of modules’ sockets, and transaction
objects and their related variables such as timing annotation,
phase and return status of transporting interfaces.

A large part of this information is static data, which can be
accessed before the execution of VPs (e.g., in compile-time)
including e.g., the root name and type of each module, and
the name and type of each function. However, some parts of
this information may be identified after the VP’s execution,
which is considered as dynamic data (e.g., dynamic variables
and parameters).

The VPs’ behavior refers to the run-time information of
abstract communication among different IP cores. As commu-
nication is performed using the transaction concept, describing
the TLM VP’s behavior is connected to identify the behavior
of its transactions. This identification requires to access three
essential elements of transactions during the execution time,
which are flow, data, and type.

The transaction’s flow represents the order of TLM modules
taking part in the transaction’s lifetime (i.e., the period be-
tween transaction construction and destruction). For example,
the transaction’s flow of type T1 generated by Initiator_A
to access data in Memory_B is based on the sequence order
(1)→(2)→(3)→(2)→(1) where (1), (2) and (3) are Initiator_A,
LT_AT_BUS, and Memory_B, respectively. The information
that must be extracted to describe the transaction’s flow
properly is
• the sequence number of objects’ activation,
• the root and instance name, and the role of each module

taking part in the transaction lifetime,
• the name of the current function, its arguments’ values

and its return value (if available),
• the simulation time, and
• the transaction reference address.

The transaction data denotes the transaction’s attributes such
as data value, address, command, data length, and response
status. The transaction’s type refers to the transaction’s timing
model (LT or AT). In the case of the AT model, it also requires
to be specified which type of base protocol transactions is
used.

1) Debugger-based approach: As illustrated in Fig. 2, the
core idea of the proposed approach to extract the structure and
simulation behavior of a given SystemC-based VP consists of
two main phases. First, the static information of the compiled
model is retrieved by analyzing its debug symbols to achieve
two goals:
• identifying all components and their attributes and mem-

ber functions which are required to describe the structure
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Fig. 3: Overview of the Compiler-based approach.

of the model, and
• automatically generating a set of GDB instructions tai-

lored to be used in the next step to extract the model’s
structure (dynamic data) and trace its behavior.

Second, the model is executed under the control of GDB using
the previously generated instructions. The model’s structure is
retrieved when the execution reaches the objects for which
the corresponding instructions to extract their information
were generated. The execution of the model is paused at
certain events (such as function calls) to record the run-time
information. Due to the lack of space, we refer the reader
to [21], [22] for the details of the approach.

2) Compiler-based approach: Fig. 3 provides an overview
of the proposed approach consisting of two main phases.
First, analyzing the Abstract Syntax Tree (AST) of a given
VP to extract the static information of the model which is
required to describe the VP’s structure. Second, generating
an instrumented version of the VP’s source code using the
extracted static information from the previous phase to retrieve
the run-time information (i.e., behavior). This is performed by
automatically compiling the instrumented source code with a
standard C++ compiler (e.g., GCC or Clang) and executing it
to log the run-time information. We refer the reader to [23]
for the details of the approach.

B. Analysis
The generated run-time log file from the previous phase

contains unordered information about the VPs’ behavior. As
the information is stored in the order of execution, transactions
overlap in this log file (as process or function calls related to a
particular task may be executed at different points in time). To
present the behavior of each particular transaction (or value of
a variable), this large set of data must be separated into sets
that each refers to a single transaction (or variable). Thus, the
goal of this section is to propose a post-execution analysis
of the extracted run-time data to generate an intermediate
representation of the VP’s simulation behavior. This translation
is performed as a transaction lifetime and access path.

1) Transaction Lifetime: The first step of this analysis
is to describe each extracted transaction based on its flow,
data, and type within its lifetime. This requires to isolate for
every single transaction its corresponding information from
other transactions. In order to trace a single transaction in the
Run-time log file, transactions are separated based on some
unique elements. The key element for this isolation is the
transaction reference address. We take advantage of the TLM-
2.0 rule stated in [3] – a transaction object is passed as a
function argument to a method implementing one of the given
communication interfaces (b-transport or nb-transport) with a
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reference address (call by reference). The reference address of
a transaction object remains constant from its creation until its
destruction (i.e., during its lifetime). Moreover, some attributes
of a transaction object (e.g., response status) as well as other
elements related to it (e.g., the value of the phase argument
on call to and return from the nb-transport function and the
return value of the function) are used to determine the start
and endpoint of the transaction.

As demonstrated in Fig. 4, the Dynamic Info Analyzer
module receives the Run-time log as an input. It extracts
the information of every single transaction to describe the
transaction’s lifetime. The transaction’s lifetime is stored in
the Trans lifetime file. This information is an accurate trace of
each transaction’s behavior, covering all changes in transaction
data that occurred during the execution of the model. Fig. 5
shows a part of the generated Trans lifetime of the LT_AT_BUS
VP. It includes five sequences (timing steps), illustrating the
transaction creation, manipulation by TLM modules and its
completion.

2) Transaction Access Path: The generated transaction
lifetime TL in the previous step provides designers with
detailed information about the VPs’ behavior. In this section,
we perform further analysis on the extracted transactions to
provide an abstract representation of the whole VPs’ behavior
called Access Path (AP). This empowers designers to know
the relation of different IP cores in a given system in a big-
picture view. A complete simulation behavior of a given VP
can be defined as a set of access paths SAP where each path
AP shows a connection between an initiator module IM and
a target module TM as below:
SAP = {APi | APi = {IM → TM :: (TID,TT ,Tadrs, cmd,TD)}, (1)
1 ≤ i ≤ nseq}

where IM and TM are initiator and target modules, respec-
tively. TT is the transaction type illustrating which timing
model (LT or AT) is used. Tadrs shows the address of the
transaction in the target module TM . cmd is the transaction
command attribute (e.g., read or write). TD is the total delay
of all sequences within the transaction lifetime. Finally, nseq
is the number of sequence in a transaction lifetime.

For example, the access path representation of the transac-
tion lifetime of the LT-AT_BUS VP (in Fig. 5) based on (1) is
as below.

AP = {Initiator_A : initA→ Memory_B : trgB :: (2)
(0x76ab561 ,T1 , 0x04 ,READ, 20 ns)}

SQ1 : ( [ I n i t i a t o r _ A , i n i t A , process_A , 40 ns , 0 x6e47f0 , i n i t i a t o r ] ,
[0 x76ab561 , 0x09 , READ, 4 , TLM_INCOMPLETE_RESPONSE, BEGIN_REQ , 5 ns , NULL] )

SQ2 : ( [ LT_AT_BUS , bus_0 , n b _ t r a n s p o r t _ f w , 45 ns , 0 x6e47f0 , i n t e r c o n n e c t ] ,
[0 x76ab561 , 0x04 , READ, 4 , TLM_INCOMPLETE_RESPONSE, BEGIN_REQ , 5 ns , NULL] )

SQ3 : ( [ Memory_B , t rgB , n b _ t r a n s p o r t _ f w , 50 ns , 0 x6e47f0 , t a r g e t ] ,
[0 x76ab561 , 0x04 , READ, 4 , TLM_OK_RESPONSE, BEGIN_REQ , 5 ns , TLM_COMPLETED] )

SQ4 : ( [ LT_AT_BUS , bus_0 , n b _ t r a n s p o r t _ f w , 55 ns , 0 x6e47f0 , i n t e r c o n n e c t ] ,
[0 x76ab561 , 0x04 , READ, 4 , TLM_OK_RESPONSE, BEGIN_REQ , 5 ns , TLM_COMPLETED] )

SQ5 : ( [ I n i t i a t o r _ A , i n i t A , process_A , 60 ns , 0 x6e47f0 , i n i t i a t o r ] ,
[0 x76ab561 , 0x09 , READ, 4 , TLM_OK_RESPONSE, BEGIN_REQ , 5 ns , NULL] )

Fig. 5: A single transaction lifetime of the LT-AT_BUS VP.

It shows that the instance initA of initiator module Initiator_A
created a transaction with reference address 0x6e47f0 to read
from memory address 0x04 of the instance trgB of target
module Memory_B. It also indicates that the overall delay for
this transaction is 20 ns as its first (SQ1 ) and last (SQ5 )
sequences are started at simulation time 40 ns and 60 ns ,
respectively.

C. Visualization
After analyzing the extracted run-time information and

generating a set of IR models of the VPs’ behavior, the next
step is to visualize this information in such a way that helps
designers in understanding the VPs’ intricacies.

1) Transaction Classification: Since it is possible that many
of the extracted transactions in Trans lifetime have the same
flow and type (only their data is different), a further analysis
step is required to only visualize those which present a unique
behavior. This effectively reduces the number of generated
UML diagrams, allowing designers to quickly understand the
behavior of a given VP-based embedded system.

The transactions’ classification is performed in two levels
as the following.
• First, based on the transactions’ flow, providing designers

with an abstract view of IPs communication in the VP.
This is done by distinguishing transactions based on
different communication patterns.

• Second, based on transactions’ type providing designers
with an accurate analysis of the transactions’ type that
different TLM modules used to communicate.

For example, Table. II shows the transaction classification
results of the LT_AT_BUS VP. It illustrates that the VP has
six different communication flows, four different transaction
types and overall seven unique patterns of flow and type.

2) VP’s Structure: The preferred format to present the VPs’
structure depends on the purpose of designers or the back-end
tools which may use the results for further analysis. As we
want to have a generic presentation of this information, the
extracted information from the model is stored in an XML
document. The root element of the generated XML document

TABLE II: Transaction classification of the LT_AT_BUS VP.
Number Flow Modules Transaction Type

1 F1 Initiator_A→LT_AT_BUS→Memory_A T0
2 F1 Initiator_A→LT_AT_BUS→Memory_A T4
3 F2 Initiator_A→LT_AT_BUS→Memory_B T1
4 F3 Initiator_A→LT_AT_BUS→Memory_C T2
5 F4 Initiator_B→LT_AT_BUS→Memory_A T3
6 F5 Initiator_B→LT_AT_BUS→Memory_B T3
7 F6 Initiator_B→LT_AT_BUS→Memory_C T3
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Fig. 6: UML diagram of a single LT transaction.

is the name of the VP model. The structure of the VP is
hierarchical itself, with the first child elements being modules
and global functions. The child elements of these are their
respective member functions and attributes.

3) VP’s Behavior: To reduce the complexity of understand-
ing the extracted information related to the VP’s behavior, the
UML diagram is generated by the UML Generator module
(Fig. 4) for a transaction that has a unique flow and type.
The generated UML diagram is a message sequence chart
introduced by the OSCI TLM-2.0 reference manual in [3] but
it provides more detailed information. It describes the trans-
action flow among modules’ communication for every single
transaction within the design. It also includes the transaction
data (i.e., the last changes of the transaction data and not all
temporary changes) which is passed among modules during
their interactions. In particular, the UML diagram includes a
set of sequence numbers indicating both transaction flow and
transaction data within its lifetime.

Consider the LT_AT_BUS VP, due to the classification
analysis illustrated in Table II, the VP includes seven unique
transactions (flow and type). Thus, seven UML diagrams are
generated to present the simulation behavior of the VP. For
example, Fig.6 illustrates the UML diagram of an extracted
transaction of type T0 generated by the initiator module Initia-
tor_A. The black shapes present the root and instance name of
modules within the design. The role (type) of each module is
shown on top of the module’s name. The information on each
arrow demonstrates the interaction between two modules that
are drawn from the caller to the callee w.r.t the simulation time.
In particular, for a call from an instance of a TLM module, it
presents the number of the sequence, the name of the caller
function and timing annotation. Moreover, the generated UML
model consists of the detailed transaction data. The box under
each arrow shows the transaction’s attributes. The white boxes
illustrate a local transaction object while the blue boxes show
a transaction object reached the callee through a function call.

IV. EXPERIMENTAL RESULTS

The proposed methodology was applied to several standard
VPs provided by Doulos [20] and to the real-world LEON3-
based VP SoCRocket [24]. Table III shows the extracted

data including number of transactions (#Trans), unique flows
(#UFlow), unique types (#UType) and number of generated
UML diagrams (#UML). The amount of extracted data for both
debugger-based and compiler-based approaches is the same,
meaning both approaches have the same accuracy. Table IV
illustrates the required analysis time for both approaches in
detail and compares it with the pure execution and compilation
time (column CET) of each VP. While the execution time
for all phases of the compiler-based approach is in the same
boundary with CET, the required execution time for debugger-
based approach might be large when the VP complexity in-
creases. The major time-consuming part of the debugger-based
approach is the second phase where the program is executed
under control of GDB and the execution has to be halted
repeatedly to trace transactions during simulation time. The
difference of the analysis and visualization time (column VAT)
between both approaches comes from the different amount of
information that is extracted by each of them in the first phase
and stored in the Run-time Log file. As the debugger-based
approach extracts information by the precision of instruction
execution, the generated Run-time Log file is larger than once
generated by the compiler-based approach. Hence, it needs a
larger analysis time.

The debugger-based approach requires only the executable
version of the VP, thus the original source code and workflow
(e.g., SystemC library or compiler) stay untouched. The main
problem with intrusive approaches that rely on altering e.g., the
SystemC library, interfaces, simulation kernel, or compiler is
that these modifications may cause an issue for the application
of several approaches in parallel, future updates or restrictive
environments. Moreover, they mostly reduce the degree of
automation as they require manual effort by designers. In the
case of third-party IPs or legacy models where the source code
may not be available at all, this approach is the only applicable
solution. On the other hand, the compiler-based approach is
very fast and scales well with an arbitrary complexity of
VPs. However, it requires the availability of the VP’s original
source code. Since the proposed approach modifies neither
the SystemC library nor the SystemC simulation kernel nor
compiler, any results obtained using the approach are identical
to the reference results in terms of VP’s timing behavior and
its functionality.

Overall, due to the designer’s concerns and requirements,
they have this option to choose either the debugger-based or
the compiler-based approach. The retrieved information (IR
models) using both proposed approaches can be effectively
utilized for ESL designs space exploration [25]–[27], verifi-
cation [28]–[30] and security validation [31]. This also pays
off other advantages of the proposed design understanding
methodology and proof of its usefulness in enhancing the
aforementioned tasks in the design process.

V. CONCLUSION

In this paper, we presented a comprehensive automated
design understanding methodology for SystemC-based VPs at
the ESL from two perspectives: debugger-based and compiler-
based approaches. The debugger-based approach provides de-
signers with a non-intrusive analysis solution that only requires
the executable model of VPs. The compiler-based approach



TABLE III: Experimental results related to the amount of extracted information for all SystemC TLM-2.0 VPs

VP Model LoC #Comps TM #Trans Compiler-based Approach Debugger-based Approach
#UFlow #UType #UML #UFlow #UType #UML

LT-example1 175 2 LT 160 1 1 1 1 1 1
Routing-model1 456 6 LT 100 4 1 4 4 1 4
Example-41 547 2 AT 348 1 4 4 1 4 4
Example-51 650 7 LT 69 7 1 7 7 1 7
Example-61 713 9 AT 245 16 2 16 16 2 16
AT-example1 3,410 19 AT 49 12 9 14 12 9 14
Locking-two1 4,690 23 LT/AT 371 14 10 16 14 10 16
SoCRocket2 50,000 20 LT/AT 1,000 19 8 21 19 8 21

1 provided by [20] 2 provided by [24] LoC: Lines of Code TM: Timing Model #Trans: number of extracted Transaction #UFlow: Unique transaction Flow #UType: Unique transaction Type #UML: number of generated UML diagram

TABLE IV: Experimental results related to the required analysis time for all SystemC TLM-2.0 VPs

VP Model LoC #Comps TM #Trans Compiler-based Approach (s) Debugger-based Approach (s) CET (s)
Phase1 Phase2 AVT Total Phase1 Phase2 AVT Total Cmp Exe Total

LT-example1 175 2 LT 160 1.12 0.11 0.39 1.62 1.93 61.18 1.66 64.77 1.02 0.10 1.12
Routing-model1 456 6 LT 100 2.11 0.12 0.31 2.54 2.76 107.29 2.81 112.86 1.42 0.01 1.53
Example-41 547 2 AT 348 2.17 0.21 0.52 2.90 5.81 1,761.08 16.63 1,783.52 1.33 0.18 1.51
Example-51 650 7 LT 69 3.21 0.10 0.19 3.50 6.11 778.92 2.69 787.72 2.01 0.09 2.09
Example-61 713 9 AT 245 4.79 0.41 0.63 5.83 7.59 1,013.72 11.09 1,032.4 2.02 0.33 2.55
AT-example1 3,410 19 AT 49 19.05 0.24 0.39 19.68 22.41 791.07 4.96 818.44 20.03 0.34 17.19
Locking-two1 4,690 23 LT/AT 371 25.62 0.79 0.76 27.17 29.08 1,639.83 17.24 1,686.15 22.32 0.66 22.98
SoCRocket2 50,000 20 LT/AT 1,000 52.82 1.21 1.63 55.66 146.39 7,446.19 29.12 7,621.70 26.72 1.08 27.80

1 provided by [20] 2 provided by [24] LoC: Lines of Code TM: Timing Model #Trans: number of Transaction AVT: Analysis and Visualization Time CET: Compilation and Execution Time Cmp: Compilation Time Exe: Execution Time

introduces a fast analysis technique that scales very well with
an arbitrary complexity of VPs or their running software. The
proposed methodology is efficient, automated and significantly
advance the current state-of-the-art of the VP analysis at
the ESL and can be used in conjunction with an existing
framework or any SystemC setup.
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