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Abstract—In this paper, for the first time, we present a method-
ology that combines Retrieval Augmented Generation (RAG) with
Large Language Models (LLM) to help with the identification
and patching of Verilog Hardware Descriptive Language (HDL). If
the methodology fails to patch a bug, an iterative and systematic
bug patching closure technique is used. Additionally, we classify
different types of bugs that are found in hardware and assess
the performance of our approach for identifying and patching
of bugs from each category. We tested our approach on three
different OpenTitan designs and found out that our methodology
can patch all bugs as long as they are not constant values.

Index Terms—Large Language Models, LLMs, Formal verifi-
cation, Retrieval Augmented Generation, RAG

I. INTRODUCTION

In an era where technology is advancing at an unprece-
dented pace, we find ourselves surrounded by a multitude of
devices integral to our daily routines. These devices, growing
ever more complex, are tasked with performing increasingly
challenging operations. This surge in hardware complexity
not only underscores the importance of these devices in our
lives but also highlights a crucial aspect: the need for bug-
free hardware. As a result, it is imperative that they operate
flawlessly since the errors in these systems can jeopardize
security, lead to financial setbacks, and undermine user trust.
Ensuring the reliability of complex hardware requires com-
prehensive verification and testing. However, conventional
methods like simulation-based and formal verification [1], [2]
often struggle to match the escalating scale and complexity of
modern designs. This widening gap leaves systems vulnerable
to potentially disruptive and costly malfunctions.

Current advancements in Artificial Intelligence (AI) have
lead to the advent of Large Language Models (LLMs) that are
capable of performing tasks comparable to humans that were
previously considered impossible. Their natural language pro-
cessing properties have matured to the point that these LLMs
are capable of assisting humans in various interpretation and
generation tasks. They excel in interpreting complex hardware
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specifications and converting them into precise formal rep-
resentations, such as invariants and formal model generation
[3], SystemVerilog Assertions (SVA) [4]–[6], System-on-Chip
(SOC) security properties [7]–[9], proof generation [10], and
stimuli generation [11]. Recently, the application of LLMs has
expanded to include debugging structural bugs in Hardware
Description Language (HDL) via Retrieval Augmented Gener-
ation (RAG) techniques [12]. RAG, essential for compensating
the limited context window sizes of LLMs, involves fetching
information from external sources to supplement the LLM’s
knowledge base. This process enhances the LLM’s capabilities
in data structuring, context provision, and elevating response
quality. While this advancement marks significant progress in
identifying and correcting structural bugs using LLMs, the
equally critical task of detecting and addressing functional
bugs has not yet been explored to the same extent.

In this paper, we present a novel methodology that utilizes
LLM and RAG to identify and patch Verilog HDL bugs. More
concretely, our methodology targets functional bugs instead of
structural bugs. The methodology comprises of three stages,
pre-processing, semantic search, and bug identification and
patching closure. With the help of RAG, in synergy with LLM,
we identify bugs within a given HDL code and use LLM
to patch the bugs systematically. If the bug is not patched
correctly, an iterative bug patching closure is initiated where
complex HDL expression is broken down into multiple smaller
expressions. Additionally, we categorize types of HDL bugs
to assess the strengths and weakness of LLM in the process of
identifying and patching. We present three case studies from
OpenTitan [13] to establish the usability and efficacy of our
approach. To summarize our contributions we:

• for the first time, to the best of our knowledge, present a
novel methodology to identify and patch HDL functional
bugs,

• implement the methodology using LangChain framework.
• test our methodology on three OpenTitan Intellectual

Properties (IPs) [13], i.e. an Always-on (AON) timer [14],
Universal Asynchronous Receiver Transmitter (UART),
and Entropy Distribution Network (EDN).

• explore the weakness and strengths of RAG coupled with
LLMs for patching different categories of bugs.

• propose a method to systematically guide LLMs to patch
code in case of failure in patching.979-8-3503-7608-1/24$31.00 ©2024 IEEE



II. METHODOLOGY USING RAG AND LLM

In this section, we explain how we perform bug identifi-
cation and patching using LLMs and RAG. Additionally, We
also explain the systematic process to patch a bug if LLM fails
to patch it initially. We also present how we classify bugs and
perform assessment of the performance of LLM for patching
different types of bugs.
A. Bug Identification and Patching

The overview of our methodology on HDL functional bugs
identification and patching is shown in Fig. 1. The methodol-
ogy can be divided into three main stages, 1) pre-processing,
2) semantic search, and 3) bug identification and patching
closure.

1) Stage-1: Pre-processing: The first stage is called “pre-
processing”, where a vector store (database) is created, which
is essential for managing unstructured data. It starts with load-
ing all the contents of the specification file and then splitting
them into smaller chunks for further processing. The smaller
chunk are important due to limitations on context window of
the LLMs and also to keep LLMs focused on the problem at
hand. Afterwards, text embedding model is used to convert
text to vector (see Section III-A). This involves embedding
the data into vectors for storage. It enables semantic search
for the incoming queries made to the vector store. In semantic
search, the query would be analyzed not just for direct matches
in the vector store, but also for vectors that are contextually
or semantically related. The result is a more intelligent and
intuitive search process that can find information that is more
closely aligned with the actual intent of the query, even if the
exact words used in the query do not directly match the stored
data.

2) Stage-2: Semantic Search: In the second stage, the bug
identification and patching of HDL code is performed in the
context of the given specifications (stage 1). Here the provided
HDL code is split into single lines to leverage RAG. For each
line of the code, the vector store (database) is queried and
the result with the highest semantic score is sent to the LLM
for analysis. The LLM gives 3 scenarios as output, 1) correct
identification and correct patching, 2) correct identification and
incorrect patching, and 3) incorrect identification and incorrect
patching. If the LLM report absence of bugs in a line, we
proceed to fetch the next line. In case the LLM identifies a
bug in the HDL code w.r.t. the given semantically retrieved
specification, it creates a patch following the same HDL code
pattern. Once the traversal of the complete HDL code is
completed, test cases are run on the patched file. If the test
cases pass, the code is patched successfully (scenario 1), in
case any test case fails, either the patch is incorrect (scenario
2) or the identification is also wrong (scenario 3). In scenario
2 and scenario 3, we proceed to stage three. Please note, we
assume that the test cases are of high quality and the correct
patch will pass the test case (which was initially failing on
buggy code).

3) Stage-3: Bug Identification and Patching Closure: When
the LLM fails to identify the bug correctly, we populate a new

vector store (database) of specifications with a bigger chunk
size. For correct identification of the bug, on the HDL code
side we systematically increase the lines of HDL code in the
query for RAG (one line before the original query and one
line after). This enables the LLM to retrieve better context for
identifying the bug. If the test cases still fail, more lines are
added, maximum of up to 3 lines before and 3 lines after the
original query. Afterwards, the LLM is requested to simplify
the query into sub-expressions to the atomic level where one
line of code represents a sub-expression with only one operator
(see Fig. 6). This enables LLMs to focus on a smaller and
simplified problem.

In the next section we discuss the case-studies tested with
our proposed methodology.

III. EXPERIMENTAL EVALUATION

A. Setup and Preliminaries

In this section, we present our experimental evaluation
comprising of 3 case-studies from OpenTitan [13], Always-on
(AON) timer [14], Entropy Distribution Network (EDN) [15],
and Universal Asynchronous Receiver-Transmitter (UART)
[16]. Additionally, we also classify the bugs which were
not easily identified or patched by the LLMs. The proposed
methodology is implemented in Python using LangChain
Framework [17]. In our case, we use the all-MiniLM-L6-v2
model [18] for the embeddings as the model is on par with
performance of the OpenAI’s embedding model and is able to
run on the CPU. Once the Embedding is completed, the vector
that is generated is saved in the vector store (database). In
our work we use the DocArrayInMemorySearch [19] database
from LangChain framework for storing the vectors. For each
case-study, 10 mutations were created using the standard
mutation operators as detailed in Table I [20], like replacing
arithmetic operators and boolean relations, etc. As discussed in
Section II, the chunk-size (split size) is a controlled parameter
for both the HDL code and the specifications. We performed
experiments using different chunk sizes for specifications,
i.e., 500 characters, 1000 characters, and using Markdown
headings as delimiter (#, ##, ###). The corresponding results
are summarized in Table II. First column lists the case-
studies, second column lists how many mutants out of 10 were
identified. The third and fourth columns show how many of the
identified bugs were patched with chunk-size of 500, 1000 and
Markdown delimiters, respectively. The last column shows the
number was bugs which remained unidentified/unpatched even
with extra retrieved information. They were later identified and
patched using RAG in combination with the proposed bug
closure technique.

In the following sections, we first discuss the bugs clas-
sification and LLM performance assessment. Afterwards, we
discuss each case-study with concrete examples.
B. Bug Classification and LLM Performance Assessment

To asses the performance of LLMs w.r.t. to different types
of bugs present in HDL code, we first classify the types of
bugs. Table I shows the types of bugs (mutations) that we have
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Fig. 1. Overview - Bug identification and patching with LLMs and RAG

TABLE I
TYPES OF MUTATIONS

Type Detail Total

Identified &
Patched

RAG RAG +
Bug Closure

Arithmetic Interchange Binary/ Unary + and - 3 2 3

Relations Interchange == and != 6 3 6Interchange <, ≤, >,≥

Boolean
Interchange ! and ∼

14 8 14Omit ∼ and !
Interchange &&, ||, &, |, xnor and xor

Assignments Interchange = and <= 2 0 2Blocking and non blocking assignments.

Constants Change integer constant c with 0, 1, c+1 or c-1 5 0 0
Change bit vector constant with 0⃗ and 1⃗

TABLE II
EFFECTS OF CHUNK-SIZES ON BUGS IDENTIFICATION AND PATCHING

Case Study Identified chunk-size = 500 chunk-size = 1000∗ Unpatched∗∗
Patched Patched

AON Timer 9 5 1 3
UART 8 7 0 1
EDN 8 1 3 4
chunk-size: the size of retrieved texts for the specifications
∗ Specification splitting criteria based on Markdown delimiter (#, ##, ###)
∗∗ Note: These bugs were identified and patched using RAG+Bug closure

classified based on what they represent. Column 3 shows the
total number of bugs in HDL code from a certain category.
Column 4 titled RAG shows how man bugs were correctly
identified and patched by the LLM using only RAG. The last
column lists down the bugs which our methodology was able
to identify and patch after the iterative bug closure technique.
For each design that we consider, we try to introduce at least
one mutation from each type. We observed that LLM could
patch all bugs when prompted in a systematic way except
for bugs involving constant values. This could be due to the
constant values not explicitly mentioned in the specifications.

C. Case Study: Always-On Timer

In this case study we consider an AON timer with two
32-bit timers. One timer is a wakeup-timer and the other is
watchdog-timer. The wakeup-timer has a 12-bit pre-scaler that
enables long timeouts. The watchdog-timer consist of two
threshold, i.e. bark (generates an interrupt) and bite (resets
the core). Out of 10 mutants, our methodology was able
to identify 9 mutants correctly and 1 mutant was wrongly
identified. From the 9 correctly identified mutants, 5 were
correctly patched with smaller chunk-size of 500 and 1 was
correctly patched with a bigger chunk-size of 1000. Fig. 2
shows the case where the bug (removal of ∼ operator from

assign wdog_incr = reg2hw_i.wdog_ctrl.enable.q &
                      lc_ctrl_pkg::lc_tx_test_false_strict(lc_escalate_en_i[2]) &
                      (sleep_mode_i & reg2hw_i.wdog_ctrl.pause_in_sleep.q);

Issue:
The issue lies in the expression (sleep_mode_i & 
reg2hw_i.wdog_ctrl.pause_in_sleep.q). This logic incorrectly increments the 
watchdog timer (wdog_incr) when the system is in sleep mode (sleep_mode_i) 
and the pause in sleep mode is enabled (reg2hw_i.wdog_ctrl.pause_in_sleep.q).

Proposed Patch:
We need to modify this logic so that wdog_incr remains 0 (does not increment) 
when the system is in sleep mode and the pause in sleep mode is enabled. Here's 
the modified code:

assign wdog_incr = reg2hw_i.wdog_ctrl.enable.q &
                   lc_ctrl_pkg::lc_tx_test_false_strict(lc_escalate_en_i[2]) &
                   (!sleep_mode_i | !reg2hw_i.wdog_ctrl.pause_in_sleep.q);

Source Code Query:

LLM Response:

Fig. 2. AON Timer - Query and LLM response with correct bug identification
and patch.

assign wdog_intr_o = wdog_incr &
             (reg2hw_i.wdog_count.q <= reg2hw_i.wdog_bark_thold.q);

Potential Issues:
In the description, it's mentioned that the interrupt should be generated when the 
watchdog count exceeds the first threshold (known as the watchdog bark). 
Additionally, the interrupt should be generated if the system is not in a low-power 
mode. However, the given Verilog code doesn't seem to check whether the system 
is in a low-power mode before generating the interrupt.
Proposed Patch:
We need to modify this logic so that wdog_incr remains 0 (does not increment) 
when the system is in sleep mode and the pause in sleep mode is enabled. Here's 
the modified code:

assign wdog_intr_o = wdog_incr & (reg2hw_i.wdog_count.q >= 
reg2hw_i.wdog_bark_thold.q) & ~low_power_mode;

Source Code Query:

LLM Response:

assign wdog_intr_o = wdog_incr &
             (reg2hw_i.wdog_count.q >= reg2hw_i.wdog_bark_thold.q);

Actual Patch:

Fig. 3. AON Timer - Query and LLM response with correct bug identification
and patch.

(sleep_mode_i&reg2hw_i.wdog_ctrl.pause_in_sleep.q);)
was correctly identified and correctly patched (scenario 1).

Fig. 3 shows the case where the bug was incorrectly iden-
tified by the LLM where it focused on a discrepancy between
the retrieved specification chunk and the given query (scenario
3). The combination of RAG and bug closure technique was
able to correctly identify and patch the remaining bugs.



assign cs_cmd_handshake = cs_cmd_req_vld_out_q || send_cs_cmd_gated;

Potential Issues:
A potential issue could be that the current logic doesn't seem to account for specific 
modes of operation (like auto request mode or boot-time request mode), nor does it 
directly relate to the handling of data transfer sizes, back pressure, or FIFO management as 
described. However, without specific information on how cs_cmd_req_vld_out_q and 
send_cs_cmd_gated are generated or what exact role cs_cmd_handshake plays in the 
overall operation, it's challenging to pinpoint the exact issue.
Proposed Patch:
If cs_cmd_handshake is meant to initiate a command transaction, it might need to 
consider the mode of operation (auto request or boot-time request). It may also need to 
account for whether the CSRNG block is ready to accept commands or whether there's 
back pressure.

assign cs_cmd_handshake = ((cs_cmd_req_vld_out_q || send_cs_cmd_gated) && 
                          (mode_auto_request || mode_boot_request) && csrng_ready);

Source Code Query:

LLM Response:

assign cs_cmd_handshake = cs_cmd_req_vld_out_q && send_cs_cmd_gated;
Actual Patch:

Fig. 4. EDN Core - Query and LLM response with incorrect bug identification
and wrong patch.

assign generate_cmd_load = reg2hw.generate_cmd.qe;
assign generate_cmd_bus = reg2hw.generate_cmd.q;
assign cs_cmd_handshake = cs_cmd_req_vld_out_q || send_cs_cmd_gated; //  mutation
assign gencmd_handshake = cs_cmd_req_vld_out_q && send_gencmd_gated;
assign rescmd_handshake = cs_cmd_req_vld_out_q && send_rescmd_gated;

Potential Issues:
The issue in the Verilog code may lie in the way handshake signals are managed, 
particularly for cs_cmd_handshake. The logic seems overly permissive, which might not be 
ideal in scenarios requiring stricter synchronization or confirmation before proceeding with 
command generation or data transfer.
Proposed Patch:
A potential patch could involve refining the handshake conditions to ensure they align with 
the operational requirements, particularly for sensitive operations involving CSRNG 
commands. Here’s a suggested patch:

// Refine handshake conditions for more controlled command generation
assign cs_cmd_handshake = cs_cmd_req_vld_out_q && send_cs_cmd_gated;

Source Code Query:

LLM Response:

assign cs_cmd_handshake = cs_cmd_req_vld_out_q && send_cs_cmd_gated;
Actual Patch:

Fig. 5. EDN Core - Query and LLM response with correct bug identification
and correct patch.

D. Case Study: Entropy Distribution Network

The second module in case studies is a EDN block that
provides hardware and software interfaces to another mod-
ule. This module works as a gasket between peripherals
and the Cryptographically Secure Random Number Generator
(CSRNG) module performing tasks like datasize translation
between the two modules. Out of 10 mutants, our methodology
was able to identify 8 mutants correctly and 2 mutants were
wrongly identified. From the 8 correctly identified mutants,
1 was correctly patched with smaller chunk-size of 500 and
3 were correctly identified and patched with a bigger chunk-
size of 1000. Fig. 4 shows the case when the LLM incorrectly
identified the bug and consequently, proposed a wrong patch.
As proposed in Section II-A3, we systematically increment the
lines of code to be sent as query to retrieve more information.
The result with correct patch is shown in Fig. 5. Fig. 6
shows the case when the patch fails the test cases and our
methodology starts the breaking down of expression into sub-
expressions as discussed in Section II-A3. The combination of
RAG and bug closure technique was able to correctly identify
and patch the remaining bugs.

assign cs_cmd_req_vld_d = (!edn_enable_fo[CsrngCmdReqValid]) ? '0 : 
   cs_cmd_handshake ? '0 : (sw_cmd_req_load || boot_wr_ins_cmd 

  || boot_wr_gen_cmd || boot_wr_uni_cmd) ? 1'b1 : cs_cmd_req_vld_q;

Breaking Down the Code:
Sub-expression 3: (sw_cmd_req_load && boot_wr_ins_cmd || boot_wr_gen_cmd || boot_wr_uni_cmd) ? 
1’b1
• sw_cmd_req_load && boot_wr_ins_cmd: Both software command request load and boot write 

instantiate command need to be true.
Software Influence in Boot-time Mode:
The use of sw_cmd_req_load in determining boot_wr_ins_cmd goes against the description that the 
boot-time request mode is fully hardware-controlled with no software intervention.
Breaking Down Sub-expression 3:
Sub-expression 3a: sw_cmd_req_load && boot_wr_ins_cmd
This condition checks if both a software command request load (sw_cmd_req_load) and a boot write 
instantiate command (boot_wr_ins_cmd) are true simultaneously.
Proposed Patch:
To correct the issue, the AND operator should be changed to an OR operator (||). This way, the condition 
will be true if either sw_cmd_req_load or boot_wr_ins_cmd is true, not necessarily both.
(sw_cmd_req_load || boot_wr_ins_cmd || boot_wr_gen_cmd || boot_wr_uni_cmd) ? 1'b1

assign cs_cmd_req_vld_d = (!edn_enable_fo[CsrngCmdReqValid]) ? '0 : 
   cs_cmd_handshake ? '0 : (sw_cmd_req_load && boot_wr_ins_cmd 

  || boot_wr_gen_cmd || boot_wr_uni_cmd) ? 1'b1 : cs_cmd_req_vld_q;

Source Code Query:

LLM Response:

Actual Patch:

Fig. 6. EDN Core - Query and LLM response with breaking down and patch.

E. Case Study: UART hardware

The third case study revolves around a full duplex UART.
The IP allows a programmable baudrate and only the transmit
and receive lines represent inputs and outputs of the module
and no clock for synchronization provided as Inputs/Outputs.
Out of 10 mutants, our methodology was able to identify 8
mutants correctly and 2 mutants were wrongly identified. From
the 8 correctly identified mutants, 7 were correctly patched
with RAG (chunk-size of 500) and increasing only chunk-
size had no effect on bug identification. Fig. 7 shows the
example of correct bug identification but wrong patch. The
combination of RAG and bug closure technique was able to
correctly identify and patch the remaining bugs.

sreg_d    = {1'b1, (parity_enable ? wr_parity : 1'b0), wr_data, 1'b0};

Potential Issues:
Parity Bit Assignment: The line sreg_d = {1'b1, (parity_enable ? wr_parity : 1'b0), 
wr_data, 1'b0}; sets the parity bit to 0 if parity is not enabled, which is 
unconventional. Typically, the absence of parity means no parity bit should be 
added, rather than adding a 0.
Proposed Patch:
To address this issue, let's revise the code to correctly handle the parity:

sreg_d    = {1'b1, (parity_enable ? wr_parity : wr_data[7]), wr_data, 1'b0};

The parity bit logic now correctly includes or excludes the parity bit based on 
parity_enable. When parity is not used, it includes the MSB of wr_data instead of a 
0.

Source Code Query:

LLM Response:

sreg_d    = {1'b1, (parity_enable ? wr_parity : 1'b1), wr_data, 1'b0};
Actual Patch:

Fig. 7. UART - Query and LLM response with correct bug identification and
wrong patch.

IV. CONCLUSION

In this paper, we presented a methodology to identify and
patch functional bugs in HDL code with the help of RAG
and LLMs. We classify the types of bugs that are usually
present in the hardware codes and assess the performance of
LLMs in identifying and patching each type of bug. We also
explore modifications within the methodology to help LLM
successfully patch a bug if it fails during the original approach.
Our tests show that with bug closure, LLMs are capable of
successfully patching most bug types.
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