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Abstract—The concept of testability preserving or even testa-
bility improving circuit transformations has been studied inten-
sively. It has been demonstrated for various fault models, that
circuits can be optimized with respect to area and/or delay, while
considering testability at the same time. Recently, Polynomial
Formal Verification (PFV) has been introduced, where upper
bounds on run time and space complexity of the algorithms
– ensuring 100% correctness – are given. While the testability
aspects were properties of the underlying circuits, here we
propose a similar approach in the context of verification algo-
rithms: verification preserving transformations and verification
improving transformations. This is discussed for PFV, while the
concept can be considered for formal verification techniques in
general and also for simulation-based approaches.

Index Terms—circuit design, correctness, verification, test,
formal methods, BDD

I. INTRODUCTION

Test and verification are essential steps for ensuring the
correct functional behavior of fabricated circuits and systems.
In the testing field, approaches for Design for Testability (DfT)
have been studied intensively and resulted in formulation of
standards, like JTAG or IJTAG (see e.g. [1]). Furthermore, the
research in the early 90s showed that testability can already be
considered during the (logic) synthesis of a circuit. It can be
shown that there exist Testability Preserving Transformations
(TPT) that ensure that an optimization of the circuit will not
decrease the testability. This has been investigated for various
fault models, like stuck-at or path-delay (see [2]–[7]).

In the domain of verification, similar concepts are not es-
tablished yet. While simulation and emulation are still widely
used in practice, only Formal Verification can ensure 100%
correctness [8]. But the underlying proof techniques are known
to be very cost intensive with regards to runtime and space
requirement.

Recently, Polynomial Formal Verification (PFV) [9], [10]
has been introduced, focusing on providing efficient upper
bounds on the verification algorithms. It has been shown
for various types of circuits that algorithms with polynomial
worst-case behavior can be developed. As suggested in [11],
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making use of the similarities of testing and verification, based
on the idea of TPT, we look at the following research question:

Can we design Verification Preserving Transforma-
tions (VPTs) or even Verification Improving Trans-
formations (VITs)?

In the following, we discuss VPT and VIT in the context
of PFV, but the approach can directly be generalized to
simulation-based approaches where the improvement can be
measured, e.g. for given testbenches.

The paper is structured as follows: In Section II, the core
idea of PFV is discussed and examples are provided in Section
III. In Section IV, we summarize the main findings and discuss
directions for future work.

II. POLYNOMIAL FORMAL VERIFICATION

In Polynomial Formal Verification (PFV) [9], [10] a proof
engine is provided for a given circuit or system that allows
a complete verification in polynomial time and space. It is
important to notice that this does not only hold for the final
result, but for the complete verification run. E.g. it has been
proven in [9] that based on BDDs, various adder architectures,
like carry ripple or conditional sum, can be efficiently verified.

Once such a result is provided, the question arises whether
the circuit can also be optimized with respect to area and delay
while keeping the efficiency of the verification run.

Remark II.1. While in the testing domain TPT are a property
of the circuit alone, for VPT and VIP also the verification
algorithm itself is considered.

III. APPLICATION

In this section, we show two examples that demonstrate the
effect of the circuit structure on the verification process.

A. SCA-based Verification of Multipliers

Multiplier circuits are known to be hard to verify based on
bit-level solvers, like BDDs or SAT, while techniques based on
Symbolic Computer Algebra (SCA) can handle these circuits
efficiently (see [12]).978-1-6654-7763-5/25/$31.00 ©2025 IEEE



Fig. 1: Two-bit multiplier circuit

Fig. 2: Reduction of SP

In the following, a deeper insight on how the algorithms
work is provided: In Figure 1, the gate-level netlist of a two-
bit multiplier is given. The Specification Polynomial (SP) is
then given by:

Z−A ·B = (8Z3+4Z2+2Z1+Z0)− (2a1+a0) · (2b1+ b0)

The SP and the gate-level netlist are equivalent, iff the
remainder becomes 0 when dividing SP by gate polynomials.
The core SCA algorithm consists of backward rewriting and
iterative substitution in reverse topological order. The process
is sketched in Figure 2. After the substitution of gates g1 and
g2 the term 8w1w4 appears in positive and negative form and
thus, can be removed. If all gates are substituted, in case of a
correct circuit, the result is 0. Of course, the substitution order
has a strong influence on the performance of the algorithm
(see also [13]). In the example, if instead of g2 an other
gate had been chosen, like e.g. g8, the immediate removal
of the term 8w1w4 would not have been possible. Thus, the
algorithm would have to store the term resulting in larger
memory requirements.

Once a polynomial substitution sequence has been proven
for a circuit, all transformations of the circuit have to show
that the early cancellation of terms remains.

B. BDD-Circuits

Since each Boolean function can be represented by a BDD,
it is straightforward to map a BDD to a circuit by substituting
each node by a multiplexer [14]. Furthermore, the depth

can be reduced to derive circuits of logarithmic depth [15].
In these cases, the polynomial sizes are proven for internal
signals, while some of the intermediate computations can only
be estimated by the known complexity of the ite-operator
[16]. In cases where the number of calls can be reduced by
local transformations, this directly has a positive effect on the
bounds for the verification process:

a · b+ a · c = a · (b+ c)

In this case, instead of three synthesis operations, only two
are needed, which will reduce the worst-case complexity.

IV. CONCLUSION AND FUTURE DIRECTIONS

Following the technique of TPTs known from the testing
domain, we introduced VPTs and VITs. This has been demon-
strated on two FV scenarios. Future work is to study circuit
transformations and their effect on verification techniques:
formal approaches, but also simulation-based techniques.
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