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Abstract. Evolutionary algorithms are a well-known tool for optimising
problems that are hard to solve analytically. They mirror the evolution-
ary approach of recombination and mutation as well as a selection pro-
cess according to the fitness of an individual. Individuals who violate set
search space restrictions are either killed at birth or penalised in their
fitness calculation. Which possibility is best to choose depends on the
problem at hand and therefore subject to change. Furthermore, restric-
tions can be vague, for example, when stemming from experiments. We
propose a noise-sensitive penalty for violating restrictions and develop
a framework where an expert might choose which penalising technique
to choose for what kind of restriction. We evaluate our configurable ap-
proach against configurations where one technique is used for every type
of restriction and find that our approach achieves better results than a
strict configuration. Additionally, the noise-sensitive penalising method
allows individuals to survive, which may only violate the given restric-
tions due to a noised testing environment, leading to better results.

1 Introduction

Optimisation is a tedious but necessary task in many areas. May it be economic
problems, climate predictions, machine learning programs, scheduling problems
or just an optimisation for the sake of it, it accompanies researchers everywhere.
The research community developed a whole bundle of techniques to do so over
the last decades. They start at analytical approaches like computing gradients,
continue with numerical solutions and certainly do not stop at heuristic ap-
proaches. The class of evolutionary algorithms has proven to be an effective tool
when dealing with optimisation tasks that are hard to solve or do not have an
analytically defined problem. They copy the basic ideas of evolution, such as
recombination, mutation and a selection based on fitness. The population re-
shapes itself repeatedly, and when the operators are set fittingly, it converges to
an optimum, thus solving the optimisation task.



2 Christina Plump, Bernhard J. Berger, and Rolf Drechsler

Unfortunately, it is seldomly quite that easy, and the expression when the
operators are set fittingly is a challenge in its own right. There are several is-
sues to be considered for the configuration of an evolutionary algorithm: From
encoding to choice of mutation and recombination and definition of fitness as
well as a selection scheme. For this work, we focus on a problem lying at the
intersection of selection, fitness and encoding: Restrictions. Most optimisation
problems are subject to restrictions. In production, machines can not run longer
than a defined amount of time, resources (material and human) are finite, and
some minimal production may be necessary. In material sciences, it may not be
allowed to combine different alloys for fear of health hazards, and when conduct-
ing experiments on structural materials, the results are usually not independent
of one another. There are tons of examples where it is necessary to optimise
under restrictions.

Logically, several techniques have been developed to deal with these restric-
tions. For example, individuals may be killed-at-birth if they violate these re-
strictions. Another technique is more subtle: The individuals may survive but
receive a worse fitness value than correct individuals. This downgrading might
allow the population to surpass infeasibility regions when the search space is not
convex. However, when addressing real-world applications from a domain with
experimental setups, restrictions might not be to handle just as they are. For ex-
ample, if theory states that one value is greater than another, but in experiment
reality, results may be subject to noise, samples may be imperfect, the conduct-
ing researcher may have collected them differently from another one. All in all,
there is too much uncertainty to strictly prohibit a solution that violates such
a restriction from staying in the population if it is otherwise fit. Therefore, we
developed a noise-sensitive restriction handler that allows mistakes in a specified
range, which the standard deviation for this value influences.

This adaption led us to another obstacle when dealing with restrictions: Even
in experimental setups, there are certain restrictions that have to be upheld def-
initely. One example of this are physical laws, e.g. a length may not be smaller
than zero. For this type of restriction, noise sensitivity might be disadvanta-
geous. To solve this issue, we built on the domain-specific language from [9] and
constructed selection operators that are capable of using different restriction
handling techniques for different types of restrictions.

We evaluated our approach on four different benchmark functions with care-
fully chosen restrictions. We compare using one singular technique for every type
of restriction to our adapted approach and find that we achieve better results
than the singular approach.

2 Background

Several sources identify the same groups of constraint handling [1, 2, 8]: First,
they name handling techniques that tackle the constraint compliance itself, e.g.,
repairing genotypes or deleting individuals that violate the given constraints.
These techniques usually go by the name restrictive. Second, there are penalty
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techniques. In principle, they work similarly: If an individual violates one or
more constraints, penalty terms worsen its fitness accordingly. They fall under
the term tolerant. Third, there are decoding-techniques, which choose a different
representation. This change in representation allows for the creation of a valid
individual. Fourth, the constraints become additional optimisation goals and the
given problem a multi-objective optimisation problem.

We will shortly discuss the advantages and disadvantages of the first two
types to illustrate the importance of customisation. Restrictive methods usually
either delete all constraint-violating individuals during their creation, i.e. they
do not become part of the population or repair all constraint-violating individ-
uals such that they represent a valid individual [3,12]. This fact leads to the
advantage that only valid individuals are in the population and, therefore, the
optimisation will converge to a valid individual. However, killing all invalid in-
dividuals can be time-costly for two reasons: One, new individuals have to be
created to keep the population size stable; second, depending on the complexity
of the constraint, an evaluation may require much computational time. Repairing
individuals requires knowledge about the possibility to repair a given individual,
which is not always present. Furthermore, it may produce a distorted distri-
bution of individuals when the repairing process is skewed. Both techniques’
disadvantage is that they decrease the possibility of finding an optimum in com-
plex landscapes. For example, invalid regions may surround the optimum. Then,
killing all invalid individuals would reduce the chance of slowly surpassing these
regions to propagate to the optimum. In conclusion, it might be wise to choose
restrictive methods for constraints that are easy to compute and easy to repair
and are boundaries than constraints - for example, the condition that a length
should not be negative.

Tolerant techniques allow the presence of invalid individuals, but they are
disadvantaged. This disadvantage can happen in different ways. One, only valid
parents can be chosen for reproduction, thus decreasing the reproducibility of
invalid individuals [12]. Second, an expansion of the fitness function with one
penalty term per constraint [10]. If an individual violates one constraint, it will
worsen his fitness. Usually, the penalising terms are weighted and additionally,
they may depend on the extent of the violation. Furthermore, the issue of nor-
malisation has to be taken care of when defining such penalising. The main
advantage has already been named: Invalid individuals may survive if their fit-
ness is good enough and their violations are not too high. Therefore, it is possible
to overcome infeasible areas that separate feasible areas from one another. The
disadvantage, especially with penalty functions, is the distortion of the fitness
function and the high degree of necessary fine-tuning of the penalty function’s
parameters to ensure just the right amount of adjustment.

3 Methodology

We identified two challenges when dealing with real-world applications, espe-
cially from experimental setups, in evolutionary algorithms: First, although there
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are many techniques to deal with constraints, they do not explicitly consider ex-
perimental noise. However, constraint-handling techniques need to include noise
when dealing with a situation where the search space consists of experimentally
derived data. Second, usually, there is not just one type of constraint present.
There may be strict constraints that need to be upheld; there may be constraints
that hold but are subject to noise; there may be constraints where domain ex-
perts are rather vague about when defining them to designers of evolutionary
algorithms. This section will present two expansion of constraint-handling tech-
niques: First, we define noise-sensitive restrictions— an application is possible for
tolerant and restrictive techniques. Second, we adapt the domain-specific lan-
guage from Plump et al. to include a type specification for given constraints [9].
When defining the evolutionary algorithm, the designer then can decide which
constraint-handling technique to use for which constraint type.

3.1 Noise-sensitive constraint handling

Commonly, the search space of an optimisation problem may be of noised nature.
One example is the method by Ellendt et al., which deals with the systematic dis-
covery and development of structural materials [6]. Due to the two-step nature
of the optimisation, the search space of the latter one consists of experimen-
tal values (cf. Drechsler et al. [4,5] ). Weather forecasts with noised data from
weather stations - that are necessary to predict the weather situation - are an-
other example. If this is turned into an optimisation problem (what needs to be
measured to obtain a given weather situation), the search space will be subject
to noise again.

For the following concepts, we consider real-valued search space of n dimen-
sions, i.e.,. . C R™. Please note, however, that other search spaces are possible,
e.g. processes or states, and our concepts are extensible to those.

However, knowledge about constraints in the search space, e.g. 23 —5 < x5 is
based on the actual values in the search space, not the ones that are measured.
That is, a measurement might actually violate the constraint, although the true
value behind the noised measurement does not [11]. For example, the pair (4, 12)
fulfills the exemplary inequality mentioned above. However, if the true value 4 is
measured as 4.2 due to noise, and 12 is measured as 11.9, 4.22 —5 = 12.64 < 11.9
is no longer true, although the underlying candidate (4,12) is. Let us therefore
define a noised value as

.i‘i:.ﬁi—FGi,eiNe/V(O,Ui) (1)

where z; denotes the true value and we assume o; to be a known (or estimated)
standard deviation for measurement setup for x;. Please note, that since ¢; can
be negative as well, this definition is equivalent in meaning (but not in notation)
to x; = x; + €.

Let furthermore w.l.o.g. a constraint in an n-dimensional search space be
given as g;(x1,...,2,) < 0, referred to by g;. For example, the above constraint
can be written as a:% — 29 — 5 < 0 and fulfills the denotation.



Choosing the right technique for the right restriction 5

Definition 1. A constraint-handling technique T on a given constraint g; is
called noise-sensitive of degree a when it satisfies the following condition:

For a given search space candidate (&1, ..., Ty,) T is only applied, if ¥(b1, ..., b,),b; €
{-1,0,1} : g; (&1 + brawoy, ..., &p + bpaoy,) > 0.

The presented definition also formulates as follows: A noise-sensitive constraint-
handling technique first checks whether an individual might fulfil the constraint
had it not been for noise, and only if there is no possible noise-combination,
it considers the constraint violated and applies its technique. Considering the
example from above, if 07 = 0.1 and o5 = 0.01, we observe the following: For
a=1and b; = —1 and by = 0, we obtain (4.2—1-0.1)2-11.9—-5 = —0.09 < 0.
Therefore, there is a noise-combination such that the constraint is fulfilled for
a = 1. That is, every noise-sensitive constraint-handling technique with o > 1
would not consider this constraint violated by the pair (4.2,11.9).

We would like to point the reader to several interesting observations: First,
the choice of a gives the designer of the evolutionary algorithm the possibility to
be rather strict on noise or somewhat tolerant. The higher the choice for «, the
more solutions would not receive appropriate handling although they violate the
constraints (one would obtain more false corrects). We advise (due to the 68-95-
99 rule of the normal distribution) not to choose an o > 3, for this would already
include 99% of the possible actual values underlying a given measurement. We
propose choosing an « between 0.5 and 1.5, but this is up to the designer.

Second, along with the first observation, o should be chosen depending on
the constraint technique. A smaller o may suffice for a tolerant technique, while
a higher o might be more appropriate for a restrictive technique.

Third, defining b; € {—1,0,1} is a compromise as it has to be ensured that
an algorithm employing this technique will terminate. More true to the cause
would be b; € [—1, 1]. However, we achieve identical results when g; is continuous
in the relevant neighbourhood. With this technique mainly being developed for
experimental setups, this is the case for most situations.

Fourth, domain experts must supply the evolutionary algorithm expert with
the necessary information on standard deviations of the measurements. This
necessity of configuration motivates our next contribution, which the following
subsection explains.

3.2 Configurable constraint handling

Especially in real-world applications, domain knowledge is significant for de-
signing the evolutionary algorithm. Designers make some decisions initially, e.g.,
the encoding or the choice of mutation and recombination operators. Others,
however, may be subject to change when new variables are introduced or in-
formation about the included variables changes. When faced with a dynamic
environment, a changing infrastructure or a developing research system, these
changes are likely to happen more often than less often. Plump et al. propose a
data description language for providing information on data to the evolutionary
algorithm without having to change the principal design of this algorithm [9].
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experiment example (7z7) {

measuring method measurement (7z”7) {

quotient descriptor ”wvalue 07 (7z.07”) in [”pum”]
§ constraint ("z.0” >= 0.0, "strict”)
§ standardDeviation (1.5);

quotient descriptor ”walue 17 (7z.17) in [”pum”]
§ constraint (”z.1” >= 0.0, "strict”)
§ standardDeviation (0.8);

§ constraint (7z.17 / 7xz.2”7 >= 7x.0”7, "vague”)
§ constraint ("z.1” >= "z.0”, "noise”)
}
}

Listing 1.1. Exemplary data description file

They use this to include dependency information on the search space dimen-
sions to modify mutation and recombination operators. We enhance this data
description language to include information about constraints on all search space
dimensions. Listing 1.1 shows an example of this, where one can see the included
boundary and constraint information.

However, as mentioned above, it might make sense to treat different con-
straints with different techniques depending on the domain. Which technique
to choose for which constraint requires the expertise of both experts (domain
and evolutionary algorithm). The domain expert needs to assess the strictness
and assurance of a given constraint—whether, for example, it is defined by a
physical law or only a known relationship that may be somewhat vague. On the
other hand, the evolutionary algorithm expert needs to define the constraint-
handling technique to use. We introduce a separation of concern in this case:
In the data description file, the domain expert can label each constraint with
a type. Additionally, he can supply the standard deviation necessary for noise-
sensitive constraint handling. The evolutionary algorithm expert can define the
constraint-handling technique for every type defined by the domain expert in a
configuration file for the evolutionary algorithm. Listing 1.2 shows one possible
corresponding configuration file for a given data description file.

4 Implementation

We implemented the proposed constraint handling with Jenetics [13] to evalu-
ate our proposed approach. Jenetics is a genetic algorithm, evolutionary algo-
rithm, genetic programming, and multi-objective optimisation framework. The
implementation uses Xtext [7] for parsing data description language files. We
generate the configured constraint handling mechanisms based on the domain
information and the evolutionary algorithm’s configuration. Since the constraint
handling mechanisms differ, we used two of Jenetic’s extension points to im-
plement the strategies. For eliminating individuals, we use Jenetic’s constraint
mechanism. This mechanism allows a client application to check all individuals
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{ ”7algorithm”: {

?constraint —handling”: {
Pstrict”: {
”?calculation”: { ”"name”: ”normal” },
”handling”: { ”"name”: ”killAtBirth” }
?vague”: {
”?calculation”: { ”"name”: ”normal” },
”handling”: { ”"name”: ”malusForFitness”, ”smoothing”: 1.0 }
?noise”: {
?calculation”: { ”"name”: ”standard—deviation”, ”alpha”: 1.0 },
”handling”: { ”"name”: ”killAtBirth”, ”smoothing”: 1.0 }
}
I
}

)

Listing 1.2. Excerpt of the evolutionary algorithm configuration

of a generation. If the constraint implementation marks an individual as invalid,
Jenetis eliminates the individual and produces a new one. For the malus-based
constraint handling, we decorated the fitness function. The decorator pattern
allows us to use the default fitness calculation and modify the result based on
the constraint evaluation and the configuration.

5 Evaluation

To gain insight into the effects of our presented approach, we carried out a
thorough evaluation. With this evaluation, we plan to investigate the following
research questions:

Research Question 1 Which influence does the adjustability of constraint han-
dling techniques have on the conformance of individuals to the given constraints?

Research Question 2 Is the above mentioned influence, if present, dependent
on the choice of encoding: real-valued or bit encoding?

5.1 Setup of evaluation

We use four standard benchmark functions for our evaluation as fitness functions:
the Ackley-Function, the Rastrigin Function, the Rosenbrock Function, and the
Weighted Sphere Function. These four functions have been chosen according
to the classification attributes of functions vital for evolutionary algorithms:
Separability and Modality. Each function represents one combination of these
two attributes. All four functions were evaluated with ten dimensions as well as
two dimensions. Additionally, to achieve some shift of the functions, we did not
simply minimise towards zero but minimised the distance to the given target
and varied that.
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Furthermore, to effectively answer Research Question 2 we used both encod-
ings: A 64-bit floating-point real-valued encoding and a bit encoding with 14
decimal places. We chose an elite selector combined with a tournament selec-
tor for parent and offspring selection. For the real-valued encoding, we chose a
Gaussian Mutator and a Line Recombinator and for the bit encoding a Swap
Mutator and a single crossover as recombination. These operator combinations
had proven the most effective for our given situation in previous work.

We carefully chose data description files for the 2D and 10D case with stan-
dard deviations and constraints. We varied the assigned type of constraint be-
tween strict, vague, noise to symbolise the domain expert’s preferred type of
constraint-handling.

As constraint-handling techniques, we implemented the kill-at-birth approach
as representative for the restrictive methods and the penalty approach as rep-
resentative for tolerant methods. For both the kill-at-birth and the penalty ap-
proach, we added the option of noise-sensitivity with a configurable degree «.
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Fig. 1. Number of constraint-violating individuals for constraint z¢o > 0.0 in a two-
dimensional search space with zorepresenting the first dimension. The columns show
the results for the different benchmark functions, the rows differentiate the chosen
encoding. For each configuration, there is one boxplot for the bit-encoding and one for
the double encoding.

We defined five different configurations: all-strict (all constraints are to be
handled with a strict technique), all-vague (all constraints are to be handled with
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a vague technique), all-noise (all constraints are to be handled noise-sensitive),
and all-varied (all constraint types are used) and strict-vague-varied (only strict
and vague types occur).

All in all, we had 8000 different configurations. Each was run 20 times for
statistical reasons and with 100 generations and 1000 individuals.

5.2 Results

Figure 1 presents an overview of the acquired data. The boxplots show the dis-
tribution of the number of individuals in the last generation, which violates
this configuration’s first constraint. The description noise-handling refers to the
chosen constraint-handling technique for constraints of type noise (kill for the
restrictive one, and malus for the tolerant one). The first observation is the high
variance for configurations with only type vague (all-vague) constraints and,
of course, all-noise with noise-handling malus. Second, both configurations with
variations and the all-strict configuration have much lower variance and, in most
cases, a smaller median, i.e., they have fewer constraint-violating individuals in
more cases. Furthermore, the smallest results are achieved either by all-varied,
when employing malus as noise-handling and strictVague-varied. Figure 2 shows

ackley rastrigin rosenbrock weighted Sphere
1000
750 N
i
|
500 =
@ il
! ! i i ; i .
3 250 .'_,. +!. ﬁ+
= # H + ++ i + ! H +
=] B . !
> T ‘ B noise—handling
£ 0
kS E3 «il
[}
> 1000 ‘ malus
k)
2 ;
€ 750
E
z
2
S
500 =
@

N
@
S

T el LT e

d

PRI IR

0959 a\\/“"’g @\\/ﬁa@"eﬂ A
ptie

0

(052 _ait aqne a‘\ege/ @ ee it que N‘ede/“?’“ed

e gt _qe qed oaed
0 - vaOle valte o et \ WNCC I O BN,
20 A\ a\\c%q ATV a\\c\\]ag\l
o o

A A S A
E\S

< S S

Fig. 2. Number of constraint-violating individuals for constraint z; > zo in a two-
dimensional search space, xo, x1 representing the first and second dimension, resp. The
columns show the results for the different benchmark functions, the rows differentiate
the chosen encoding. For each configuration, there is one boxplot for the bit-encoding
and one for the double encoding.
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the same overview for the second constraint. Please note, that for varied config-
urations the first constraint was of type strict and the second of type vague
or noise, resp.. We see again a higher variance for the all-vague case and occa-
sionally also in the all-varied configuration with malus noise-handling. However,
with the exception of these outliers, all-varied outperforms the other configura-
tions. For both constraints, all-strict seems to perform better when employed
with a double (real-valued)encoding instead of a bit-encoding. The difference
in the results for both constraints stems partially from the number of variables
in the constraints and additionally, because the second constraint receives the
vague or noise technique in the varied configurations.

5.3 Discussion

With the above-made observations, we can discuss our research questions from
above. Research Question 2 has already been answered by the last sentence
above: It seems to have an influence, especially with constraints of type strict.
This may be caused by the high variability of the bit encoding, as a single bit
flip can have a huge impact on the offspring, whereas the Gaussian Mutator
(employed for double encoding) instead produces offsprings in the neighbour-
hood. Therefore, double encoding is more respective of restrictive techniques.
Research Question 1 asked for the influence of the configuration-possibility: For
both situations, the all-varied case outperform or equals the others. Even—and
this is interesting—when the constraint handling for the specific constraint is
equal. However, the difference in the other constraint seems to have an effect
through the recombination. This is particularly interesting, and we would like
to further investigate this in the future.

6 Conclusion and further research

Evolutionary algorithms are beneficial as a tool for optimisation when the opti-
misation task has many local optima or the function is very complex such that
direct approaches like Hillclimbing fail. This increased complexity often occurs
when trying to ”invert” machine-learned predictions. These situations are of-
ten precisely those that need a considerable amount of domain knowledge. We
proposed using this domain knowledge to choose the proper constraint-handling
technique for a given restriction, allowing different techniques to occur for differ-
ent constraints. Furthermore, to cope with the fact that experimental setups are
usually subject to noise, we defined noise-sensitive constrained-handling tech-
niques based on the standard deviation of the present noise. We expanded our
framework for evolutionary algorithms to check for noise sensitivity and extended
a domain-driven data description language to adopt these changes. We evalu-
ated our approach by comparing evolutionary algorithms where every constraint
received the same treatment to those adapted based on the type of constraint.
We found our approach to have the desired effect and intend to include more
constraint-handling techniques into our framework for future work.
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