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ABSTRACT
Verifying the functional correctness of a circuit is often the most

time-consuming part of the design process. Recently, world-level

formal verification methods, e.g., Binary Moment Diagram (BMD)

and Symbolic Computer Algebra (SCA) have reported very good

results for proving the correctness of arithmetic circuits. However,

these techniques still frequently fail due to memory or time require-

ments. The unknown complexity bounds of these techniques make

it impossible to predict before invoking the verification tool whether

it will successfully terminate or run for an indefinite amount of

time.

In this paper, we formally prove that for integer arithmetic cir-

cuits, the entire verification process requires at most linear space

and quadratic time with respect to the size of the circuit function.

This is shown for the two main word-level verification methods:

backward construction using BMD and backward substitution using

SCA. We support the architectures which are used in the imple-

mentation of integer polynomial operations, e.g., X 3 − XY 2 + XY .
Finally, we show in practice that the required space and run times

of the word-level methods match the predicted results in theory

when it comes to the verification of different arithmetic circuits,

including exponentiation circuits with different power values (X P
:

2 ⩽ P ⩽ 7) and more complicated circuits (e.g., X 2 + XY + X ).
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1 INTRODUCTION
Arithmetic circuits are involved in a wide range of computation-

intensive applications, (e.g. cryptography and signal processing) as

well as in upcoming AI architectures (e.g. for machine learning).

These circuits usually contain many logic gates, and their architec-

tural complexity is high due to the multitude of multiplication and

addition/subtraction units. As a result, they are very error-prone. It

is, therefore, necessary after construction to verify that the circuit

performs its intended function.

Several formal verification methods have been proposed to en-

sure the correctness of circuits: (a) bit-level verification methods

(e.g., Binary Decision Diagrams (BDDs) [8] and Boolean satisfiability
(SAT) [5, 13]) are very fast in the verification of adders but they

quickly run out of memory when it comes to the verification of

multipliers, (b) Theorem Proving [18] and Term Rewriting [15, 26]

techniques can verify both multipliers and adders; however, they

are not fully automated, and they usually require the update of the

rewrite rules, and (c) word-level verification methods (BMDs [2, 4],

and SCA [12, 16, 21–24, 27, 28]) have recently reported very good

results for both multipliers and adders; as a result, they are powerful

tools for checking the correctness of integer arithmetic circuits.

The word-level verification of arithmetic circuits consists of four

phases: (1) representing the output of the arithmetic circuit as a

word-level polynomial, (2) capturing the logical gates (or building

blocks) of the circuit also as a set of polynomials, (3) step-wise sub-

stitution of the gate polynomials in output polynomials based on the

reversed topological order of the circuit, (4) checking the obtained

polynomial at the input to see whether it matches the word-level

specification of the circuit. Both SCA-based and BMD-based meth-

ods use the aforementioned verification flow. The only difference

is in the way that they represent polynomials. In SCA-based ver-

ification, the expanded polynomials are directly used during the

verification process. However, in BMD-based verification, these

polynomials are represented in the form of more compact diagrams

(e.g., BMD and *BMD).

While formal methods including word-level techniques are theo-

retically robust and effective, in practice they sometimes fail due to

time or memory constraints. These problems arise due to our lack

of understanding regarding the complexity of different verification

approaches. In particular, despite the significant progress of word-

level verification, the research on their time and space complexity

is very limited and thus their performance is unpredictable.

In this paper, we analyze the space and time complexity of veri-

fying integer arithmetic circuits using two word-level verification

https://doi.org/10.1145 / 3487212.3487333
https://doi.org/10.1145 / 3487212.3487333
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techniques, i.e. SCA and BMD. We prove that the arithmetic cir-

cuits can be verified in linear space and quadratic time with respect

to the size of the circuit function. For instance, consider a multi-

plier on n-bit inputs X and Y . This circuit computes the function

X ·Y =
∑

0≤i, j≤n−1
2
i+jxiyj which has sizeO(n

2). Our results entail

that the space and time required to verify the circuit are bounded

by O(n2) and O(n4), respectively. Note that it is well known that

the BMD and polynomial representations of a multiplier have qua-

dratic size, however we find the bounds on the entire construction

process. Finally, we use an extensive number of integer arithmetic

benchmarks, including exponentiation circuits and more compli-

cated arithmetic circuits, to compare the theoretical calculations

with the experimental results. Thus, we show the correctness of

the obtained verification complexities in practice.

The rest of the paper is structured as follows: Section 3 reviews

the required preliminaries. SCA and BMD verification approaches

are introduced and a more detailed description is given of the cir-

cuits covered in this paper. Then, in Section 4, the similarities of

the BMD and the SCA approaches are highlighted. In Section 5, the

verification of an arithmetic circuit is shown to take linear space

and quadratic time with respect to the size of the circuit function.

The BMD and polynomial representations of the circuit are built in

a backward manner and the complexity of each step of the process

is taken into account. Experimental results are given in Section 6,

which support the theoretical bounds. Finally, Section 7 concludes

the paper.

2 RELATEDWORK
Despite the rapid progress of formal verification methods, the re-

search on their complexities is very limited. PolyAdd [6] for the

first time proved that the complete formal verification process of

some adder architectures (i.e., ripple carry adder, conditional sum

adder, and carry look-ahead adder) can be carried out polynomially

using BDDs. The author showed that the underlying BDDs remain

polynomial during the whole construction process. It was ensured

by proving upper bounds on the BDD sizes for each internal signal.

The authors of [19] extended PolyAdd by extracting the precise

complexity bounds for the conditional sum adder. The complexity

bounds for the prefix adders and the proof of polynomial formal

verification were presented in [20]. Moreover, some research works

have been recently done on polynomial BDD construction of totally

symmetric functions [9], polynomial formal verification of tree-like

circuits [7], and polynomial formal verification of Arithmetic Logic
Units (ALUs) [10]. Overall, these works only focus on polynomial

BDD-based verification of different architectures.

To the best of our knowledge, [17] is the only work on the

complexity of word-level formal verification. The authors analyzed

*BMD-based verification applied to the class of Wallace-tree like

multipliers. They formally proved polynomial upper bounds on run-

time and space requirements with respect to the input word sizes.

They showed that the whole verification process is bounded by

O(n2) with respect to space and O(n4) with respect to time, where

n in the number of input bits. The proof in this work is only limited

to Wallace-tree like multipliers, and it does not support other types

of multipliers as well as other types of arithmetic circuits.

3 PRELIMINARIES
This section first provides an overview of SCA-based and BMD-

based verification and then reviews the general structure of an

arithmetic circuit.

3.1 Symbolic Computer Algebra
We briefly summarize some terminologies:

• A Monomial is a power product of variables:

M =xα1

1
xα2

2
. . . xαnn , (1)

where αi ∈ N.
• A Polynomial is a finite sum of monomials:

P = c1M1 + · · · + c jMj , (2)

where ci is an integer coefficient, i.e., ci ∈ Z.
• The ordering of monomials in a polynomial is determined

by the ordering of variables and their powers in each mono-

mial [3], e.g., under the variable ordering x > y, the mono-

mials xy2
, y4

, y have the following ordering:

xy2 > y4 > y. (3)

The goal of SCA-based verification is to formally prove that

the gate-level netlist and the word-level function of the circuit

are equivalent. The word-level function of a circuit is determined

by two polynomials: Output Signature (OS) and Input Signature
(IS). Output signature is a polynomial that depicts the word-level

representation of the circuit’s output, e.g., for the Half-Adder (HA)
of Fig. 1 the output signature equals 2c + s . Input signature is a
polynomial that represents the word-level function of the circuit

based on the inputs, e.g., for the HA of Fig. 1 the input signature

equals a + b which is the addition of two 1-bit numbers.

Before verification, the word-level relation between the inputs

and outputs of gates should be extracted. Assuming, z is the output
and a and b are inputs of a gate, the word-level function of the four

main gates are as follows:

z = ¬a ⇒ z = 1 − a, z = a ∨ b ⇒ z = a + b − ab,

z = a ∧ b ⇒ z = ab, z = a ⊕ b ⇒ z = a + b − 2ab . (4)

As a result, in Fig. 1, the gates’ polynomials can be represented

as follows:

s = a + b − 2ab,

c = ab . (5)

In order to prove the correctness of the circuit, first, the gates

are ordered based on the reverse topological order of the circuit,

i.e., from Primary Outputs (PO) to Primary Inputs (PI). Then, starting
from the output signature OS , the variable representing a gate’s

output is substituted by the gate’s polynomial in OS to get a new

polynomial. This process continues until we reach the PI and finish

substituting all gates. If the final polynomial in inputs equals input

signature IS , the circuit is correct. Otherwise, the circuit is buggy.
This process is called backward substitution.

The process of backward substitution for the HA in Fig. 1 is as

follows:

2c + s
AND
−−−−−→ 2ab + s

XOR
−−−−−→��2ab + a + b −��2ab = a + b, (6)
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a
s

c

b

AND

XOR

Figure 1: Half-Adder

since the final polynomial is equal to the input signature of a HA;

thus, the circuit is correct. The polynomials which are obtained

during the verification process, e.g., 2ab + s , are referred to as

intermediate polynomials.
The complexity of SCA-based verification is determined by the

time and space required for each substitution step. This in turn

largely depends on the size of the intermediate polynomials. For

instance, to substitute the variable c with ab in 2c+s the polynomial

is searched for the variable c , then the coefficient of c is multiplied

with ab, and then the result is added to the rest of the polynomial.

3.2 Binary Moment Diagrams
Binary Decision Diagrams (BDDs) are built using the Boole-Shannon
decomposition:

f = (1 − x) · fx̄ + x · fx , (7)

where fx is f evaluated at x = 1, and fx̄ is f evaluated at x = 0. By

rearranging the terms, we get the moment decomposition:

f = fx̄ + x · f Ûx , (8)

where f Ûx := fx − fx̄ is called the linear moment of f with respect

to x .
The BMD of f is a directed, rooted, acyclic graph which results

from the recursive moment decomposition of f with respect to each

of its variables. Every non-terminal node is labeled with a variable

x , and has two successors representing the two parts of the decom-

position of f with respect to x . The edge pointing to the successor

f Ûx is called a high-edge while the edge pointing to fx̄ is called the

low-edge. The terminal vertices have no successors and are labeled

with integer values. The BMD structure is ordered, meaning that

variables always appear once and in the same order throughout any

path from the root to a terminal vertex. Furthermore, it is reduced,

meaning there are no isomorphic sub-graphs or unnecessary nodes.

A node is said to be unnecessary if the high-edge points to the

terminal node labeled 0 which would mean that the function does

not depend on the variable.

For instance the BMD of

F =W0 +

n∑
i=1

WiXi (9)

is shown in Fig. 2. Notice the BMD of linear functions contains the

same number of non-terminal nodes and variables.

In general, BMDs are more efficient than BDDs in representing

arithmetic functions. This is why BMDs are more widely used in

the verification of multipliers and other polynomial circuits.

An extension of these structures is the *BMD which addition-

ally makes use of edge-weights [4]. On each edge, an integer can

be assigned which allows us in many cases to further reduce the

graph into a smaller representation. While this is useful in func-

tion representation, using edge weights generally only increases

the verification complexity. This is because the *BMD needs to be

unfolded into its BMD form to perform operations like addition

and multiplication which are required in verification.

BMDs can be used to verify if a circuit meets its specification.

This is done by constructing the BMD of the circuit and comparing

it to that of the specification. There are several ways to perform

this construction; however, in this paper, we use a method called

backward construction [14]. First, the BMD of the output signature is

built. Notice that the variables in this BMD are the outputs of gates

(or building blocks) in the circuit. The next step is to substitute

each of these variables with their corresponding gate inputs. A new

graph is constructed using the BMD of the previous step based on

the following substitution formula:

F |x←G = Flow (x ) +G · Fhiдh(x ), (10)

where x is a node we want to substitute with the BMD G and

Flow (x ) (Fhiдh(x )) represents the BMD subgraph extending from

the low-edge (high-edge) of node x . Hence, every step involves

multiplication and addition of BMDs. After completing all the sub-

stitutions, the result is a BMD on the input variables representing

the function of the circuit. An equivalence test with the BMD rep-

resenting the specification function verifies whether the circuit

is correct. Constructing the BMD of a specification function and

running the equivalence test are both easy steps so the complexity

of this verification method lies in the construction of the BMD of

the circuit.

3.3 Integer Arithmetic Circuits
An integer arithmetic circuit computes a polynomial on its integer

inputs. For the rest of the paper, we study a circuit C with n-bit
binary input X = xn−1xn−2...x0 which computes a polynomial of

degree d on its inputs. A polynomial is said to have degree d if one

of the terms has degree d while the rest of the terms have degree at

most d . As an example, a circuit that computes polynomial X 3 + X
is an integer arithmetic circuit of degree 3. All the results easily

generalize to circuits with more than one input.

Arithmetic circuits are usually implemented in two different

ways (Chapter 2 in [25]):

(1) The partial products for each term are computed. Then, they

are reduced to get the final results.

(2) Independent multiplication, exponentiation, addition and

subtraction units are used in different levels to construct the

arithmetic circuit.

As an example, the arithmetic circuit that computes X 2 + XY
can be implemented by generating partial products for X 2

and XY
and subsequently reducing the partial products to get the final

results. Alternatively, X 2
and XY can be implemented using an

exponentiation and a multiplication unit, respectively. Then, the

outputs are added using an addition unit.
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Xn-1

[W0+∑WjXj]
n

j=1

[W0+∑WjXj]
n-1

j=1

[W0+∑WjXj]
i

j=1

Xn

Xi

[W0+W1X1] X1

W0 W1 Wi Wn-1 Wn

Figure 2: BMD of F

Arithmetic units built using the first approach as well as multi-

pliers and exponentiation circuits in the second approach are made

up of three stages:

(1) Partial Product Generator (PPG): This part generates all
the partial products in the polynomial using O(nd ) AND
gates and sometimes NOT gates.

(2) Partial Product Accumulator (PPA): This part adds the
partial products in the same bit position together until two

bits are left in every position. There are several algorithms

to do this such as array, Wallace tree, and balanced delay

tree. All of these architectures use O(nd ) adder cells.
(3) Final Sum Adder (FSA): At the end of the previous stage,

two integers are obtained which need to be added. This is

done in this stage using O(n) adder cells.

Fig. 3 shows the three-stage structure of a squaring unit on a

3-bit integer X = X2X1X0.

The adders and subtractors covered in this paper are the standard

ripple-carry adders and ripple-borrow subtractors (Chapter 2 in

[25]). These are built from series of full-adder and full-subtractor

cells, respectively. A full-adder cell is similar to a half-adder but

takes into account a carry bit from the previous lower bits while

a full-subtractor computes the subtraction of two bits taking into

account a borrow from the lower bits. The results in this paper

cover all the circuits described in this section, i.e. circuits built from

arithmetic units, ripple-carry adders, and ripple-borrow subtractors.

4 RELATION BETWEEN BMD AND SCA
In this section, the lemmas which are necessary to highlight the

similarity of the BMD and SCA verification approaches will be

proved. They allow us to analyze both approaches simultaneously.

X0X1X2

X2 X0

X0 X2

X1 X1

X2 X1X2 X2

X1 X2

X1 X0

X0 X1

X0 X0

Input

PPG

PPA
FA

FA

FSA4-bit Adder

Figure 3: 3-bit Squaring Circuit

Lemma 1. Let P(X) be a polynomial onX = {x0, ...,xn−1} and let
t andm denote the number of terms and the number of multiplications
in P , respectively. Then, the size of the BMD of P is bounded bym + t .

Proof. It is clear that the term cxϵ0

0
xϵ1

1
...xϵn−1

n−1
, where ϵi ∈ {0, 1},

belongs to P if and only if the path ϵ0, ϵ1, ..., ϵn−1 in the BMD of P
ends in the terminal node c .

Therefore the term xϵ0

0
xϵ1

1
...xϵn−1

n−1
contributes at most ϵ0 + ϵ1 +

... + ϵn−1 to the size of the BMD. This is the same as the number of

multiplications in the term minus 1. □
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y

[xy+y+x]

[y]

0 1

x

[y+1]y

Figure 4: BMD of p

This is relevant since the size of a polynomial, i.e. its memory

requirement, is equal tom + t .
For instance, the function p(x ,y) = xy + x + y has size 4 since it

has 3 terms and 1 multiplication. By Lemma 1, the BMD of p should

be bounded by 4. As seen in Fig. 4, the BMD of p has 3 non-terminal

nodes so the bound holds.

For the rest of the paper let X = {x0, ...,xn−1} and let Pd (X)
denote a polynomial of degree d on X.

Corollary 1. The size of the BMD representation of Pd (X) is
bounded by O(nd ).

Another similarity between BMDs and their polynomials is the

complexity of performing operations as stated in Lemma 2 [11].

Lemma 2. The space and time required to add two polynomials (or
BMDs)A and B isO(|A|+ |B |) andO(|A| · |B |), respectively. Similarly,
the space and time required for multiplication is O(|A| · |B |).

We say a variable x is linear in a polynomial P if all the terms in

P that include x are linear.

Lemma 3. Let P be a polynomial and let |P | denote its size. Substi-
tuting a variable x that is linear in P with a function F of constant
size takes O(|P |) time and space. Furthermore, this holds whether the
substitution is performed on the polynomial or the BMD.

Proof. The lemma is clear when the substitution is performed

on a polynomial. Only the case when it is performed on the BMD

needs to be shown. Let P̄ and F̄ denote the BMDs of P and F ,
respectively. By Lemma 1, the size of the BMD of P is bounded

by |P |. Since x is linear in P , to perform the substitution we need

to carry out the operation P̄low (xi ) + F̄ · P̄hiдh(xi ) where P̄hiдh(xi )
(P̄low (xi )) is the subgraph extending from the high-edge (low-edge)

of node xi . This is done in two steps. First we multiply P̄hiдh(xi )
with F̄ . Since P̄hiдh(xi ) is a constant, this takes constant time and

space. Next we add the BMD in the first step to P̄low (xi ) which

takes O(|P̄low (xi ) |) = O(|P |) time and space. □

Lemma 1 shows that the size of a BMD is smaller than the size

of its polynomial representation. While Lemma 3 shows that a

substitution step requires the same space and time whether it is

performed on a BMD or the corresponding polynomial (which is

done in the SCA-based verification). In the rest of the paper, the

focus is on bounding the complexity of the SCA approach which,

by the previous lemmas, also bounds the BMD approach.

5 BOUNDING THE VERIFICATION
COMPLEXITY

The circuit we analyze computes a polynomial of order d on n-
bit input variable X and is built from arithmetic units, adders and

subtractors as described in Section 3.3. We order the variables in

the circuit so that the the outputs of a gate are consecutive and are

higher than the inputs. Essentially, this means that the ordering is

based on the gates.

To understand the verification complexity of the whole circuit

we first study a single arithmetic unitU of order dU with input XU
and output YU .

We will analyze the complexity of substituting the variables YU
with the variablesXU . Note that any output or input of a gate in the

circuit is considered a variable. For simplicity, the proof assumes:

(1) The initial polynomial is of the form A+B ·YU where A and

B are polynomials independent of the variables inU .

(2) The variables in U are ordered consecutively so that the

focus remains on the the substitutions in U and we do not

have to worry about other variables.

After completing the proof it will become clear that the results hold

even if these assumptions are not met.

Note that the input and output of an adder or arithmetic unit are

of the same order. For instance, in Fig. 3 the output is a (2n + 1)-bit

integer representing the square of a n-bit integer. Since the number

of units are constant with respect to n, the input and output of any

unit in the circuit is O(n). Hence, XU and YU are both in O(n).

Lemma 4. The size of an intermediate polynomial obtained during
the backward substitution ofU is bounded by O(|A| + |B | · ndU ).

Proof. The unitU is made up of three stages: PPG, PPA, and FSA.

The method of backward substitution (or backward construction)

begins with the end of the circuit. The purpose of the PPA and FSA

stages is to reduce the sum of O(ndU ) partial products bits into
the O(n) bit output using adder cells. The sum of the outputs of an

adder cells is equal to the sum of its inputs. The word-level relation

between inputs and outputs of three adder cells (i.e. HA, FA, and

7:3 counter (CN)) is as follows:

HA(in : X , Y out : C, S ) ⇒ 2C + S = X + Y

FA(in : X , Y , Z out : C, S ) ⇒ 2C + S = X + Y + Z

CN (in : X , Y , Z ,W , Q, I, J out : C2, C1, S ) ⇒

4C2 + 2C1 + S = X + Y + Z +W +Q + I + J (11)

This can be generalized to other adder cells and means that all the

intermediate polynomials obtained in these stages are linear in

terms of the variables inU .

An adder cell has a constant number of outputs and inputs so

each substitution introduces a constant number of new variables.

Since all the intermediate polynomials are linear, each substitu-

tion grows the size by O(B). There are O(ndU ) adder cells so the

size of the polynomials in the FSA and PPA stages is bounded by

O(|A|+|B |·ndU ).
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After substituting all the adder cells, we reach the PPG stage. In

this stage, product cells such as AND gates calculate the partial prod-

ucts from the input XU . Notice that the substitution of a product

cell can only increase the size of an intermediate polynomial. Hence

all of the polynomials in this stage must be smaller than the polyno-

mial in terms of the inputs ofU . SinceU performs an operation of

order d on O(n) bits, this polynomial has size O(|A|+|B |·ndU ). □

Lemma 5. The backward substitution of the FSA and PPA stages in
U requiresO(|A| + |B | ·ndU ) space andO((|A| + |B | ·ndU ) · |B | ·ndU )
time.

Proof. Recall that during the substitutions of the FSA and PPA,

the intermediate polynomials remain linear with respect to the

variables in U . This means that the substitution of any cell output

involves multiplication with B only. The result then needs to be

added to the rest of the terms.

By Lemma 2, the multiplication step takesO(|B |) space and time

while the addition step takes O(|A| + |B | · ndU ) space and O((|A| +

|B | · ndU ) · |B |) time. This is just the time for a single substitution.

As there are O(ndU ) substitutions that need to be performed, the

total time is bounded by O((|A| + |B | · ndU ) · |B | · ndU ). □

The same bound is obtained for the PPG stage:

Lemma 6. The backward substitution of the PPG stage inU requires
O(|A| + |B | · ndU ) space and O((|A| + |B | · ndU ) · |B | · ndU ) time.

Proof. Let P = {pi }i ∈K be the set of variables representing

outputs of gates in the PPG stage. Assume the variable pi needs to
be substituted with its inputs and let Cpi be the coefficient of pi in
terms of the variables inP. This substitution involvesmultiplication

with B ·Cpi and then addition with the rest of the terms.

The multiplication step takesO(|B | · |Cpi |) space and time while

the addition step takesO(|A|+ |B | · (|Cpi |+n
dU )) space andO((|A|+

|B | · ndU ) · |B | · |Cpi |) time. This is just the time for a single sub-

stitution. The total time is bounded by O((|A| + |B | · ndU ) · |B | ·
(
∑
i ∈K |Cpi |)).
It is not difficult to see that the substitution of pi increases the

size of the polynomial by a quantity in the range [
|Cpi |
d ,d · |Cpi |].

This means that

∑
i ∈K |Cpi | ≤ O(ndU ). As a result, the maximum

space required is bounded by O(|A| + |B | · ndU ) and the total time

required is bounded by O((|A| + |B | · ndU ) · |B | · ndU ). □

Note that throughout the proof we assume that the circuit does

not make any unnecessary computations. For instance, a product

cell computing xi · xi is unnecessary since this is just xi . Of course
without this assumption there is no limit to the size and complexity

of a circuit.

Arithmetic circuits may also contain adder or subtractor units

so the backward substitution of these units needs to be analyzed.

As mentioned, all units have inputs and outputs of size O(n). A
ripple-carry adder calculates the sum of twoO(n)-bit integers using
O(n) adder cells. If YU represented the output of an adder unit, then

with the same arguments used to bound the verification complexity

of the FSA and PPA in arithmetic units, it can be shown that the

backward substitution of an adder requires O(|A| + |B | · n) space
and O((|A| + |B | · n) · n) time. A ripple-borrow subtractor is the

same as a ripple-carry adder, except the full-adders are replaced

with full-subtractors, and hence requires the same resources.

Notice that space required to substitute the variables of any unit

is bounded by the size of the polynomial after all the gates are

substituted. This idea applies to all units including unit outputs

in B. After all the substitutions, the final polynomial of B must be

of order at most d − dU , otherwise the order of the specification

would be larger than d . So the size of B is bounded by O(nd−dU ).
Similarly the size of A must be smaller than the size of the input

signature which is in O(nd ). Plugging these values into the bounds

of Lemma 5 and Lemma 6 gives us the following result.

Lemma 7. Substituting the gates of any unit is bounded by O(nd )
with respect to space and O(n2d ) with respect to time.

Note that the circuit computes a polynomial of order d on n

variables. Hence, the circuit function has size O(nd ).
Since the number of arithmetic units is constant with respect to

n, this gives us a bound on the whole backward substitution of the

circuit.

Theorem 1. For integer arithmetic circuits, the entire verification
process using BMDs or SCA requires linear space and quadratic time
with respect to the size of the circuit function.

Throughout the proof, a certain variable ordering was assumed.

In particular, it is not necessary that a state of the form A + B · YU
is obtained during the substitution process and there might be

some variables outside ofU ordered in between the variables ofU .

However, this does not change the results obtained. For instance,

even if B changes as a result of substitutions performed outside of

U , the size of B is still bounded by O(nd−dU ) which is all that is

required. Each substitution still needs the same time and space and

there are the same number of substitutions performed regardless

of the variable ordering.

Note that the final result of the verification process is the circuit

function which entails a linear lower bound on the space required

for verification. This means the upper bound on space obtained in

Theorem 1 is tight which can be clearly seen in the experiments.

6 EXPERIMENTS
We have implemented the SCA-based verifier in C++. The bench-

marks for the exponentiation circuits and more complicated arith-

metic circuits are generated using abc [1] blast command (%blast).
All experiments are performed on an Intel(R) Core(TM) i7-8565U

with 1.80 GHz and 24 GByte of main memory.

We experimented extensively in order to check the correctness

of the final bounds obtained in Section 5. First, exponentiation

circuits X P
were tested on a range of exponents 2 ≤ P ≤ 7 and

input bit lengths between 0 and 64. For each bit length n and each

exponent P , a n-bit exponentiation circuit performing the operation

X P
was constructed with the same structure as a single arithmetic

unit described in Section 3.3. The circuit was then verified using

backward substitution and the run time (seconds) and space (max-

imum polynomial size) used by the process were plotted against

the circuit function size, i.e., nP . The results show that there is a

linear relationship between space and function size (see Fig. 5) and

a quadratic relationship between run-time and function size (see
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Fig. 6). Therefore, the experiments indicate that the bounds hold

for circuits with high powers and scale as predicted by the theory.

The exponentiation circuits are made up of only one arithmetic

unit. Therefore to test out more general cases two circuits were

considered: X 2 +X ·Y +X and X 3 +X ·Y . These circuits were con-
structed using a combination of multipliers, exponentiation units,

and adders which led to a more complex design with multiple units.

Again, there is a linear relationship between space and function

size (see Fig. 5) and a quadratic relationship between run-time and

function size (see Fig. 6).

7 CONCLUSION
This work analyzed the complexity of two word-level verification

approaches on arithmetic circuits: backward construction with

BMDs and backward substitution with SCA. The similarity of the

two approaches was studied and it was deduced that the BMD

approach is at least as efficient as the SCA approach. Based on

this, the complexity of both processes was simultaneously bounded

polynomially, i.e., the run-time was shown to increase quadratically

with the circuit function size, while the space required was shown to

increase linearly. The theoretical bounds and experimental results

indicate that both approaches are effective in verifying arithmetic

circuits with multiple units and variables.

This work is, however, limited in its scope. Arithmetic circuits

which utilize optimized structures such as carry look-ahead adder

or Booth’s multiplier for faster addition or multiplication are not

considered. Nevertheless, the ideas herein shall be extended to these

circuits in future work.
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Figure 5: These graphs illustrate the space requirements for verifying a variety of circuits with different input bit lengths. The
maximum space used in the verification process is plotted against the size of the circuit function. The points are fitted with
linear polynomials (all R2 values are larger than 0.99).
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Figure 6: These graphs illustrate the time requirements for verifying a variety of circuits with different input bit lengths. The
run-time in seconds used in the verification process is plotted against the size of the circuit function. The points are fitted
with quadratic polynomials (all R2 values are larger than 0.98).
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