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Abstract—The increasing complexity of modern Integrated
Circuits (ICs) results in more bug occurrences during their design.
In this regard, formal verification techniques such as the methods
based on Binary Decision Diagrams (BDDs) mathematically
ensure the correctness of these ICs before fabrication. However,
BDDs are very sensitive to input variable ordering. Most of the
time, the construction of BDDs fails due to size explosion caused
by unfavorable input variable ordering. A lot of research has
been done in the past to find a good variable ordering method;
however, the focus has always been on the endsize of BDDs which
may not present the whole picture.

In this paper, we present a framework to monitor the BDD
size during construction. We argue that in addition to the
endsize, the highest number of nodes, i.e. the peaksize, should
also be taken into account when selecting the static variable
ordering method. The proposed framework uses a variable order
generator to compute an input variable order for a circuit
and a BDD generator, with CUDD at its heart, to monitor
important parameters in particular peaksize. With the help of
the framework, we observe how popular static variable ordering
heuristics affect the peaksize and endsize of BDDs using popular
benchmark sets, i.e., ISCAS85, ISCASS89.

I. INTRODUCTION

Recent advancements in technology have caused a huge
increase in smart devices used per capita. With Industry 4.0
and Internet of Things (IoT) in play, the demand for func-
tionally rich ICs has sky-rocketed. This demand for powerful
devices along with the ever-increasing number of transistors on
a microchip has caused a significant growth in the complexity
and size of circuits. On one hand, a tiny IC is now capable
of performing extraordinary tasks but on the other hand,
the increasing size and functional complexity have made the
design and verification of these ICs a laborious task. This
difficulty in ensuring correctness leads to an increase in bugs
escaping into silicon.

These bugs not only lead to faulty devices but can also
cause monetary losses in cases like data loss and product
recall [1]. Thus, it is crucial to verify these ICs before
fabrication. Several methods based on simulation and formal
verification have been developed to ensure the correctness of
these circuits. In simulation-based techniques, the correctness
of output values is checked for several input values. However,
it is usually impossible to cover the whole input space for large
designs. On the other hand, the formal verification methods
ensure the correctness of ICs via mathematical procedures.
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As a result, the 100% correctness can be guaranteed. This
makes them very desirable for both industry and academia,
since simulation-based techniques cannot guarantee complete
correctness. After decades of research, the area of formal
verification has grown immensely. A vast number of methods
and techniques are developed under formal verification which
allows us to ensure the correct function of circuits before
they come into physical form. Verification methods based on
Binary Decision Diagrams (BDDs) [2], [3] are among the
popular formal methods that prove the correctness of circuit
function through equivalence checking. They are also used
for Polynomial Formal Verification (PFV) of various digital
circuits [4]-[9].

A BDD is a Directed Acyclic Graph (DAG) that represents
a Boolean function. This representation is canonical in nature,
i.e., every Boolean function has its unique BDD given a spe-
cific order of input variables. This simplifies the comparison
of two circuits and thus allows easier functionality checks.
A lot of research has been done to maximize the potential
of BDDs in the last few decades. Despite their potential, they
also have drawbacks like their size and their sensitivity towards
certain architectures of circuits. The size of a BDD is heavily
influenced by how the input variables of the respective Boolean
function are ordered. Choosing a good input variable order can
lead to size within polynomial limits, but an unfavorable order
can result in an exponentially sized BDD. This exponential
increase in size can lead to undesirably long run-times and in
the worst-case scenario, the construction of a BDD fails as a
result of insufficient memory. Therefore, the choice of a good
input variable order becomes extremely crucial. In general,
there are two ways to set the input variable orders:

« Static Variable Ordering: the order is
determined/applied before the construction of a BDD.

e Dynamic Variable Ordering: the order is deter-
mined/applied during the construction of a BDD.

Both methods have been studied and researched for a
long time. Several heuristics have been developed to find the
connection between the arrangement of the input variable order
to different aspects of a circuit. Typically, the goal of these
heuristics is to find an input variable order that yields the
smallest possible endsize of BDDs. However, there are aspects
other than endsize that still remain overlooked. One of these



aspects is the growth pattern of BDD sizes with respect to an
input variable order which sets the peaksize. The peaksize is
a crucial parameter that determines the required memory for
the BDD construction.

Although the peaksize can be monitored for both methods,
in this work, we only consider the static variable ordering
heuristics for the following reasons:

« to speed up the BDD construction, since dynamic variable
ordering methods are slow and impractical for large
circuits,

o to keep results deterministic,

o to associate the peaksize to a specific input variable order
arrangement, and

« to be able to reproduce experiments and results.

In this paper, we propose a framework to provide a deeper
insight into the construction of BDDs. We highlight that in
addition to the lower final size (i.e., endsize) of a BDD, the
maximum intermediate size (i.e., peaksize) has to be consid-
ered for a good input variable ordering. Reducing peaksize can
help us with reducing the required memory during the BDD
construction. Furthermore, it can also expedite the construction
process. In order to monitor the size of BDD during the con-
struction, we developed a framework with a BDD generator
and a Variable Order Generator (VOG). The VOG uses static
variable ordering heuristics to compute input variable order
for a circuit. The BDD Generator, with CUDD [10] at its
backbone, uses these input variable orders generated by the
VOG to construct the BDD and monitor important parameters
such as peaksize.

II. RELATED WORKS

Several research works have proposed to improve the run-
time and memory usage during BDD construction. They take
advantage of various manipulation techniques to reduce the
size of BDDs. The authors of [11] proposed a new streaming
BDD manipulation that never causes memory overflow. The
proposed method in [12] uses a new technique for comput-
ing BDDs, where the operands are themselves BDDs. The
authors of [13] took advantage of a combination of top-down
(decomposition-based) and bottom-up (composition-based) ap-
proaches to build BDDs. The work of [14] presented a new
approach that replaces recursive synthesis operations using If-
Then-Else (ITE) with MORE which is based on exchanges of
neighboring variables and existential quantification.

In addition to manipulation techniques, several research
works related to static variable ordering have been done for
BDDs. The authors of [15] proposed two static ordering
techniques based on the fanin heuristic and use the term “Max
BDD” by which they actually refer to the largest BDD within
all Primary Outputs (POs). Similarly, [16] proposed a fanout
heuristic that considers only one output of the circuit for
variable ordering. The authors of [17] used Depth-first search
with interleaving for multiple outputs. The work of [18] con-
siders multiple outputs for the Breadth-First Search (BFS) and
Depth-First Search (DFS) heuristics. However, these works

only monitor the endsize of BDDs and they do not take the
peaksize into account.

In our work, we observe the effects of static variable
ordering heuristics on the endsize and peaksize of BDDs.

III. PRELIMINARIES

To make this paper self-contained, in this section we men-
tion some important concepts that form the core of our work.

A. Binary Decision Diagrams
We first briefly summarize some basics of BDD:

o BDD: a directed, acyclic graph whose nodes have two
edges associated with the values of the variables 0 and
1. A BDD contains two terminal nodes (leaves) that are
associated with the values of the function O or 1.

e Ordered BDD (OBDD): a BDD, where the variables
occur in the same order along each path from the root to
a leaf.

e Reduced OBDD (ROBDD): an OBDD that contains a
minimum number of nodes for a given variable order.

We refer to ROBDD as BDD in the rest of the paper.
BDDs are canonical; therefore, if two circuits have identical
functionality, their BDDs will also be identical under the
same input variable ordering, regardless of the underlying
architectures. Thus, the comparison of two circuits becomes
trivial when BDDs are used since we only need to compare
the root pointers of the BDDs [19]. This makes equivalence
checking using BDDs a very powerful tool in the area of
formal verification.

Despite being such a powerful tool in formal verification,
BDDs have some weaknesses as well. One such weakness
is the size of BDDs, which is very sensitive to how the
input variables are arranged for constructing a BDD. It is
possible that for a certain input variable order, the size
of a BDD is polynomial, and for another one it may be
exponential in size. Fig. 1 shows the BDDs created for the
function f(x1,x2, 23, x4, x5, 26) using two different variable
orderings. The input variable ordering B produces a compact
BDD whereas the input variable ordering A produces a large
BDD.

The choice of input variable orders can be made before the
construction using static variable ordering heuristics or during
the construction of BDDs using the dynamic variable ordering
heuristics.

B. Static Variable Ordering Heuristics

In static variable ordering heuristics, the input variables of
a circuit are usually arranged by trying to find some relations
between the architecture of the circuit and the ordering of
input variables. A number of different heuristics have been
developed in the past by leveraging the architecture of a given
circuit or employing modern sorting or searching algorithms.
Some heuristics are as follows:

« Initial Order: Variables are ordered as they are declared

in the circuit description.
o Reverse Order: Initial input variable order is reversed.



f(x1,x2,x3,x4,x5,x6) = (x1.x2) + (x3.x4) + (x5.x6)

Input Ordering A:
x1 x3 x5 x2 x4 x6

Input Ordering B:
x1 x2 x3 x4 x5 x6

1
1
1
1

x1 1 x1
1

x3 : x2
1

x5 1 x3
1
[}

x2 \ x4
1

x4 : x5
1

X6 1 x6
1
1
[}
1

Fig. 1: BDD of a f(x1,22, 23, x4, x5, 26) using two different
input variable orderings

+ Dependency Order: The variables which influence more
outputs are given priority [20].

o DFS Order: DFS applied to circuit [18].

o Fanin Order: The deeper inputs in the circuit are given
priority [15].

o Fanout Order: The inputs with more fanouts in the
circuit are given priority [17].

+ Random Order: The input variable orders are generated
randomly.

e BFS Order with Interleaving: BFS is applied to the
circuit and the input variables that are unique to each
output are inserted using interleaving [18].

o« BFS Order with Appending: BFS is applied to the
circuit and the input variables that are unique to each
output are appended to the end [18] [17].

Some heuristics calculate input variable orders per output
and the final input variable order for the complete circuit
is created by arranging inputs variables based on priority of
outputs they influence (i.e., the inputs of the output with higher
priority have precedence).

C. CUDD

Colorado University Decision Diagrams (CUDD) is a pack-
age in C/C++ language that allows easy manipulation of
BDDs. The package consists of a large set of functions that can
be used to work with BDDs in different ways. With the help
of the built-in functions, different statistics related to BDDs
can be acquired.

IV. PROPOSED WORK

In this section, we describe the proposed framework to
monitor the effects of static variable ordering heuristics on the
construction of BDDs. First, we provide an overview of the
framework. Then, we describe each module of the framework
in detail.

A. Framework

Fig. 2 shows the framework that we developed for moni-
toring the BDDs during construction. Based on the tasks, the
framework can be divided into two parts

e Variable Order Generator
¢ BDD Generator

1) Variable Order Generator: The VOG, as shown on the
top of Fig. 2, takes the circuit file as input and based on the
heuristic of choice, generates the input variable order for the
respective circuit. The generator starts with parsing the circuit
file and sends the parsed data to the variable extractor. At
the moment, parser is capable of processing bench and isc
files. The parsed data is used by the variable extractor to
obtain the necessary information about the circuit, e.g., the
number of inputs and outputs and the structure of circuits.
This information is utilized by the algorithms that run at
the back-end of the VOG. These algorithms, based on their
respective heuristics, arrange the input variables for the given
circuit. Once the task of the VOG is completed and an input
variable order is successfully computed, the order is saved in
the variable order database; hence, it can be used by the BDD
generator.

2) BDD Generator: The BDD generator, as shown at the
bottom of Fig. 2, performs the construction and monitoring
of the size of the BDD. When the input variable order is
generated, the main BDD generator can proceed with its task
of construction. The BDD generator also starts with parsing
the circuit file and extracting all the necessary information
that is required to construct the BDD. Once the circuit is
parsed, a netlist of all the gates and their connections is
created. After the netlist generation, the CUDD package is
initialized and the input variables are arranged by the variable
sorting module with the help of the previously generated order
by the VOG. After this point, the BDD construction begins,
starting from the outputs and traversing each gate in the netlist,
until either an input is reached or the generation is complete.
During each iteration, the total nodes that are created by the
CUDD package for the purpose of constructing the BDD, are
monitored by the peaksize monitor. The peaksize of the circuit
along with the gate ID which is traversed during the iteration
is saved in a separated file format (CSV) in the monitoring
database. With every entry into the monitoring database, some
additional parameters like the number of alive and dead nodes
are also saved. The collective BDD nodes of all the outputs
and the BDD size of individual outputs are also monitored
as the outputs may share some of the nodes. After all the
outputs of the circuits are completed, the final statistics like
run-time and endsize are saved by the endsize monitor in the
monitoring database and the framework is terminated. In this
work, we perform the calculations and experiments on the
complete circuits and aggregate the results of all the outputs.
The endsize of the circuit can be defined as

endsize = Z O; — 1y, (D
i=0
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Fig. 3: Comparison of peaksize of two simple circuits with
same functionality and their BDD

where O; is the final size of the ith BDD and n is the total
number of outputs in a circuits. 74 is the number of nodes that
are shared by BDD of each output.

With the help of the framework, the growth of BDDs can
be closely monitored. This can be beneficial in two ways:
1) the growth pattern allows us to select static variable ordering
heuristics that reduce the memory requirements of the BDD
construction by reducing the peaksize of BDD. Choosing a
heuristic that reduces the memory requirements can allow
the BDDs to be constructed on resource-constrained devices.
2) Since the size of BDD is monitored so meticulously, the
point where the BDDs construction fails is recorded. This
can help us to identify and mitigate failures due to resource
constraints by exploring circuit optimization techniques.

Fig. 3 shows the peaksize and endsize of two circuits with
initial ordering (i.e., the input order is same as given in the
circuit file). Both circuits represent an XOR gate.

f(A,By=A®B=(A+B)-(A+B). )

Circuit A uses the basic gates to implement this XOR gate

(NAND, OR and AND) and Circuit B directly implements
the XOR gate. It can be seen in the table in Fig. 3 that both
of them have the same endsize but the peaksize is different.
Thus a different choice of gates used can lead to different
requirements of memory for the BDD construction. Therefore,
by exploring different gate-level optimizations, the memory
consumption during the BDD construction of a circuit can be
reduced.

V. EXPERIMENTAL RESULTS

The experiments have been carried out on an Intel(R)
Core(TM) i7-8565U CPU @ 1.80GHz with 15 GByte of main
memory. The timeout (T.O.) for constructing BDDs is set to
3600 seconds.

We evaluate the efficiency of our framework using ISCAS85
[21], ISCAS89 [22] benchmark sets. The circuits with sequen-
tial profiles were first converted into combinational circuits,
i.e., the flip flops within these circuits were removed and
substituted with new input and output variables. The wide
variety of circuits within these benchmark sets allows us to
observe the trends and the effects of our desired parameters.
We ran extensive experiments on all the circuits from each
benchmark set but we present results for only some selected
static ordering heuristics and circuits from each benchmark set
to keep the results concise.

A. ISCASS8S5 circuits

Table I shows the circuits from the ISCAS85 benchmark set.
The first column shows our selected variable ordering heuristic
and the first row shows the name of the circuits. Within the
ISCASS85 benchmark, we have selected c499 which is a 32-bit
Single Error Correcting (SEC) circuit, and ¢880 which is an 8-
bit Arithmetic Logic Unit (ALU). The c1355 circuit performs
the same functionality as that of a c499 circuit but the XOR
gates are replaced with an equivalent made from four NAND
gates. The c2670 circuit is a 12-bit ALU and lastly, c6288
is a 16x16 multiplier circuit. The details about the selected



static variable ordering heuristics can be seen in the section
III-B. The peaksize in the table shows the maximum number
of nodes that were created during the construction of the BDD
using the respective static variable ordering heuristics and the
endsize shows the final number of nodes of all the outputs of
the circuit as defined in Equation (1). The bold text within
each column shows the smallest peaksize and endsize among
the given static variable ordering heuristics for each circuit.

We can see from the results that generally, the peaksize
of the circuits is larger in all cases, but even within the
same circuit, some static variable ordering heuristics produce
a peaksize that is substantially larger than the others. For
example, in the circuit c880, the peaksize for the initial order
is ~ 22z larger than the BFS heuristic. This difference is
also notable in the run-times of both scripts, in which the
initial order is ~ 10z slower with a run-time of 1.2sec and
BFS order has a runtime of 0.12sec. Another notable thing is
the comparison of peaksizes and endsizes of c499 and c1355.
Despite having the same functionality, the peaksize of c1355
is ~ 3z larger than the peaksize of c499 and the construction
of BDD for the initial order is two times slower for c1355.
Using the BFS ordering heuristics, the ordering of ¢499 and
c1355 generated by the algorithm is different which explains
the different endsizes, which is in line with our claim. The
c2670 also shows similar behavior where the heuristic with
smaller peaksize is faster despite having a larger endsize. It
should be noted that the last recorded peaksize for an ordering
that is not completed is not always a large value. A smaller
value of the last recorded peaksize for c2670 using fanin order
points out a possible size explosion at the next step. The
circuit c6288 in the ISCAS85 benchmark set fails to produce
final BDDs for almost all the ordering heuristics. The BDDs
of multipliers tend to explode and this is why almost every
heuristic produces a large peaksize [2], [23]. The heuristics that
manage to produce a final BDD, do it at an expense of a huge
peaksize and longer run-times. In some cases, the construction
time of BDDs skews a little despite having similar peaksize
and endsize, this is due the code instrumentation done by the
framework to monitor the peaksize and other attributes of the
underlying circuits.

B. ISCAS89 circuits

Table II shows the circuits that were selected from the
ISCASS89 benchmark set. Within the ISCAS89 benchmark set,
we selected fractional multipliers cs420, cs838a, real chip
based circuits ¢s9234 and cs13207, and a c¢s1423 circuit.
The first column shows the selected static variable ordering
heuristic and the first row shows the circuit. The peaksize
values with the asterisk show the last known peaksize value
that was recorded by the framework before the code was
terminated. The bold values show the smallest peaksize and
endsize of the BDDs of the respective circuits among different
static variable ordering heuristics. It can be seen that the static
variable ordering heuristics that produce higher peaksize take
longer time to run. Most of the orders that produce higher
peaksize also produce higher endsize. However in circuit

¢s9234, it can be seen that fanin order, despite producing
a higher endsize, takes less time to execute than the fanout
or initial order and the difference lies in the peaksize of
both the circuits. The slight skew in the run times of circuits
despite having similar peaksizes and endsizes is due to the
code instrumentation. Sometimes two heuristics produce the
same input variable order which yields identical peaksizes and
endsize

VI. DISCUSSION AND FUTURE WORK

In this section, we discuss some observations and propose
some future works with respect to the framework and peaksize.

In most of the cases, within the benchmark set, the trend
of peaksize followed that of the endsize. Within the selected
benchmark set, there was a wide variety of circuits available,
but it was difficult to group them based on similarities in
the circuit architecture. This hampered our ability to closely
observe any architecture related trends. A more focused study
of a similar category of circuits can be beneficial as it can
allow clearer insight into the peaksize and how different types
of circuits influence peaksizes with static variable ordering
heuristics. For instance, it will be useful to see how static
variable orderings affect the peaksizes of BDDs for complex
arithmetic circuits.

This work was aimed to highlight the importance of peak-
size. The aspect of optimizations on circuits to reduce peaksize
is still unexplored. Exploration of optimization techniques to
reduce the peaksize can help with the memory limitations as
well as the long runtimes when constructing BDDs of complex
circuits.

VII. CONCLUSION

In this paper, we presented a framework to monitor the
BDD size during construction. The proposed framework used
variable order generator to compute an input variable order
for a circuit and a BDD generator, with CUDD at its heart,
to monitor important parameters in particular peaksize. With
the help of the framework, we observed how popular static
variable ordering heuristics affect the peaksize and endsize
of the BDDs using popular benchmark sets (ISCASS8S5, IS-
CASR89). With the help of experiments, we were able to show
the importance of peaksize when considering the static variable
ordering heuristics. A static variable ordering heuristic that
lowers the peaksize of the circuit can help save memory and
accelerate the construction.
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