
ML-based Power Estimation of Convolutional
Neural Networks on GPGPUs

Christopher A. Metz1 Mehran Goli1,2 Rolf Drechsler1,2
1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{cmetz, mehran, drechsler}@uni-bremen.de

Abstract—The increasing application of Machine Learn-
ing (ML) techniques on the Internet of Things (IoTs) has led to the
leverage of ML accelerators like General Purpose Computing on
Graphics Processing Units (GPGPUs) in such devices. However,
selecting the most appropriate accelerator for IoT devices is very
challenging as they commonly have tight constraints e.g., low
power consumption, latency, and cost of the final product. Hence,
the design of such application-specific IoT devices becomes a
time-consuming and effort-hungry process, that poses the need
for accurate and effective automated assisting methods.

In this paper, we present a novel approach to estimate
the power consumption of CUDA-based Convolutional Neural
Networks (CNNs) on GPGPUs in the early design phases. The
proposed approach takes advantage of a hybrid technique where
static analysis is used for features extraction and the K-Nearest
Neighbor (K-NN) regression analysis is utilized for power es-
timation model generation. Using K-NN analysis, the power
estimation model can even be created with small training datasets.
Experimental results demonstrate that the proposed approach
is able to predict CNNs power consumption up to a Absolute
Percentage Error of 0.0003% in comparison to the real hardware.

I. INTRODUCTION

The number of IoT devices that leverage Machine Learn-
ing (ML) algorithms are considerably increased in the last
decade, ranging from manufacturing to scientific-, health-
and security-related applications [1], [4], [5]. Among the
existing ML algorithms, Convolutional Neural Network (CNN)
is widely used in pattern recognition tasks and image analysis
due to its ability to handle large and unstructured data [15].
However, CNNs require high computational resources. For
example, the convolutional layers, made up of 4-dimensional
convolutions, are responsible for over 90% of the computation
and require processing massive amounts of data with poten-
tially trillions of computations per second [14]. Due to these
huge computations, designers take advantage of hardware
accelerators such as General Purpose Computing on Graphics
Processing Units (GPGPUs) to gain performance and meet the
time-to-market constraints.

One of the major challenges that designers are commonly
faced during the design phase of such IoT devices is to choose
the right ML accelerator that adheres to the design constraints
such as low power consumption, latency, and cost of the final

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project VerSys under contract
no. 01IW19001, by the Data Science Center of the University of Bremen
(DSC@UB), and by the University of Bremen’s graduate school System
Design (SyDe).

products [2], [3]. For example, assume that designers need to
design an IoT device where its CNN application is performed
on a GPGPU (as hardware accelerator). In the case that the
power consumption and battery lifetime of the IoT device are
considered as the design constraints, choosing the most proper
GPGPU early in the design phase can significantly avoid
costly design loops occurring as fewer prototypes need to be
built. Moreover, in the case of Cloud-based IoT devices where
data processing of the CNN application performs remotely
on Cloud-based accelerators (i.e., GPGPUs), choosing an
appropriate GPGPU can significantly reduce the renting cost,
resulting in a direct impact on the cost of the final product.

Power estimation techniques have been shown as a promis-
ing solution to approach this issue. A robust power estimation
approach enables designers to choose the most appropriate
GPGPU that meets the constraints, early in the design phase.
Existing methods mostly rely on so-called performance coun-
ters [6]–[8] to estimate power consumption. As a consequence,
their estimation depends on the run-time data, meaning the
ML model must be run once on the target GPGPU that the
performance counter results can be measured. However, this
can limit the usage of such methods in the early design phase
as the GPGPU must already be selected. Moreover, this can
increase the required analysis time.

In this paper, we focus on the power estimation of CNNs
on GPGPUs that is one of the most popular ML algorithms
in automated manufacturing. We presented a novel approach,
enabling designers to predict the power consumption of a
given CNN even with small training datasets in the early
design phases. The proposed approach takes advantage of a
hybrid technique where static analysis is used for features
extraction and the K-Nearest Neighbor (K-NN) regression
analysis is utilized for power estimation model generation.
The static analysis for features extraction is performed on
Parallel Thread Execution (PTX) code (which is generated at
compile time) of CNNs, GPGPUs’ architectural information,
and CNNs topology. To create the power estimation model,
we use K-NN which is a non-parametric clustering approach
based on distances between data points in a latent space. K-
NN can also perform regressions, the output is the average of
the values of k nearest neighbors.

Experimental results illustrate the effectiveness of our ap-
proach in estimating the power consumption of CNNs on
GPGPUs where up to a Absolute Percentage Error of 0.0003%
in comparison to the real hardware execution is achieved.978-1-6654-9431-1/22/$31.00 ©2022 IEEE

II. RELATED WORK

The existing solutions to predict the power consumption of
CUDA-based applications can be divided into two main cate-
gories which are 1) the statistical analysis of the application
and devices, e.g. [19], [25], [26], and 2) ML-based methods
which use different machine learning algorithms to learn the
difficult rules from a dataset and create a predictive model,
e.g. [6]–[8], [20], [27]. Based on the literature [17], [24],
ML-based methods provide better results in comparison to the
statistical analysis and become the predominant technique to
predict the power consumption of CUDA-based applications.
Hence, in this section, we give an overview of ML-based
methods and discuss their features and issues.

Existing ML-based methods use so-called performance
counters as features [6]–[8], [19], [20], [27] to perform power
consumption estimation. Performance counters can only be
collected and measured during run-time. This means, that an
application needs to be executed once on a real device to
collect the performance counters. Afterward, the predictive
model can run the prediction for other devices. Using this
kind of methodology can limit the usage in early design phases
as a GPGPU must already be selected. Moreover, measuring
performance counters requires a special GPGPU and CUDA
profiler.

The method in [6] uses tree-based regression to predict
the power consumption. It analyzes the GPGPU architecture
and measures the power consumption of PTX instructions.
However, as the method takes advantage of GPGPUSim, it
is limited to a small subset of available PTX instructions.

The method in [21] considers scaling frequencies of GPGPU
cores and memory for performance estimation. For power
consumption estimation, it takes advantage of the [27] which
relies on Support Vector Machines (SVM) and performance
counters. However, performance counters are only available
at run-time and limit this approach to be used in early design
steps.

The method in [22] introduces an approach to estimate
the performance (run-time) of CPU code before porting it
to GPGPU code based on machine learning methods. This
makes it possible to decide whether executing on GPGPU
gives a performance boost or not. A similar goal is pursued in
[23] but the prediction can be already performed on GPGPU.
The method uses CPU profile data and machine learning
methods to estimate the run-time on GPGPUs. However, both
aforementioned methods do not support power consumption
prediction. They only consider run-time speed up between
CPU and GPU. In contrast, we focus on power consumption
estimation on GPGPUs.

PPT-GPU is a scalable GPU performance modeling sys-
tem [16]. However, it does not support power consumption
estimation yet. In [9], a layer-wise estimation approach is
illustrated. It focuses on embedded GPUs and only considers
platforms of the Nvidia Jetson family. ALOHA [17] presents
a statistical platform-aware evaluation method for CNNs exe-
cution on heterogeneous Systems. For a given heterogeneous
system and CNN, it can provide designers with operations
and data transfers and their deployment on computing and
communication resources. Moreover, it reports an estimation

of latency and energy consumption of the CNN on the
platform. However, the method requires an execution model
that properly describes the details of the platform and the
scheduling of different CNN operators on different platform
processing elements, which may not be always available.

Our approach does not rely on any run-time information
and uses high-level hardware specifications, PTX code, and
CNNs attributes which are available at the early stage of
design and development. This can significantly help designers
in performing the design space exploration of IoT devices and
also speed up this process.

III. ML-BASED POWER ESTIMATION METHODOLOGY

In order to estimate the power consumption of CNNs in the
early design stage, it is important to focus on the information
which is available at this stage. The early available information
that even does not rely on CNNs execution on real devices
is 1) the GPGPUs’ architectural details that are available for
the different GPGPUs, 2) the low-level PTX code that can
be generated at compile time, and 3) CNN architecture and
topology that can be distinguished by its trainable parameters.
In contrast to [7], [8], we focus on extracting features from
the aforementioned sources for the power estimation and do
not rely on the performance counter which is only available at
run-time. It means that to collect features for power estimation,
the aforementioned methods require at least one execution on
a real device. This can limit the usage of such methods in
the early design stage as the target GPGPU must already be
selected.

A. Methodology Overview

The proposed methodology is illustrated in Fig. 1 which
has three main phases: 1) information extraction, 2) training
dataset creation, and 3) predictive model generation.

In the first phase, we searched for different CNNs and
analyze how they load different components of GPGPUs.
We compare the architectural information (e.g. CUDA Cores,
Memory, or L2 Cache) which are available for different
series of GPGPUs. By this, those GPGPUs’ attributes and
components which have an impact on performing CNN models
are extracted. Next, we compile the CNNs to PTX and analyze
the PTX code for each CNN. We extract the instructions which
are loaded into the GPGPU and build classes of them. Each
class contains the number of instructions in the PTX code for
a CNN. We also do a high-level CNN analysis and extract the
number of trainable parameters for each CNN.

In the second phase, we build a training dataset where
the classified extracted CNN instructions and the GPGPU
components (that have an impact on performing CNN models)
are considered as inputs and the amount of power consumption
for each CNN running on the GPGPU as output. The amount
of power consumption for each CNN is measured on three
different Nvidia GPGPUs (K80, 1080Ti, and V100S) with
the Nvidia-smi tool. Since the K-NN regression algorithm is
sensitive to the selected features [13], the right combination
of features needs to be detected. Thus, instead of using all
extracted data as features, we run several combinations to
search for the most relevant features. Having fewer features

CNNs
PTX

GPGPUs
Loaded

Components

PTX Analyzer
CNNs

Classified
Instructions

CNN Analyzer

CNNs
Trainable

Parameters

Training
Data

k-NN
Predictive

Model

1) Information Extration

3) Predictive Model Generation

Subsets

2) Training Dataset
Creation

Fig. 1. Overview of the proposed methodology.

leads to simpler models that require shorter training time,
reduce the chance of overfitting, and are easier to interpret.

Next in the third phase, we apply the K-NN regression al-
gorithm to the generated training dataset for power estimation
model generation. Once the predictive model is trained it can
be used to estimate the power consumption for a given CNN
on different GPGPU architectures.

B. GPGPUs Architecture Analysis

The power consumption of GPGPUs is affected by many
factors. Nvidia lists all the GPGPU’s architectural details
in [11], [12]. We extract the architectural details for each
GPGPU in our experimental setup. The values for the compo-
nents are transformed into comparable measurement units to
make sure the ML method gets the feature for different GPG-
PUs in the same unit. Moreover, we execute several CNNs on
different GPGPUs and monitor the component utilization. This
gives us more precise details of which component is affected
by CNNs execution and is involved in the power consumption.
Furthermore, we also consider GPGPUs architectural attributes
which are maximum temperature, transistor size, or maximum
power supply. This gives more differentiation between the
various GPGPUs.

C. PTX Instructions Analysis

Nvidia provides designers with the CUDA Library to de-
velop GPGPU applications and to write proper code for
GPGPUs programming. Nvidia GPUs run so-called kernels.
Each kernel is a set of PTX instructions which is generated by
compiling the CUDA code with nvcc compiler. The PTX code
is a stable low-level programming model and Instruction Set
Architecture (ISA) for general purpose parallel programming.
Fig. 2 shows a part of the PTX code of a given CNN. The
PTX code is given to the GPGPU driver and interpreted at
run-time [10]. The PTX code contains detailed information of
all memory accesses (read or write) as well as computational
instructions which will be executed on the GPGPU.

For a given CNN, a static analysis is performed on its
corresponding PTX file to count the number of appearances of
the instruction that has an impact on the power consumption of

1 // Generated by LLVM NVPTX Back-End
2 .version 6.0
3 .target sm_70
4 .address_size 64
5 // .globl copy_11
6 .visible .global .align 64 .b8 buffer_for_constant_21

[1048576];
7 .visible .global .align 64 .b8 buffer_for_constant_34[4]

= {0, 0, 128, 255};
8 .visible .entry copy_11(
9 .param .u64 copy_11_param_0,

10 .param .u64 copy_11_param_1,
11 .param .u64 copy_11_param_2)
12 .reqntid 72, 1, 1 {
13 .reg .b32 %r<38>;
14 .reg .b64 %rd<55>;
15 ld.param.u64 %rd1, [copy_11_param_0];
16 ld.param.u64 %rd2, [copy_11_param_1];
17 cvta.to.global.u64 %rd3, %rd2;
18 ...}

Fig. 2. A part of the PTX file of a CNN model.

the CNN when it runs on a GPGPU. Moreover, we read out the
number of threads that are started by the execution of the PTX
code. The number for each instruction is multiplied by the
number of threads to consider the effect of threads on CNN’s
power consumption when it runs on the GPGPU. The result
of this analysis is stored in the CNNs Classified Instructions,
including a set of classes (each instruction is associated with a
single class) and the number of calls in the PTX code. Hence,
not all existing PTX instructions are used for power estimation
model generation, instead, we only consider those instructions
that appear in the PTX code of CNN benchmarks and have a
direct impact on power consumption. As illustrated in Fig. 1
phase 1, the static analysis is performed by PTX Analyzer
module for several PTX files from different CNN algorithms.
The results of this analysis are used to create the training
dataset in the next step.

D. CNN Topology Analysis

Every CNN can be characterized based on its architecture
and topology. The main feature for this characterization is the
CNN’s trainable parameters. Trainable parameters are those
which changed during the training and are also often refer
as weighted connections between each neuron. The number
of trainable parameters varies over the different CNNs and
gives an additional feature to separate the complexity of
different CNNs. The number of trainable parameters of a CNN
shows its complexity, meaning it contains more computational
operations. Hence, we distinguish a given CNN from others
by considering the number of its trainable parameters. This
enables us to add more difference into the training dataset for
each CNN and to make it distinctive.

As illustrated in Fig. 1–phase 1, these values are extracted
by CNN Analyzer module for all CNN benchmarks. The results
of this analysis are stored in the CNNs Trainable Parameters
and used to create the training dataset in the next step.

E. Creating Training Dataset and Predictive Model

In order to build the prediction model, it is important to
have a robust training dataset. We take advantage of the
extracted information from the first phase of the proposed

TABLE I
EXAMPLE OF TRAINING DATASET STRUCTURE USED TO CREATE THE PREDICTIVE MODEL

Observation CNNs Classified Instructions GPGPU Components CNNs Trainable Parameters Power Consumption
Data movement and conversion Floating-Point ... Class N CUDA Cores ... SM (Output)

CNN1 on GPGPU1 8 3 5120 ... 80 25549352 Power1
CNN1 on GPGPU2 8 3 4352 ... 68 25549352 Power2
CNN1 on GPGPU3 8 3 3584 ... 28 25549352 Power3
CNNn on GPGPUm Powern*m

methodology to build the training dataset D based on the
following definition.

D = {di |di = {yi , (pi , ci , ti)}; 1 ≤ i ≤ n} (1)

Where the parameters p, c, t are considered as inputs (the
predictors) of the training dataset and denote the classified
extracted CNN instructions, the GPGPU components (that
have an impact on performing CNN models), and the CNN
trainable parameters, respectively. The parameter y indicates
the measured power consumption for each CNN running on
the GPGPU and is considered as the output (the response)
of the training dataset. Each pair of predictors and the cor-
responding response is considered as one observation that
depicts with parameter d .

In order to give an overview of the training dataset D ,
Table I demonstrates a part of its structure. The CNNs Classi-
fied Instructions column lists a part of instruction classes and
for each class the number of extracted instructions. Column
GPGPU Components shows a part of the relevant architectural
components. Finally, the CNNs Trainable Parameters column
depicts the last input (predictor) of the training dataset. The
last column shows the power consumption measured by exe-
cuting the PTX code of each CNN on a real GPGPU. Thus,
each row of the table indicates an observation d in the training
dataset D where the first three columns are the predictors (or
features) while the total power consumption (column Output)
is the response. The training dataset is split into 70% for the
training phase and 30% for the validation phase.

1) Feature Selection: Features that exert little impact on
the estimation model should be eliminated to reduce the
dimensionality of the training dataset. The reduction in the
number of features leads to simpler models that require shorter
training time, decrease the chance of overfitting, and are easier
to interpret. The K-NN algorithm (that is used in this work
for predictive model creation) is sensitive to redundant or
irrelevant features [13]. In order to find the best features com-
bination and eliminate irrelevant features, we build different
subsets of the main training dataset D where Ts ⊂ D . We
start with combinations out of nine different predictors and
define the following three types of subsets based on them by
considering:

• nine predictors out of all possible ones

Ts1 = {di |di = {yi , (ci , pi , ti)}; 1 ≤ i ≤ n} (2)

• two subsets where at least one predictor from c must be
included:

Ts2 = {di |di = {yi , (ci , pi)}; 1 ≤ i ≤ n} or

Ts2 = {di |di = {yi , (ci , ti)}; 1 ≤ i ≤ n} (3)

• a combination of predictors from p and t where

Ts3 = {di |di = {yi , (ti , pi)}; 1 ≤ i ≤ n} (4)

Since the GPGPUs’ components predictor has a lot of
redundancy with little changes in the training dataset, the
statistical automatic feature selection techniques based on
variance cannot be used for feature selection due to confusion.
The main reason is that the GPGPUs’ components predictor
marks as a low impact predictor by the statistical feature
selection. Hence, we select the features manually to solve
this issue. The experimental results in Section IV confirm the
importance of the GPGPUs’ components predictor in creating
the best predictive model.

2) K-Nearest Neighbors: In order to predict the power
consumption of a given CNN, K-NN regression is applied
to different subsets Ts of the training dataset D in the
definition (1). K-NN is a nonparametric clustering algorithm.
It can be used to perform regression prediction by calculating
the average value of the k nearest neighbors’ values where Y
denote the new predicted output and yi is the output of the
i th nearest neighbor.

Y =
1

k

k∑
i=1

yi (5)

In order to find the k nearest neighbors, a distance metric is
applied to all elements in the training dataset and the new
element whose value is to predict. As a consequence, the
run-time and complexity is linear scaling with the number
of elements in the training dataset. K-NN can be used with
different metrics like Euclidean, squared Euclidean City-block,
and Chebychev [13]. We use the Euclidean Distance. The
Euclidean Distance d between two vectors q and p is defined
as follows:

d(p, q) =

√√√√ n∑
i=1

(qi − pi)2 (6)

3) Finding the right K: One of the main challenges of
applying the K-NN algorithm to a training dataset for pre-
diction is to find the right k . While a large value for k can
smoothen the prediction and be assistant with noisy data, a
small value of k can corrupt the estimation model. In order
to overcome this issue, we perform several experiments of
running K-NN for each feature combination, with k in the
range starting from one to 20. Since there is no considerable
improvement achieved by k values larger than ten, we set the
maximum value of k to 20 (see full experiments in Section IV).
The K-NN estimates the power consumption by calculating the
average power consumption of the k nearest data point in the
training dataset.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0 5 10 15 20 25

M
A

P
E

k

Only Architectural Predictors All Predictors

Best Predictor Combination Only PTXAutomatic feature selection

Fig. 3. MAPE value for different k ranging from one to 20.

TABLE II
EXPERIMENTAL RESULTS FOR DIFFERENT INPUT FEATURE COMBINATIONS

Training dataset subsets k RMSE MAPE R2
Automatic feature selection 3 25.784 0.2322 0.3417
All predictors 18 33.877 0.2270 -0.1934
Only architectural predictors 1 33.2414 0.2169 -0.1613
Only PTX predictors 7 29.8188 0.2412 0.0654
Best predictors combination 5 13.657 0.08849 0.8156

After running the different combinations, we search for the
best results in the log file and build the final model based on
the best feature combination. Therefore, the obtained predic-
tive model can be used to estimate the power consumption of
CUDA-based CNNs on GPGPUs.

IV. EXPERIMENTAL RESULTS

Since the quality of the predictive model is very related to
the robust training dataset, five different subsets of the training
dataset were created based on the selection of different features
(predictors) combination explained in Section III-E1. In order
to evaluate the quality of the generated predictive model for
each subset of the training dataset, three different standard
metrics were applied which are 1) Root Mean Squared Er-
ror (RMSE), 2) MAPE, and 3) R2. The lower value for RMSE
indicates the better estimation model. The values of MAPE are
between zero to one, where the value one stands for an error
of 100%. R2 is a value between zero and one, where one
stands for a high correlation between model and data while a
negative value indicates no correlation. We also considered
the impact of different k values on the predictive model
generation when applying the K-NN regression algorithm
to each subset of the training dataset. Fig. 3 illustrates the
MAPE for different k values for 1 ≤ k ≤ 20 . As there is no
considerable improvement by k values larger than 10, we only
performed the experiment by considering the value of k up to
20.

Table II demonstrates the experimental results of our analy-
sis for each subset of the training dataset for the best value of
k . Column Training dataset subsets lists the features combina-
tion that were used to create the best predictive model which
are 1) Automatic feature selection 2) All predictors, 3) Only
GPGPUs’ architectural predictors, 4) Only PTX predictors,

TABLE III
DESCRIPTIONS OF THE BEST PREDICTORS (FEATURES) COMBINATION

Features Brief description
CUDA Cores Number of CUDA core the GPGPU has
RAM Amount of GPU memory
Base Frequency The base frequency of the GPGPU cores
Storage Speed Bandwidth speed for Storage access
GFLOPS Number of Floating Point Operations per Second
Memory Clock Frequency of GPGPU memory
L2 Cache size Size of L2 Cache of GPGPU in KB
ret Number of PTX instructions
trainable params Number of learnable and changeable parameters

and 5) Best predictor combination. Please note that, for the
case of Automatic feature selection subset, different automatic
feature selection methods were used where the best result is
shown in the table that belongs to the F-statistic automatic
feature selection method.

As illustrated in Table II, the generated predictive model
based on the Automatic feature selection subset (using the F-
statistic method) has a MAPE of 23.22% which is even worse
than the case of All predictors where no feature reduction is
applied. For the case of All predictors, a MAPE of 22.7%
was achieved. This also shows that leveraging the automatic
feature selection methods (e.g. F-statistic) does not improve
the quality of results in this case. By generating a predictive
model based on Only GPGPUs’ architectural predictors, we
could improve the quality of estimation to a MAPE of 21.60%.
However, for both experiments, the R2 has a negative score
which indicates that the regression model does not fit the data.
In the case of generating the predictive model based on Only
PTX predictors, we could obtain a better result in terms of
RMSE and R2. However, the MAPE of 24.12% indicates the
highest error percentage over all Experiments. Based on our
experiments, the best power consumption predictive model is
obtained by combining the features described in Table III. The
power consumption predictive model has an R2 of 81.56%
which indicates a high correlation between the chosen input
features and the power consumption. In this case, a MAPE of
8.8% is obtained.

In order to validate the quality of the generated predictive
model, we applied the proposed approach on various new
CNNs which have not been used in the training phase. Fig. 4
illustrates the predicted (in blue) and the original value of
power consumption (in orange) for 12 different CNNs on the
Nvidia GTX 1080Ti. As shown in this figure, for some CNNs
such as Vgg19 and Vgg16, the prediction is nearly identical to
the original value.

In comparison to [3] with an average MAPE of 8.4% for the
power consumption predictive model, the proposed approach
using K-NN regression achieves almost the same results with
only 0.4% accuracy reduction on average. However, in the best
case, the proposed approach has better accuracy and a lower
absolute percentage error. The best power consumption estima-
tion result belongs to the Vgg19 CNN with 0.0003% Absolute
Percentage Error while the estimation result using [3] reports
an Absolute Percentage Error of 0.73%. Another important
point that must be taken into account is that the proposed
approach based on K-NN regression only needs nine instead

vg
g1

6
vg

g1
9

eff
icie

ntn
etb

0

eff
icie

ntn
etb

1

eff
icie

ntn
etb

2

eff
icie

ntn
etb

3

eff
icie

ntn
etb

4

eff
icie

ntn
etb

5

eff
icie

ntn
etb

6

eff
icie

ntn
etb

7

Mob
ileN

et
V2

Alex
Net

60

80

100

120

140

160

180

wa
tts

original
prediction

Fig. 4. Scatter plot of the predicted power consumption for different CNNs
on the Nvidia GTX 1080 Ti with 8GB Memory.

of 29 features used by [3] to achieve these results. It means
that the interpretation of the generated power consumption
predictive model using the proposed approach is much easier
than [3]. Due to this low number of features, understanding
the importance of features is easier for designers which can
further help them for design space exploration. Moreover, the
experimental results demonstrate that the proposed approach
based on the K-NN regression provides designers with an
easy-to-interpret and fast power consumption estimation so-
lution, obtaining promising results even with small training
data.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel power consumption
estimation approach for CUDA-based CNNs on GPGPUs
based on the nonparametric K-NN regression method. We
illustrated how the power consumption of a given CNN on a
GPGPU can be estimated by analyzing its PTX code, CNNs’
topology, and GPGPUs’ architectural Information. We also
showed using the K-NN regression, promising results on even
small training datasets can be achieved. One of the main
usefulness of the proposed approach is for the design space
exploration of IoT devices where CNN algorithms need to
be implemented as hardware accelerators. In this case, the
proposed approach can provide designers with early power
consumption (one of the crucial design constraints) estimation
of a given CNN model on different GPGPUs at the compilation
time. Experimental results on various CNNs demonstrated the
advantage of our approach in power consumption estimation.

As future work, we plan to extend our model to any kind of
CUDA-based application. Moreover, we are planning to extend
our approach in non-functional aspects to a heterogeneous
power estimation model that is able to predict both desktop
and embedded GPGPUs’ power consumption.

REFERENCES

[1] L. Cui, S. Yang, F. Chen. et al. “A survey on application of machine
learning for Internet of Things”, In Int. J. Mach. Learn. & Cyber. 9, pp.
1399–1417, 2018

[2] C. A. Metz, M. Goli and R. Drechsler, “Pick the right edge device:
torwards power and performance estimation of CUDA-based cnns on
GPGPUs”, In CoRR abs/2102.02645, 2021

[3] C. A. Metz, M. Goli and R. Drechsler, “Work-in-Progress: Early power
estimation of CUDA-based CNNs on GPGPUs”, In CODES+ISSS, pp.
29–30, 2021

[4] M. Goli and R. Drechsler, “PREASC: Automatic Portion Resilience
Evaluation for Approximating SystemC-based Designs Using Regres-
sion Analysis Techniques”, In ACM Trans. Design Autom. Electr. Syst.
25(5), pp. 40:1–40:28 , 2020

[5] M. Goli and R. Drechsler, “Resilience Evaluation for Approximating
SystemC Designs Using Machine Learning Techniques”, In RSP, pp.
97–103 , 2018

[6] J. Chen, B. Li, Y. Zhang, L. Peng and J.-k. Peir, “Statistical GPU power
analysis using tree-based methods”, In IGCC, pp. 1–6, 2011

[7] J. Guerreiro, A. Ilic, N. Roma, and P. Tomás “Modeling and decoupling
the GPU power consumption for cross-domain DVFS”, In TPDS, pp.
2494–2506, 2019

[8] S. Song, C. Su, B. Rountree, and K. W. Cameron, “A simplified and
accurate model of power-performance efficiency on emergent GPU
architectures”, In SPDP, pp. 673–686, 2013

[9] M. Lechner and A. Jantsch, “Blackthorn: latency estimation frame-
work for CNNs on embedded Nvidia platforms,” In IEEE Access, pp.
110074–110084, 2021

[10] Nvidia, “CUDA TOOLKIT Documentation,” {https://docs.nvidia.com/
cuda/parallel-thread-execution/index.html}

[11] Nvidia, Nvidia Tesla V100 GPU architecture - The world’s most
advanced data center GPU, August 2017 available: https://images.nvidia.
com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

[12] Nvidia, Nvidia Turing GPU architecture, available: https://www.nvidia.
com/content/dam/en-zz/Solutions/design-visualization/technologies/
turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

[13] S. B. Imandoust, and M. Bolandraftar, “Application of k-nearest neigh-
bor (knn) approach for predicting economic events: Theoretical back-
ground,” In IJERA, pp. 605-610, 2013

[14] M. Fingeroff, Machine learning at the edge: using HLS to optimize
power and performance, The Mentor - A Siemens Business, available:
https://go.mentor.com/5 3ik

[15] Y. Djenouri, G. Srivastava and J. C. -W. Lin, “Fast and accurate
xonvolution neural network for setecting manufacturing data,” In IEEE
Trans Industr Inform, pp. 2947–2955, 2021

[16] Y. Arafa, A. A. Badawy, G. Chennupati, N. Santhi and S. Eidenbenz,
“PPT-GPU: scalable GPU performance modeling,” In IEEE Comput
Archit Lett, pp. 55–58, 2019

[17] P. Busia, S. Minakova, T. Stefanov, L. Raffo and P. Meloni, “ALOHA:
A unified platform-aware evaluation method for CNNs execution on
heterogeneous systems at the edge,” In IEEE Access, vol. 9, pp.
133289–133308, 2021

[18] Tensorflow, Tensorflow GPU, available: https://www.tensorflow.org/
install/gpu

[19] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo and S. Matsuoka, “Sta-
tistical power modeling of GPU kernels using performance counters,”
In ICGCET, pp. 115–122, 2010

[20] G. Wu, J.L. Greathouse, A. Lyashecksy, N. Jayasena and D. Chiou,
“GPGPU performance and power estimation using machine learning,”
In HPCA, pp. 564–576, 2015

[21] Q. Wang and X. Chu, GPGPU Performance Estimation with core and
memory frequency scaling, In TPDS, pp. 2865–2881, 2020

[22] N. Ardalani, C. Lestourgeon, K. Sankaralingam and X. Zhu, Crossar-
chitecture performance prediction (xapp) using cpu code to predict gpu
performance, In MICRO, pp. 725–737, 2015

[23] I. Baldini, S.J. Fink and E. Altman, Predicting gpu performance from
cpu runs using machine learning, In SBAC-PAD, pp. 254–261, 2014

[24] L. Braun, S. Nikas, C. Song, V. Heuveline, and H. Fröning. 2021.
A simple model for portable and fast prediction of execution time
and power consumption of GPU kernels. ACM Trans. Archit. In Code
Optim., pp. 1–25, 2020

[25] S. Hong and H. Kim. 2009. An analytical model for a GPU architecture
with memory-level and thread-level parallelism awareness. In (ISCA
’09), pp. 152–163, 2009

[26] T. C. Carroll and P. W. H. Wong, “An improved abstract GPU model
with data transfer,” In ICPPW, pp. 113–120, 2017

[27] Q. Wang and X. Chu. 2017. GPGPU power estimation with core and
memory frequency scaling. In SIGMETRICS Perform. Eval. Rev., pp.
73–78, 2017

