Scratch and Google Blockly: How Girls’ Programming Skills and
Attitudes are Influenced

Mazyar Seraj? Eva-Sophie Katterfeldt!

Kerstin Bub!

Serge Autexier? Rolf Drechsler!-?

nstitute of Computer Science, University of Bremen, 28359 Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{seraj,evak,kerstin.bub,drechsler}@uni-bremen.de
{mazyar.seraj,serge.autexier,rolf.drechslerj@dfki.de

ABSTRACT

Block-based programming has become popular to teach program-
ming to young students in introductory programming environ-
ments. Nevertheless, in most western countries, girls show a lack
of interest in computer science, including programming. This paper
presents the results of two user studies with 24 female German
secondary school students in two programming workshops. We
use and compare two environments based on Scratch and Google
Blockly in fostering the students’ programming skills and changing
their attitudes towards programming. The two block-based pro-
gramming editors have been chosen as they are popular in the
current educational use of block-based programming. The results
support the usage of Scratch-based environment in order to sup-
port the acquisition of programming skills. However, those students
who used the Blockly-based environment showed greater interest
in future programming learning opportunities. The contribution of
this paper is showing the different impacts of Scratch and Google
Blockly on young female students’ interest in programming and the
acquisition of programming skills in extra-curricular programming
workshops.

CCS CONCEPTS

+ Human-centered computing — Visualization; « Comput-
ers and Education — Computer-assisted instruction; - Social
and professional topics — Computer science education;

KEYWORDS

block-based programming, young female students, programming
workshop, acquisition of programming skills, attitudes towards
programming

ACM Reference Format:

Mazyar Seraj»? Eva-Sophie Katterfeldt! ~KerstinBub! Serge Autexier?
Rolf Drechsler’? . 2019. Scratch and Google Blockly: How Girls’ Program-
ming Skills and Attitudes are Influenced. In 19th Koli Calling International
Conference on Computing Education Research (Koli Calling ’19), Novem-
ber 21-24, 2019, Koli, Finland. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3364510.3364515

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Koli Calling °19, November 21-24, 2019, Koli, Finland

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7715-7/19/11...$15.00
https://doi.org/10.1145/3364510.3364515

1 INTRODUCTION

In recent years, the ability to program is increasingly becoming an
important skill in our high-tech world [31, 33]. Therefore, many in-
troductory programming environments are designed and developed
in order to enable a wider range of audiences to start programming.
Block-based programming is known as an approach that is widely
used in the design of introductory programming environments.
Using block-based programming allows inexperienced learners and
novices to program through visual block-shaped programming ele-
ments such as variables, loops, conditional statements, logical oper-
ators, and functions. These elements can be dragged, dropped, and
snapped together like puzzle pieces [10, 31]. Acknowledging that
young students can be motivated through programming activities,
the visual block-based approach is becoming significantly important
for introducing basic programming concepts and eventually lead
to develop an interest in computer science in general [11, 14, 31].

The low number of women compared to the high number of men
in higher computer science education is a well-known problem
in most western countries [5, 6, 13]. Fewer than 1 in 5 computer
science graduates are women across 35 European countries [5].
Likewise, Ertl et al. [6] mentioned that approximately 25% of females
are pursuing a career in STEM (Science, Technology, Engineering,
Mathematics) in the EU, and this number is even lower in Germany
with approximately 18% (where our study took place). The lack of
computer science interest among girls or women has been shown
to emerge partly from technological aspects of computer science [3,
12]. In this regard, block-based programming is introduced as an
alternative to conventional text-based programming languages that
appears less technical and brings new dimensions such as creativity
to the understanding of programming among young students [26,
32, 34].

Since programming was taught to young students via block-
based programming, many block-based programming editors such
as Scratch [25], Alice [4], Snap! [9], and Google Blockly [7] have
been used for introduction to programming in the context of com-
puter science education [16, 18, 34]. Much work has been done
investigating what type of editor is more beneficial for young stu-
dents to have a better understanding of programming [1, 29, 31, 34].
Despite the fact that these editors are widely adapted in the design
of introductory programming environments [10, 33], an open ques-
tion remains about how well such programming editors can enable
young female students to acquire basic programming skills and, at
the same time, to improve their attitudes towards programming.
More specifically, one challenge that computer science educators
still face is the lack of studies investigating empirical evidence in
using block-based programming editors among young female stu-
dents. The empirical evidence is subject to describe under what
circumstances a given block-based programming editor is the better

https://doi.org/10.1145/3364510.3364515
https://doi.org/10.1145/3364510.3364515
https://doi.org/10.1145/3364510.3364515

Koli Calling ’19, November 21-24, 2019, Koli, Finland

blocks

Light object on Pin: @ with number of: € LEDs

output
tool box e © binary mode O char mode © binary mod h. m‘: u‘
(a)
o)
oo, 0 G e v] e AN R

x
3 blocks code
2
o
o void loop
+ for t

(b)

Figure 1: A view of the user interface for the (a) mBlock and
(b) web-based programming application (WPA); both trans-
lated to English.

choice to foster interest and programming skills among the stu-
dents in order to motivate them to join future computer science
education.

In this paper, we compare two block-based programming en-
vironments (BBPEs) that are based on two popular block-based
programming editors, dominating the current educational use of
block-based programming [10]: MBlock [15] which is based on
Scratch [25] (see Fig. 1a) and a web-based programming application
(WPA) which is based on Google Blockly [7] (see Fig. 1b). We claim
that these two BBPEs have different influences with respect to the
students’ attitudes towards programming and the acquisition of
basic programming skills. Thus, this paper seeks to answer the
following research question:

How do two widely used block-based programming editors — Scratch
and Google Blockly — perform in order to foster young female students’
programming skills and positive attitudes towards programming?

In order to examine the acceptance of introductory program-
ming and the experience with the BBPEs among young female
students, two user studies were conducted with 24 beginners (10 to
14 years old) in total. The students used the BBPEs to program a
micro-controller (Arduino or WeMos boards) to control LED lights.
An empirical quantitative evaluation of the two BBPEs with respect
to the young female students’ attitudes and perceptions of program-
ming as well as their acquisition of basic programming skills, was
conducted. Collecting and analyzing data in this study refined prior
results that have shown the acceptance of programming among
young students [18, 32] where they were able to learn programming
via block-based programming.

M.Seraj, ES.Katterfeldt, K.Bub, S.Autexier, R.Drechsler

2 BACKGROUND AND RELATED WORK

Over the past years, block-based programming has become a popu-
lar approach for the design of introductory programming environ-
ments for young learners. Block-based programming editors are
designed to help young learners get started with programming with
a low threshold [10, 19, 34]. Using block-based programming al-
lows developers and educators to reduce the difficulty of initializing
basic programming concepts (e.g., programming structure and prin-
ciples) among young learners [1, 14, 29]. Block-based programming
was used in a variety of studies (e.g., [1, 14, 16, 19, 23, 27, 31]) to
facilitate the accessibility of learning programming, especially for
young students and novices. Literature reports that block-based pro-
gramming makes programming pleasant, engaging, and motivating
for young students, and thus, it can leverage their interest in pro-
gramming and computer science in general [29, 33, 34]. However,
relatively little work has been done with a special focus on using
block-based programming to promote basic programming activities
among young female students in extra-curricular programming
workshops.

The literature also reports that in most western countries the
women’s lack of interest in programming and experience with com-
puters are two of the reasons to have a low number of women
in computer science [12, 13]. In that respect, using block-based
programming is reasonable to introduce young female students to
programming and basic computational skills [1, 14]. In contrast
to the studies which are questioning the suitability of block-based
programming (e.g., [17, 22]) in order to motivate young students
and prepare them for future learning programming opportunities,
block-based programming is recommended as the first choice in
introductory programming and computer science courses [19, 31].
Several studies show that the use of block-based programming in
formal [32, 34] and non-formal [8, 29] educational context has a pos-
itive influence on young students’ programming skills and interest.
Studies also report successes of teaching programming concepts to
young students and foster their interest and motivation in learn-
ing programming using block-based programming compared to
text-based programming [27, 32, 34]. However, understanding the
impacts of block-based programming in extra-curricular learning
environments remains an active area of research, with a focus on
how best to utilize BBPEs to foster young female students’ pro-
gramming skills and leverage their interest in programming and
computer science.

With respect to teaching programming, two popular block-based
programming editors — namely Scratch and Google Blockly — have
made significant contributions to the current educational use of
block-based programming [1, 10, 11, 30]. For instance, Scratch
which is known as one of the most successful editors has been
used to investigate the affordances of block-based programming in
comparison with text-based programming environments in order
to teach basic programming concepts to inexperienced high school
students [32, 34]. As a result, using block-based programming, the
majority of students gained more programming knowledge, had a
better perception of programming, and they were more interested
in continuing programming in the future. Furthermore, accord-
ing to [16, 20], researchers are using Google Blockly to encour-
age young students to start programming robots [20] and micro-
controllers [16]. Paramasivam et al. [20] took advantage of "Cus-
tomPrograms" which is based on Google Blockly to design a BBPE
in order to enable young students with disabilities (e.g., Attention
Deficit Disorder, Asperger’s Syndrome, and other autism spectrum

Scratch and Google Blockly: How Girls’ Programming
Skills and Attitudes are Influenced

disorders or learning disabilities) to program Clearpath Turtlebot.
Likewise, Martinez et al. [16] took advantage of "BlocklyDuino" to
design a BBPE in order to enable preschool and elementary school
children to program and control the behavior of Arduino boards.
The results reported by these studies are encouraging, as they were
successful in establishing confidence among young students that
programming is interesting. Nevertheless, how to best support
young female students by BBPEs to develop basic programming
skills and encourage them for being interested in programming is
still a growing research area, where the open question remains.

In contrast to a large number of previous studies, we seek to
investigate the differences between two widely used block-based
programming editors: Scratch and Google Blockly in terms of ac-
quisition of basic programming skills and improving young female
students’ attitudes towards programming. Similarly, we aim to fos-
ter programming skills and interest among the students in order to
increase their understanding of the programming side of computer
science and motivate them to take part in future computer science
education and digital society. To this end, we set up two extra-
curricular programming workshops independent of the students’
regular curriculum and outside their schools. We aim to provide op-
portunities for young female students in order to begin with basic
programming activities and program micro-controllers to control
LED lights using two BBPEs which are designed based on Scratch
and Google Blockly.

3 OVERVIEW OF THE BLOCK-BASED
PROGRAMMING ENVIRONMENTS

In this paper, two BBPEs were utilized to enable young female stu-
dents to learn and create programs for micro-controllers (Arduino
or WeMos board) to control LED lights. In that respect, mBlock (see
Fig. 1a) and the WPA (see Fig. 1b) were used in two extra-curricular
programming workshops. MBlock was used together with Arduino
boards, while the WPA was used together with WeMos boards.
Different programming language features like variables, data types,
loops, conditional statements, functions, and operators are included
as block-shaped elements in both programming environments. Stu-
dents author programs in these environments by dragging-and-
dropping blocks. In addition to the blocks representing program-
ming features, primitive Arduino behavior is wrapped in a set of
predefined blocks. Students create programs simply by snapping
blocks together. The Arduino code is generated from the blocks
in the background (visible in another panel), ready for execution.
The possibility of zooming in and out on blocks is given, meaning
that the scale of blocks can be changed by the mouse scroll wheel
or the zoom gesture on a track-pad. This enables students to see
the whole sequence of blocks if needed. Here, an overview of the
design of both programming environments is provided.

MBlock is based on Scratch [25], and it is primarily designed for
inexperienced learners and children to learn and write programs for
micro-controllers and robots. In micro-controller mode (Arduino
mode), mBlock allows young students to use a visual block-based
interface that comprises a full vision of the blocks (Block Panel),
block categories (Toolbox), code syntax (Code Panel), and output
of the code (Output Panel). Students can track the compile and
upload process of the code into the micro-controller as well as the
errors and Serial Monitor output in the Output Panel. In addition
to blocks representing the programming features, other blocks are
designed and developed to enable the students to work with LED
lights, which we discuss in the following. The starting block is

Koli Calling ’19, November 21-24, 2019, Koli, Finland

Program

Light object on Pin: @ with number of: €9 LEDs

LD @R @ G: @ B: €D

LED @R: @ G: @ B:

wait @ secs

3

(a)

setup neopixel pin# [BEE@ number of pixel n 1\/s:8 NEO_GRB v NEO_KHZ800 v

repeat ﬂ times
do | get pixel color from pin# (BEED pixel number n red m green u blue “

| show from pin# (BXED

set pixel color from pin# ([BKE@ pixel number n red n green n blue ﬂ

" show from pin# (BEED

ety EED

(b)
Figure 2: A sample of execution blocks for the (a) mBlock,
and (b) WPA; both translated to English.

labeled as program that always needs to be the first block. The code
syntax which is nested in other blocks only appears in the Code
Panel when they are connected to the program block. Furthermore,
the students can define how many LED lights are connected to a
pin via the light object block. It is labeled as 1ight object on
Pin <X> with number of <X> LEDs. The two <X> are input field
numbers, and they are filled in with default arguments to support
the understanding of the block for the students. The color of LED
lights can be changed through the LED block that is labeled as LED
<X> R <X> G <X> B <X>. Similarly, the four <X> are input field
numbers, and they are filled in with default arguments. The LED
number filled in with 0, which always refers to the first LED, and
the color is set to be white as default. This block also includes the
show LED command in order to colorize the LED light (see Fig. 2a).

The WPA is based on BEESM [28], which is primarily designed
as an educational block-based programming tool for inexperienced
users and novices. It is built with the Blockly library [7], and it
enables users to learn and create programs for smart environments,
micro-controllers, and mobile robots one at a time and in combina-
tion with each other. The design and additional features of BEESM
can be found in greater detail in [28]. For this study, we manipulated
the BEESM user interface to enable our target students to have a
full vision of the blocks (Block Panel), block categories (Toolbox),
code syntax (Code Panel), and output of the code (Output Panel).
Similar to mBlock, the Output Panel shows the compile and upload
process of the code into the micro-controller as well as all return
values and errors for debugging purposes. To enable the students to
work with LED lights, we designed and developed other blocks in
addition to blocks that represent the programming features which
are discussed as follows. The first block which is needed in order to
define how many LED lights are connected to a pin is called setup
neopixel. It is labeled as setup neopixel pin# <X> number of
pixel <X>.The color of LED lights can be changed through the set
pixel color block which is labeled as set pixel color from

Koli Calling ’19, November 21-24, 2019, Koli, Finland

pin#t <X> pixel number <X> red <X> green <X> blue <X>.
Similar to the mBlock, all <X> values are input field numbers which
are filled in with default arguments to support the understanding of
the block for the students. The pixel number filled in with 0, which
always refers to the first LED, and the color is set to be white as
default. Furthermore, in order to colorize the LED light, the show
LED command is encapsulated into another block, which is called
show color, and it is labeled as show from pin# <X>. The pin
number is always filled in with 1, which refers to the first pin in
micro-controllers (see Fig. 2b).

For a usability analysis, see Holwerda and Hermans [10] for a
discussion on the differences between the two popular block-based
programming editors: Scratch and Blockly. This usability analysis
aimed to identify generic aspects of their user interface, and if they
effectively fulfill their purpose to facilitate programming for young
learners and novices. In this respect, the authors mentioned that
a larger section for blocks could improve the visibility of finding
and reading blocks in the program. However, the Blockly-based
tool which is used (ArduBlockly [21]) does not support zooming
via mouse scroll wheel or the zoom gesture on a track-pad, and
it is only possible through the zooming buttons in Block Panel.
It is also addressed that dragging a block out of a sequence of
blocks will move all other blocks below with it in both editors.
This will make manipulating of code structure more difficult for
novices. Furthermore, it is suggested to have a search option to
enable users looking and finding the right block in both Blockly
and Scratch. However, the authors discuss that additional editor
features may clutter the interface (both visually and cognitively)
for adult novices and more specifically, for young learners in school.
The main remaining differences between our two BBPEs are (see
also Fig. 1 and Fig. 2) as follows:

(1) The Block Panel: the WPA contains a smaller Block Panel and
larger Code Panel than mBlock.
(2) The Code Panel: the WPA enables students to modify the code
that generates from the blocks directly in the Code Panel
while in mBlock they need to open the code in Arduino IDE
in order to modify it.
The Toolbox: the Block Panel in the WPA contains the Tool-
box, like a menu, that displays different categories for blocks.
A set of blocks within a category is displayed temporary
when students click on the category, while in mBlock, blocks
within a category are displayed lasting when they click on
the category.
How the blocks are shaped: the structure of blocks can be
changed using a pop-up panel (e.g., adding an else-if to
an if block) in the WPA while we do not have this feature
in mBlock.
How text codes are encapsulated in different blocks: for in-
stance, students need to use a program block that includes
all libraries to start the program in mBlock, while in the
WPA, necessary libraries are included in the corresponding
blocks. Furthermore, in the WPA, a display block is needed
in order to colorize the LED light, while in mBlock, it is
nested in an LED block.

3

~

“

~

G

~

4 METHODS

The data presented in this paper are part of a larger study using
blocks-based programming and tangible smart objects in extra-
curricular programming workshops in order to foster young female

M.Seraj, ES.Katterfeldt, K.Bub, S.Autexier, R.Drechsler

students’ programming skills and positive attitudes towards pro-
gramming in the north of Germany. In this respect, the students
are welcomed to different research centers to learn programming
in extra-curricular programming workshops that are outside their
school environments and not part of the regular school curriculum.
In order to understand the impact of the two block-based program-
ming editors — namely Scratch and Google Blockly — on young
female students’ programming skills and their attitudes and percep-
tions of programming, we conducted two user studies comparing
mBlock to the WPA. This section begins with the study design
and strategy for collecting and analyzing data, then information
about the participants is presented; this section concludes with the
procedure of the study.

4.1 Study Design and Data Collection Strategy

In this study, we use and compare two BBPEs in two extra-curricular
programming workshops with two groups of young female students
(i.e., aged between 10 and 14 years old). The workshops were held
in the premises of the University of Bremen. All used equipment —
computers, micro-controllers, and LED lights — were provided by
the German Research Center for Artificial Intelligence (DFKI), and
the group of Cognitive Neuroinformatics (CNI). The BBPEs enable
students to focus on "Programming Structures and Principles", the
main concept which was taught and exemplified through the BBPEs.
In general, 24 students attended the two programming workshops
(12 students each). In one workshop, 12 students used mBlock
(mBlock-group), and the WPA was used in the second workshop
(app-group) by the other 12 students.

In both programming workshops, a pre- and post-questionnaire
was used in order to collect data with respect to the young female
students’ attitudes and perceptions of programming, their prior
programming experience, and their age group. The acquisition of
basic programming skills among the students was assessed, using
a pre- and a post-programming question.

In the following, we describe the pre- and post-questionnaire as
well as the pre- and post-programming questions in both program-
ming workshops.

Pre-questionnaire. In each workshop, students received a pre-
questionnaire. Four attitudinal questions were asked in order to find
out the students’ attitudes and perceptions of programming. These
questions are based on the attitudinal questions which were used in
Weintrop and Wilensky [34] and were adapted for the needs of this
study. Students’ confidence, enjoyment, perceived difficulty, and in-
terest in future programming learning opportunities were evaluated
using these questions. In that respect, students were asked to rate
the questions "do you think you are good at programming?", "do you
think programming is fun?", "do you think programming is difficult to
understand?", and "would you like to learn how to program?", using
a 5-point Likert scale (with 1 "no, not at all", 5 "yes, very much", and
0 "I do not know"). Furthermore, they were asked to determine their
prior programming experience with BBPEs using the "yes" or "no"
question "have you ever worked with a block-based programming
environment?". Then, we asked them to indicate whether they can
program on a scale of 1 to 5, with 1 "no, not at all", and 5 "yes, very
good", using the question "can you program?".

Post-questionnaire. At the end of each workshop, students took
the post-questionnaire. It was composed of the same attitudinal
questions as the pre-questionnaire, just with different words for two
questions; "do you think programming is difficult to understand?"
changed to "do you think programming is difficult?", and "would you

Scratch and Google Blockly: How Girls’ Programming
Skills and Attitudes are Influenced

like to learn how to program?" changed to "would you like to learn
better how to program?".

In addition to the attitudinal questions, five questions were asked
in order to measure the students’ experiences with the two BBPEs
in terms of their ease-of-use. The Students were required to rate the
question "I think the programming environment is easy to use.", using
a 5-point Likert scale (with 1 "strongly disagree", 5 "strongly agree",
and 0 "I do not know"). The question "do you find it easy to program
with blocks?" was also asked, using a 5-point Likert scale (with 1
"no, not at all", 5 "yes, very much", and 0 "I do not know"). They
were then asked to rate (i) if they paid attention to the code that is
generated matching the blocks, (ii) if they think the function "edit
code" is helpful to better understand their program, and (iii) if they
find the "output” panel helpful to understand their program. The
scores for these three questions were calculated, using a 5-point
Likert scale (with 1 "no", 5 "yes", and 0 "I do not know").

Two additional questions were added to the post-questionnaire
for this study. The students were asked, "do you think it’s helpful if
you program a real object? E.g. the LED light and the micro-controller”,
to be answered on a 5-point Likert scale (with 1 "no, not at all", 5
"yes, very much", and 0 "I do not know"), and they were asked about
their preference of programming with blocks or direct with code
syntax, using a 5-point Likert scale (with 1 "direct with code", 5 "with
blocks", and 0 "I do not know").

Programming questions. To validate the students’ answers
with respect to their prior programming experience and to ana-
lyze the acquisition of basic programming skills, in both work-
shops, students were asked to complete two programming ques-
tions. In this respect, a pre-programming question right after the
pre-questionnaire, and a post-programming question right after
the post-questionnaire were completed. The programming con-
cepts are extended by introducing these programming questions to
the students. In each pre- and post-programming question, block-
shaped elements were designed independent of the two BBPEs in
order to test how well the students acquire the basic programming
skills which were taught during the programming workshop. For in-
stance, see Fig. 3a, and Fig. 3b for the block-shaped elements in pre-
and post-programming questions in the app- and mBlock-group,
respectively. However, in each workshop, one block (block number
13) was designed similar to what the students saw and used in the
corresponding programming environment. In this regard, students
needed to use a Program block in order to start the program in
mBlock, and a display block in order to colorize the LED light in
the WPA (see Fig. 3).

The pre-programming question in the app-group was to program
the micro-controller to make one LED light blink in red for 3 times
with 2 seconds delay in between when the light is connected to
the micro-controller on Pin D3. The post-programming question in
the app-group was to program the micro-controller to make one
LED light blink in blue for 6 times with 1 second delay in between
when the light is connected to the micro-controller on Pin D3. In the
mBlock-group, apart from the pin number, which is Pin 6, similar
pre- and post- programming questions were asked from the stu-
dents. In each programming question, students were asked to select
a set of blocks and identify the order of them in a correct logical way
based on the question. Students were also notified that some blocks
might appear more than once and some may not even be needed
in their program. The pre- and post-programming questions are
slightly different from each other in both workshops. This counter-
balance design of questions ensures that students read the questions

Koli Calling ’19, November 21-24, 2019, Koli, Finland

1 | connected to Pin[3] with[0] light(s) 7 | setlight[0] to R[0] 6[0] B[0] 13 | Display Pin[D3]

2 connected to Pin [D3] with[T] light(s) 8 | setlight[1] to R[0] &[o] B[0]

3 connected to Pin [D3] with[0] light(s) 9 | setlight[1] to R[255] 6[255]

4 et Iight to R G@ B@ 10 delayseconds 15 Repeat the following
commands |6 |times

5 | setlight[0] to R[255] G[o] B[0] 11 delay[1] second

6 | setlight[1] to R[0] s[0] 8[255] 12 delay([%]second

(a)

14 Repeat the fo[lo.wmg
commands 5 Jtimes

[y

16 Repeat the following
commands[3]times

1 | connected to Pin[4] with[0] light(s) 7 | setlight[0] to R[0] G[0] 8[0] 13 | Pprogram
2 connected to Pin[6] with[] light(s) 8 setlight[1] to r[0] 6[0] B[0]

3| connected to Pin[6] with[0] light(s) 9 | setlight[1] to R[253] 6[255] 8[255]
4 | setlight[1] to R[255] G[o] B[o]
5 setlight[o] to R[0] 6[0] B [255]
6 setlight[1] to R[0] G[o] B[255]

14 Repeat the following
commandstimes

10 delay[2]seconds 15 Repeat the following

commands (6 |times

11 | delay[1] second

16 Repeatthe following

12| delay[] second commands[3]times

(b)

Figure 3: Block-shaped elements in (a) pre-programming
question in the app-group; (b) post-programming question
in the mBlock-group; both translated to English.

carefully and identify the order of blocks based on the question.
Furthermore, these questions represent realistic programming prob-
lems for a micro-controller and an LED light, as colorizing the light
is core to the function and use of micro-controller together with
one LED light.

For each programming question, we collected the solution made
by the student using the blocks. A 10-point grading rubric [24]
was created to evaluate the students’ performance (see Table 1).
Each solution was scored by two researchers in order to ensure
consistent grading.

4.2 Participants

Two user studies were conducted with 24 young female students
without any prior programming experience (10 to 14 years old)
from several German secondary schools. The schools’ headmasters
and teachers were contacted and informed about our programming
workshops. Students and their parents were then announced by
their school to register for one workshop, meaning the students who
participated in this study were self-selected and were interested in
having programming activities and learning programming.

A total of 12 female students participated in each programming
workshop. In the mBlock-group, the average age of the participants
was 12.67 years (SD = 0.78). In the app-group, the average age of the
participants was 12.58 years (SD = 1.24). Although participants in
the app-group are younger than participants in the mBlock-group,
an analysis of variance (ANOVA) showed no significant difference
between the groups, F < 1.

With respect to the students’ prior programming experience,
all students indicated that they have no experience in working
with any BBPEs. Furthermore, when the students were required
to rate whether they can program or not, only two of them in the
app-group answered, "no" and the rest of the students answered,
"no, not at all". Nevertheless, no significant difference was observed
(F(1,22) = 2.20, p = 0.15). Thus, the level of prior experience was
not included in our analyses.

Koli Calling ’19, November 21-24, 2019, Koli, Finland

M.Seraj, ES.Katterfeldt, K.Bub, S.Autexier, R.Drechsler

Table 1: 10-point Grading Rubric Scale

10 8 6

4 2 0

Connection Analysis Summary

Incomplete Attempted Not Attempted

Answer shows mastery Answer shows some
and understanding of
content, but it has
a minor issue.

Answer shows mastery
of content and a deeper

understanding of it. content, but it has

Answer does not show
understanding of essential understanding of basic content,
or it shows that mastery of

a lack of greater evidence. the general content is missing.

Answer does not address
the programming question
or is off-topic.

Student did not attempt to
solve the programming
question.

Introduction to micro-
controllers, LED lights

Introduction to programming,
necessary blocks, and RGB

Post-programming
question coloring model question
. Pre- Explanation of Post-
T"d one LED light questionnaire the I‘SBPE questionnaire
[[T z

1 5 1 10min. | 5 | 5 | 15min. 75 min.
imin.. \min..min.. 1

Assigning to one Pre-programming
computer, one

micro-controller

s =)
| 10min. | 2
. imin.,

Figure 4: Procedure of the programming workshop.

4.3 Procedure

In both programming workshops, we followed the same procedure
(see Fig. 4). The duration of each workshop was 130 minutes. At
the beginning of both workshops, each participant was assigned
to one computer, one micro-controller (Arduino or WeMos board)
and one LED light in order to minimize the distraction of partici-
pants. Each computer had an installed version of the corresponding
programming environment. In the mBlock-group, Arduino boards
were used together with mBlock, and in the app-group, WeMos
boards were used together with the WPA.

All participants were introduced to micro-controllers, LED lights,
and they were shown how to connect them for 10 minutes. After-
ward, the participants received the pre-questionnaire; they were
asked to determine their prior programming experience and rate
their perception of programming using the four attitudinal ques-
tions. Each participant was then asked to complete the pre-program-
ming question, which required them to select a set of blocks and
write their numbers in a correct logical way based on the question.
The participants were then trained according to the interface of each
BBPE, different panels, buttons, and their functionalities for 15 min-
utes. Then, during the allocated time of 75 minutes, all participants
were introduced to general features of programming (e.g., variables
and loops), necessary blocks to control an LED light, and the RGB
coloring model. One female instructor led each workshop. In this
regard, in each workshop, an oral explanation was given, using
prepared slides based on each BBPE. Additionally, we used supple-
mentary documents — including an explanation of necessary blocks
and RGB coloring model - in order to help our students to work
with the corresponding BBPE. This also allows us to minimize and
control the instructor effects. Both female instructors have a com-
puter science background and experience in working with young
students. During the allocated time, participants were enabled to
program their micro-controller, using the corresponding BBPE in
three learning steps. These steps respectively were (i) colorizing
one LED light with either red, green or blue color, (ii) colorizing
one LED light with two arbitrary colors and write down the correct
value of red, green and blue colors, and (iii) letting one LED light
blink for a random number of times and seconds delay in between.
The instructor helped participants at their desk during the 75 min-
utes to ensure that the participants had faced no major problems.
At the end of each workshop, the post-questionnaire was given to
the participants in order to ask them to rate their perception of
programming and to rate their experience with the corresponding
BBPEs. Each workshop ended with the post-programming question.

5 RESULTS

The results section is divided into three parts. First, results from an
analysis of the programming part of the study are presented, report-
ing the students’ performance on each pre- and post-programming
question. Second, results from an analysis of the pre- and post-
questionnaires are presented, looking at young female students’
confidence, enjoyment, perceived difficulty, and interest in future
programming learning opportunities. Finally, we report on results
from an analysis of the post-questionnaire, focusing on students’
experience with respect to ease-of-use of corresponding BBEPs.
Additionally, in this part, students’ preferences of programming
with blocks or direct code, as well as their thought of being able to
see the impacts of their programs on a real object is reported.

The following analyses were computed as one-factor analysis of
variance (ANOVA), with the factor mBlock vs. app. Paired-samples
t-test was also used to show the differences within each group of
students from the beginning towards the end of each workshop.

5.1 Acquisition of Programming Skills

To understand how students’ programming skills are influenced
by the two BBPEs (mBlock and the WPA) in our extra-curricular
programming workshop, students’ performance on the pre- and
post-programming questions were analyzed.

With respect to the programming questions (see Fig. 5), in the pre-
programming question the students in mBlock-group performed
better than the students in app-group, M = 2.00, SD = 0.00, and
M = 1.33, SD = 1.30, respectively. However, no significant differ-
ence occurred, F(1,22) = 3.14, p = 0.09. In the post-programming
question, an ANOVA showed that the students in mBlock-group
(M = 6.83, SD = 1.80) performed significantly better than the
students in app-group (M = 3.17, SD = 1.59), F(1,22) = 28.02,
p < 0.001. Descriptively, although the students in the mBlock-
group indicated a higher level of performance before working with
the programming environment, they performed significantly better
after working with the programming environment compared to the
students who were in the app-group.

Focusing on the average performance of the students in pre-
and post-programming questions shows that their performance
increased in both mBlock-group and app-group. A paired-samples
t-test showed that in mBlock-group, students performed signifi-
cantly better in the post-programming question than in the pre-
programming question, £(12) = 9.30, p < 0.001, MD = 4.83. Simi-
larly, in app-group, students’ performance significantly increased
in the post-programming question compared to pre-programming
question, #(12) = 4.75, p = 0.001, MD = 1.83.

5.2 Attitudes and Perceptions of Programming

To understand how students’ attitudes and perceptions of program-
ming are affected by the two BBPEs (mBlock and the WPA) in our
extra-curricular programming workshop, we analyzed scores from
the pre- and post-questionnaires. All answers were coded with 1
"no, not at all", 5 "yes, very much", and 0 "I do not know". Please note

Scratch and Google Blockly: How Girls’ Programming
Skills and Attitudes are Influenced

Koli Calling ’19, November 21-24, 2019, Koli, Finland

Table 2: Students’ Attitudes and Perceptions of Programming

Pre- Post-

questionnaire questionnaire
Questions M (SD) ANOVA Results M (SD) ANOVA Results
Confidence in mBlock-group 2.40 (0.55) 3.63 (0.74) B B
Confidence in app-group 2.60 (1.52) k<l 2.73 (1.27) F(1,17) = 3.16, p = 0.09
Enjoyment in mBlock-group 4.64 (0.50) B B 4.58 (0.51) B B
Enjoyment in app-group 4.18 (0.98) F(1,20) =187, p = 0.19 4.17 (1.11) F(1,22) = 1.38,p = 025
Difficulty in mBlock-group 3.30 (0.67) B B 2.33 (1.15) _ _
Difficulty in app-group 3.01 (0.83) F(1,19) = 3.54,p = 0.08 517 0g) F(1,22) =270, p = 012
Interest in mBlock-group 4.75 (0.44) B _ 4.33 (0.49) B _
Interest in app-group 4.92 (0.29) F(1,22) = 1.16, p = 0.29 4.64 (0.67) F(1,21) = 1.54,p = 023

M: Mean SD: Standard Deviation F: F-distribution

*
—e—mBlock-group 6.83
—m-app-group //

2/ 3.17
—

1.33

Mean Students’ Performance

O B N W M U1 O N

Pre Post

Figure 5: Students’ performance on the pre- and post-
programming questions.

that students who responded "I do not know", are not included in
our analysis.

Concerning the students’ confidence (see Table 2), we assessed
their responses to the following question in the pre- and post-
questionnaires: "do you think you are good at programming?". Seven
students in each app- and mBlock-group responded, "I do not know"
in the pre-questionnaire. In the post-questionnaire, this number
decreased to one in the app-group and four in the mBlock-group.
In the pre-questionnaire, students in the app-group indicated a
slightly higher level of confidence compared to the students in
the mBlock-group. However, in the post-questionnaire, students in
the mBlock-group indicated (descriptively) a higher level of confi-
dence compared to the students in the app-group. In both mBlock-
group and app-group, the level of confidence in programming is
higher for students in the pre-questionnaire compared to the post-
questionnaire. With respect to the students who responded, "I do not
know", we focus on the changes in their level of confidence between
the pre- and post-questionnaire. In the app-group, six out of seven
students had an idea in the post-questionnaire, and in general, they
indicated a medium level of confidence, M = 3.33, SD = 1.21. Simi-
larly, in the mBlock-group, four out of seven students had an idea
in the post questionnaire, and in general, they indicated a higher
level of confidence, M = 4.00, SD = 0.82. However, no significant
difference was observed, using an ANOVA (F < 1).

p: p-value

With respect to the enjoyment of programming (see Table 2), the
responses to the following question in the pre- and post-questionnai-
res were assessed: "do you think programming is fun?". Only one
student in the app-group and one student in the mBlock-group
responded "I do not know" in the pre-questionnaire. In both pre-
and post-questionnaire, the level of enjoyment of programming is
slightly higher for the students in the mBlock-group compared to
the students in the app-group.

The third attitudinal question is whether the students think pro-
gramming is difficult or not (see Table 2). To calculate a measure of
the difficulty of programming, students responded to the following
question: "do you think programming is difficult to understand?" (or
"do you think programming is difficult?" in the post-questionnaire).
Only one student in the app-group and two students in the mBlock-
group responded "I do not know" in the pre-questionnaire. Descrip-
tively, in the pre-questionnaire, the programming difficulty level
is higher for students in both mBlock-group and app-group. Fur-
thermore, in both pre- and post-questionnaire, the programming
difficulty level is higher among students in the app-group. We
focus on the score of difficulty of programming within the app-
and mBlock-group, among the students who answered the ques-
tion in both pre- and post-questionnaires. A paired-samples t-test
showed that in the mBlock-group, students found programming
significantly less difficult in post-questionnaire in comparison with
pre-questionnaire, #(9) = —2.70, p = 0.024, MD = —1.10. How-
ever, no significant results occurred in app-group, #(10) = —1.70,
p=0.12, MD = —0.82.

The last attitudinal question is whether the students’ interest
in learning programming in the future is affected or not (see Ta-
ble 2). In order to calculate a measure of it, students responded to
the following question: "would you like to learn how to program?"
(or "would you like to learn better how to program?" in the post-
questionnaire). Only one student in the app-group responded, "I do
not know" in the post-questionnaire. Descriptively, in both pre- and
post-questionnaire, students in the app-group indicated a higher
level of interest compared to students in the mBlock-group. Fur-
thermore, in both mBlock-group and app-group, students showed
a higher level of interest in the pre-questionnaire compared to
the post-questionnaire. Focusing on students’ interest within the
app- and mBlock-group, a paired-samples t-test showed that the
students’ willingness to learn programming dropped in mBlock-
group towards the end of the workshop; accordingly, it was just
barely missed the level of significance, £(10) = —2.16, p = 0.054,

Koli Calling ’19, November 21-24, 2019, Koli, Finland

MD = —0.42. However, the test showed that the decrease in stu-
dents’ interest in the app-group was not significant towards the
end of the workshop.

5.3 Programming Experience

The post-questionnaire included five questions asking students
to reflect on how they perceive the ease-of-use of corresponding
BBPEs (see Table 3). Furthermore, students were required to an-
swer another question, concerning their preference for program-
ming with blocks or with code. Finally, they were asked to indicate
whether being able to see the impacts of their program on a real
object is helpful or not. Please note that students who responded "I
do not know", are not included in our analysis.

With respect to the ease-of-use of the two BBPEs, on average,
the students showed broad approval to mBlock, while the students
were undecided about the WPA. Accordingly, an ANOVA yielded a
significant result (see Table 3). Only one student in the app-group
responded, "I do not know" to this question. With respect to finding
programming easy with blocks, on average, the students found
programming with blocks significantly easier in mBlock compared
to the students in the WPA (see Table 3). Similarly, one student in the
app-group responded, "I do not know" to this question. Furthermore,
the students were undecided and indicated a low level (especially in
mBlock-group) of paying attention to the code which was generated
matching the blocks. Six students in the mBlock-group and nine
students in the app-group responded to this question. The students
found that being able to use the "edit code" function and to see error
messages in the Output Panel is helpful to understand their own
program (see Table 3). However, only 11 students answered to each
of these two questions. Seven students in the mBlock-group and four
students in the app-group responded to the question with respect
to the helpfulness of being able to use the "edit code" function. Six
students in the mBlock-group and five students in the app-group
responded to the question regarding the helpfulness of being able
to see error messages in the Output Panel. Although the students in
the app-group rated all the three questions higher than the students
in the mBlock-group, no significant results occurred, all F < 1.

Concerning the preference for programming with blocks or di-
rectly with code, on average, the majority of students indicated an
opinion strongly towards programming with blocks. The students in
mBlock-group indicated a slightly higher preference toward blocks
(M = 4.92, SD = 0.29) compared to the students in app-group
(M = 4.44, SD = 0.88). No significant difference were obtained,
using and ANOVA (F(1,19) = 3.05, p = 0.10). Only three students
in the app-group responded, "I do not know" to this question, and
thus, they are excluded from our analysis.

With respect to the question of whether or not students think
it is helpful to program a real object (e.g., LED light and micro-
controller), they found that being able to see the impacts of their
program on a real object is helpful. In this regard, students in
the app-group indicated the higher level (M = 4.55, SD = 0.52)
compared to students in the mBlock-group (M = 3.73, SD = 1.27).
However, an ANOVA shows that it just barely missed the level of
significance, F(1,20) = 3,89, p = 0.062. Only two students (one
student in each group) responded "I do not know" to this question,
and thus, they are excluded from our analysis.

6 DISCUSSION

We now discuss the results which were presented in the previous
section. In this respect, we begin with our findings based on the

M.Seraj, ES.Katterfeldt, K.Bub, S.Autexier, R.Drechsler

research question presented in Section 1. Then, we review the
limitations and discuss possible future works that should be taken
into account.

6.1 Findings

One of the main contributions of this study is showing the potential
of using two popular block-based programming editors (Scratch
and Google Blockly) in extra-curricular programming workshops in
order to support the acquisition of basic programming skills among
young female students. In this respect, one hypothesis we had in
this study was that different BBPEs (mBlock and the WPA) have
different influence on young female students’ performance who
have no prior programming experience. Results show that in both
mBlock-group and app-group, the performance of students was
significantly higher in the post-programming question compared
with the pre-programming question. This supports the results from
prior research that showed by designing introductory programming
environments based on Block-based programming, we could help
young students to have better performance [18, 32]. Results also
show that in both pre- and post-programming questions, the per-
formance of students who worked with mBlock (which is based on
Scratch) was higher than those who used the WPA (which is based
on Google Blockly). Having a closer look into the performance
on post-programming question reveals that in mBlock-group, stu-
dents highly tended to solve the programming question and their
performance highly improved in comparison to the students in app-
group. This finding supports the idea that designing introductory
programming environments based on Scratch could help young fe-
male students to gain basic programming skills, in particular, when
they are indeed new to programming.

This study also reports on young female students’ attitudes and
perceptions of programming, where the findings were less clear.
The results show that before and after the workshop, students who
used mBlock indicated (descriptively) a higher score for the en-
joyment of programming. Likewise, students in the mBlock-group
showed a higher level of confidence in programming after the work-
shop, while it was slightly lower before the workshop compared
with the students in the app-group. Furthermore, students in the
app-group indicated a higher level of interest in taking part in the
future programming opportunities before and after the workshop
compared with the students in mBlock-group. In the mBlock-group,
the students’ level of interest was decreased after the workshop
compared with before the workshop. With respect to the difficulty
of programming, our findings show that the difficulty level of pro-
gramming was higher before the workshop compared with after the
workshop, particularly, in mBlock-group. Our findings also show
that in the app-group, students found (descriptively) programming
harder both before and after the workshop.

With respect to the ease-of-use of the two BBPEs, the results
showed that the students in mBlock-group found blocks signifi-
cantly easier to program compared with the students in app-group.
Furthermore, when asked to indicate how easy was the use of cor-
responding BBPEs, the students in mBlock-group found mBlock
significantly easier to use in comparison to the students in app-
group who used the WPA. This result is in line with results from [10]
that students found programming easier with Scratch-based envi-
ronments, as the visibility of finding and reading blocks is higher
than Blockly-based environments. In contrast, when the students
asked specific questions about the demonstration of error messages

Scratch and Google Blockly: How Girls’ Programming
Skills and Attitudes are Influenced

Koli Calling ’19, November 21-24, 2019, Koli, Finland

Table 3: Students’ Experiences of Using the Block-based Programming Environments

mBlock-group app-group
Questions M (SD) M (SD) ANOVA Results
I think the programming environment is easy to B ox
use. [1 = "strongly disagree", and 5 = "strongly agree"] 4.58 (0.67) 3.82(0.98) F(1,21) = 4.85,™p = 0.039
Do you find it easy to program with B o
blocks? [1 = "no, not at all" 5 = "yes, very much'] 4.00 (0.74) 3.18 (0.75) F(1,21) = 6.93, **p = 0.016
Did you pay attention to the code that is generated
matching the blocks? [1 = "no", and 5 = "yes"] 283 (2.04) 322(156) F<l
Do you think that the function "edit code" is helpful to
better understand your program? [1 = "no", and 5 = "yes"] 343 (0.79) 375(1.26) F<l
Do you find the error messages in the "output” panel 333 (0.52) 340 (0.89) F <l

helpful? [1 = "no", and 5 = "yes"]

M: Mean SD: Standard Deviation F: F-distribution

in the "output" panel, usage of "edit code" function, and paying at-
tention to the generated code syntax matching the blocks, students
in app-group rated them (descriptively) higher than the students in
mBlock-group.

Concerning the subjective questionnaire data, in line with find-
ings from [34], the students largely prefer working with blocks
compared to programming code syntax. Additionally, they found it
helpful to code and see the impacts of their program in a real object.
This is in line with findings from [2, 18] that showed real objects
could stimulate students’ interest, and motivate them to begin with
programming activities.

All in all, the findings show that young female students who
used a BBPE based on Scratch (in this case, mBlock) performed
better on programming questions and showed a higher level of
ease-of-use in programming with blocks in mBlock. This suggests a
Scratch-based design for a productive environment for supporting
female students who have no prior programming experience to gain
basic programming and computational skills. At the same time, the
findings that the students using a BBPE based on Google Blockly
(in this case, the WPA) show a higher level of interest in taking
future programming opportunities. This indicates a gap between
what the students view themselves in programming with different
types of BBPEs and the future programming experience with these
environments.

6.2 Limitations and Future Work

While we tried to make the conditions across the two extra-curricular
programming workshops as similar as possible, there were some
differences which can be introduced as limitations of this study. For
instance, we used mBlock together with Arduino boards, but due
to technical reasons, the WPA is used together with WeMos boards.
Thus, it introduces a difference that may influence the findings of
this paper. However, there was no evidence that this difference has
contributed to significantly differing our target students’ experi-
ences and change their level of acceptance for programming.
Another limitation of this study is related to the number of pro-
gramming tasks and period of each workshop. For example, findings
of this study are limited to the diversity of the programming tasks
that young female students were required to perform to a larger
scale of programming activities and computational skills. Using
the micro-controllers and LED lights that are used in this study,

p: p-value

**p < 0.05: Significant Difference

students can perform larger and more complicated tasks. For ex-
ample, they can use more LED lights and sensors to create colorful
and animated LED picture frames. While we intend on introducing
young female students who have no prior programming experi-
ence to begin with programming activities in a extra-curricular
learning environment, this is relatively narrow functionality for
a micro-controller, and thus, for the programming tasks. In this
regard, there is still work to be done to verify the outcome of this
study when the programming workshop is longer (including more
number of training sessions) and when programming tasks be-
come more diverse and complicated among the students with and
without prior programming experience. Furthermore, we explored
how Scratch and Google Blockly perform to foster young female
students’ programming skills and leverage their interest in pro-
gramming. However, there is still an open question we would like
to explore in the future: what are the reasons behind the students’
preferences for using Scratch-based environments, and for using
Blockly-based environments.

The final limitation of this study relates to the students’ prior
programming experience, socio-economic status, age, and the num-
ber of participants. In that respect, we would like to emphasize that
our results might be affected by a lack of geographic and socio-
economic diversity of students. Furthermore, our sample includes
24 female students without any prior programming experience (age
between 10 to 14), which is a relatively small sample size to gen-
eralize findings of this study to a larger scale. Thus, we look at
these as a major concern, and we seek to address them in future
iterations of this work. A second similar limitation is related to the
control group. This is another avenue of future work to find out the
impacts of visual block-based programming environments on stu-
dents’ attitudes and programming skills when young male students
are targeted for such extra-curricular programming workshops.

7 CONCLUSION

As the number of women in higher computer science education and
society is lower than the number of men in most western countries,
using block-based programming is an active area of research to
make the programming side of computer science more interesting
and engaging for girls. In this paper, we presented a extra-curricular
programming workshop and a comparative study of how different
types of BBPEs impact young female students’ attitudes towards
programming and their acquisition of programming skills. In that

Koli Calling ’19, November 21-24, 2019, Koli, Finland

respect, we explored how young female students use mBlock and a
WPA which are based on Scratch and Google Blockly, respectively.
Our findings indicate how young female students’ performance,
attitudes, and perceptions of programming can be affected by differ-
ent types of BBPEs. This finding supports the idea of using Scratch
in introductory programming environments in order to motivate
young female students, in particular, those without prior program-
ming experience to solve programming problems and gain basic
programming skills. Furthermore, it shows that those students who
used the WPA, which is based on Google Blockly indicated greater
interest in future programming learning opportunities. Thus, it
supports the claim that different BBPEs have a direct impact on
young female students’ performance and their attitudes towards
programming. By studying under what condition, what type of
BBPE has a better influence on young female students with dif-
ferent level of prior knowledge, we enhance our understanding to
design introductory programming environments for them.

Given the decreasing presence of women in computer science
society in most western countries, findings from this study are
essential to ensure we are providing exposure to programming ac-
tivities, preparing female students for future learning programming
opportunities and motivating them to join the computer science
society in the future. While many questions still remain on how
to best introduce programming to female students, the findings
of this study can help to inform other researchers and educators
about the relationship between BBPEs, programming activities in
extra-curricular learning environments and young female students’
experience and acceptance of programming.

ACKNOWLEDGMENTS

This work was funded by the German Federal Ministry for Educa-
tion and Research (BMBF) within the project SMILE under grant
number 01FP1613. The authors would like to thank for this support.

REFERENCES

[1] Efthimia Aivaloglou and Felienne Hermans. 2016. How kids code and how we
know: An exploratory study on the Scratch repository. In Proceedings of the 2016
ACM Conference on International Computing Education Research. ACM, 53-61.

[2] Sally R Beisser. 2005. An examination of gender differences in elementary con-
structionist classrooms using Lego/Logo instruction. Computers in the Schools
22, 3-4 (2005), 7-19.

[3] J McGrath Cohoon. 2002. Recruiting and retaining women in undergraduate
computing majors. ACM SIGCSE Bulletin 34, 2 (2002), 48-52.

[4] Stephen Cooper, Wanda Dann, and Randy Pausch. 2000. Alice: a 3-D tool for
introductory programming concepts. In Journal of Computing Sciences in Colleges,
Vol. 15. Consortium for Computing Sciences in Colleges, 107-116.

[5] Microsoft Corporation. 2017. Why Europe’s girls aren’t studying STEM. (2017).
retrieved July 15, 2019 from http://hdl.voced.edu.au/10707/427011.

[6] Bernhard Ertl, Silke Luttenberger, and Manuela Paechter. 2017. The impact of
gender stereotypes on the self-concept of female students in stem subjects with
an under-representation of females. Frontiers in psychology 8 (2017), 703.

[7] Neil Fraser. 2014. Google blockly-a visual programming editor. ~ URL:
http://code.google.com/p/blockly. Accessed Sep (2014). Now available at
https://developers.google.com/blockly/; accessed 10-July-2019.

[8] Francisco J Gutierrez, Jocelyn Simmonds, Nancy Hitschfeld, Cecilia Casanova,
Cecilia Sotomayor, and Vanessa Pefia-Araya. 2018. Assessing software devel-
opment skills among K-6 learners in a project-based workshop with scratch. In
Proceedings of the 40th International Conference on Software Engineering: Software
Engineering Education and Training. ACM, 98-107.

[9] Brian Harvey and Jens Ménig. 2010. Bringing 4AlJno ceilingaAl to scratch: Can
one language serve kids and computer scientists. Proceedings Constructionism
(2010), 1-10.

[10] Robert Holwerda and Felienne Hermans. 2018. A Usability Analysis of Blocks-
based Programming Editors using Cognitive Dimensions. In 2018 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). IEEE, 217-225.

[11] Yerika Jimenez, Amanpreet Kapoor, and Christina Gardner-McCune. 2018. Us-
ability Challenges that Novice Programmers Experience when Using Scratch for
the First Time. In 2018 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE, 327-328.

M.Seraj, ES.Katterfeldt, K.Bub, S.Autexier, R.Drechsler

[12] Vivian Lagesen. 2005. Extreme Make-over?: The Making of Gender and Com-
puter Science. Ph.D. Dissertation. STS-report 71/2005. Trondheim: Centre for
Technology and Society, Norwegian University of Science and Technology.

[13] Vivian Anette Lagesen. 2008. A cyberfeminist utopia? Perceptions of gender
and computer science among Malaysian women computer science students and
faculty. Science, Technology, & Human Values 33, 1 (2008), 5-27.

[14] Anand Mahadevan, Jason Freeman, and Brian Magerko. 2016. An interactive,
graphical coding environment for EarSketch online using Blockly and Web Audio
APL (2016).

[15] Makeblock. 2019. mBlock - The educational programming software. http:
//www.mblock.cc. [accessed 17-July-2019].

[16] Cecilia Martinez, Marcos] Gomez, and Luciana Benotti. 2015. A comparison of
preschool and elementary school children learning computer science concepts
through a multilanguage robot programming platform. In Proceedings of the 2015
ACM Conference on Innovation and Technology in Computer Science Education.
ACM, 159-164.

[17] Orni Meerbaum-Salant, Michal Armoni, and Mordechai Ben-Ari. 2011. Habits

of programming in scratch. In Proceedings of the 16th annual joint conference on

Innovation and technology in computer science education. ACM, 168-172.

Alexandros Merkouris, Konstantinos Chorianopoulos, and Achilles Kameas. 2017.

Teaching programming in secondary education through embodied computing

platforms: Robotics and wearables. ACM Transactions on Computing Education

(TOCE) 17, 2 (2017), 9.

Lauren R Milne and Richard E Ladner. 2018. Blocks4All: Overcoming Accessibil-

ity Barriers to Blocks Programming for Children with Visual Impairments. In

Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.

ACM, 69.

[20] Vivek Paramasivam, Justin Huang, Sarah Elliott, and Maya Cakmak. 2017. Com-

puter Science Outreach with End-User Robot-Programming Tools. In Proceedings

of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education.

ACM, 447-452.

Carlos Pereira Atencio. 2019. Ardublockly. URL:

https://ardublockly.embeddedlog.com. Accessed July (2019).

[22] Kris Powers, Stacey Ecott, and Leanne M Hirshfield. 2007. Through the looking
glass: teaching CS0 with Alice. In SIGCSE, Vol. 7. Citeseer, 213-217.

[23] Thomas W. Price and Tiffany Barnes. 2015. Comparing Textual and Block In-

terfaces in a Novice Programming Environment. In Proceedings of the Eleventh

Annual International Conference on International Computing Education Research

(ICER ’15). ACM, New York, NY, USA, 91-99. https://doi.org/10.1145/2787622.

2787712

Y Malini Reddy and Heidi Andrade. 2010. A review of rubric use in higher

education. Assessment & evaluation in higher education 35, 4 (2010), 435-448.

Mitchel Resnick, John Maloney, Andrés Monroy-Hernandez, Natalie Rusk, Evelyn

Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian

Silverman, et al. 2009. Scratch: programming for all. Commun. ACM 52, 11 (2009),

60-67.

Ralf Romeike. 2007. Applying Creativity in CS High School Education: Cri-

teria, Teaching Example and Evaluation. In Proceedings of the Seventh Baltic

Sea Conference on Computing Education Research - Volume 88 (Koli Calling ’07).

Australian Computer Society, Inc., Darlinghurst, Australia, Australia, 87-96.

http://dl.acm.org/citation.cfm?id=2449323.2449333

Alexander Ruf, Andreas Miihling, and Peter Hubwieser. 2014. Scratch vs. Karel:

Impact on Learning Outcomes and Motivation. In Proceedings of the 9th Workshop

in Primary and Secondary Computing Education (WiPSCE '14). ACM, New York,

NY, USA, 50-59. https://doi.org/10.1145/2670757.2670772

Mazyar Seraj, Serge Autexier, and Jan Janssen. 2018. BEESM, a block-based

educational programming tool for end users. In Proceedings of the 10th Nordic

Conference on Human-Computer Interaction. ACM, 886—-891.

[29] Mazyar Seraj, Cornelia S Grofle, Serge Autexier, and Rolf Drechsler. 2019. Look
What I Can Do: Acquisition of Programming Skills in the Context of Living
Labs. In Proceedings of the 41th International Conference on Software Engineering:
Software Engineering Education and Training. IEEE.

[30] Mazyar Seraj, Cornelia S Grof3e, Serge Autexier, and Rolf Drechsler. 2019. Smart
Homes Programming: Development and Evaluation of an Educational Program-
ming Application for Young Learners. In Proceedings of the 18th ACM International
Conference on Interaction Design and Children. ACM, 146-152.

[31] David Weintrop and Nathan Holbert. 2017. From blocks to text and back: Program-
ming patterns in a dual-modality environment. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education. ACM, 633-638.

[32] David Weintrop and Uri Wilensky. 2015. Using Commutative Assessments to
Compare Conceptual Understanding in Blocks-based and Text-based Programs..
In ICER, Vol. 15. 101-110.

[33] David Weintrop and Uri Wilensky. 2017. Between a Block and a Typeface:
Designing and Evaluating Hybrid Programming Environments. In Proceedings of
the 2017 Conference on Interaction Design and Children. ACM, 183-192.

[34] David Weintrop and Uri Wilensky. 2017. Comparing block-based and text-based
programming in high school computer science classrooms. ACM Transactions on
Computing Education (TOCE) 18, 1 (2017), 3.

[18

[19

[21

[24

[25

[26

[27

[28

http://www.mblock.cc.
http://www.mblock.cc.
https://doi.org/10.1145/2787622.2787712
https://doi.org/10.1145/2787622.2787712
http://dl.acm.org/citation.cfm?id=2449323.2449333
https://doi.org/10.1145/2670757.2670772

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Overview of the Block-based Programming Environments
	4 Methods
	4.1 Study Design and Data Collection Strategy
	4.2 Participants
	4.3 Procedure

	5 Results
	5.1 Acquisition of Programming Skills
	5.2 Attitudes and Perceptions of Programming
	5.3 Programming Experience

	6 Discussion
	6.1 Findings
	6.2 Limitations and Future Work

	7 Conclusion
	Acknowledgments
	References

