Impacts of Creating Smart Everyday Objects on Young Female
Students’ Programming Skills and Attitudes

Mazyar Seraj+?

Eva-Sophie Katterfeldt!

Serge Autexier? Rolf Drechsler!-?

nstitute of Computer Science, University of Bremen, 28359 Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{seraj,evak,drechsler}@uni-bremen.de
{mazyar.seraj,serge.autexier,rolf.drechsler}@dfki.de

ABSTRACT

In computer programming education, learning to program tangi-
ble objects has become a common way to introduce programming
to young students. In an effort to address this intervention, scien-
tific research has been done on the effectiveness of using tangible
hardware platforms such as robots and wearable products to teach
basic programming concepts to children. However, there is a lack
of research on how young students’ attitudes and programming
skills are influenced over time, when they learn to program tangi-
ble objects and make them smart. In this paper, we investigate the
impacts of using a tangible everyday object and making it smart
on young female students’ attitudes towards programming and the
acquisition of basic programming skills. During a 4-day non-formal

programming workshop with 12 6 h grade students, they were in-
troduced to basic programming concepts, and learned how to apply
them to turn a houseplant into a smart object. In a pilot study, we
employed a block-based programming environment and analyzed
the students’ trajectories of attitudes towards programming and
performance based on repeated open-ended qualitative question-
naires and programming questions throughout the workshop. The
results show that all students had high confidence regarding pro-
gramming skills, regardless of creating smart objects. Furthermore,
it indicates that experienced students highly valued the program-
ming of tangible everyday objects compared with inexperienced
students. The findings of this work contribute to our understanding
of how making tangible everyday objects smart can support the de-
velopment of a positive attitude and keep up of interest throughout
a programming workshop among girls.

CCS CONCEPTS

« Applied computing — Computer-assisted instruction; « Social
and professional topics — Computer science education;

KEYWORDS

tangible objects, young female students, acquisition of program-
ming skills, attitudes towards programming, smart objects

ACM Reference Format:

Mazyar Seraj’? Eva-Sophie Katterfeldt! Serge Autexier?
Rolf Drechsler’? . 2020. Impacts of Creating Smart Everyday Objects on
Young Female Students’ Programming Skills and Attitudes. In The 51st
ACM Technical Symposium on Computer Science Education (SIGCSE °20),
March 11-14, 2020, Portland, OR, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3328778.3366841

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCSE °20, March 11-14, 2020, Portland, OR, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6793-6/20/03...$15.00
https://doi.org/10.1145/3328778.3366841

1 INTRODUCTION

The number of formal and non-formal computer programming
courses and workshops that aim to introduce programming and
computer science to young students is growing. In computer pro-
gramming education, the application of computing in reality, tends
to be shown to students. In particular, allowing the students to
learn the general purpose of programming and write code for
tangible hardware platforms such as robots [18, 20, 23], smart
homes [14, 28, 29], and wearable products [12, 15, 24] were consid-
ered in previous works. Furthermore, visual block-based program-
ming environments are widely used in the design of introductory
programming courses [12, 18, 29, 35]. These environments are bene-
ficial for learning to code and starting with programming activities,
especially for young students [32].

Despite the growing use of tangible objects and block-based
programming, relatively little empirical study has been done to
understand the impacts of smart objects together with block-based
programming on young students’ interest in programming and
computer science in general. More specifically, it is not clear how
teaching basic programming concepts to young students, and let-
ting them implement these concepts in a tangible object and make it
smart can improve their attitudes towards programming over time.
Previous research addressed that introducing young students to
new technologies supports learning programming [18, 20, 23] and
stimulates interest in computer science [28, 29]. Although research
on teaching programming to young students is vast (e.g., [4, 6, 11, 13,
20]), less is known about the students’ trajectories of performance
and attitudes towards programming in the context of smart objects.
In addition, most western countries, such as European countries
have significant problems with the number of female graduates in
the field of computer science. It was addressed that approximately
25% of females pursuing a career in STEM (Science, Technology,
Engineering, Mathematics) in the EU [7], and fewer than 1 in 5 com-
puter science graduates are female across 35 European countries [5].
Thus, research is needed to offer insights into the impacts of em-
bedding the creation of smart objects in programming courses, and
into female attitudes towards programming and computer science
more broadly. This paper seeks to answer the following question
in order to address the gap in previous research:

How do young female students’ programming skills and attitudes
towards programming change over time in the context of creating
smart everyday objects?

To answer this question, we present the result of a 4-day non-
formal programming workshop with 12 6/# grade German female
students (between 11 and 12 years old). We investigate the influ-
ence of using tangible everyday objects and making them smart
on the development of a positive attitude towards programming
among the students and on the improvement of their programming
performance in a pilot study. A block-based programming environ-
ment was employed to reduce the complexity of programming and
facilitate it for the students to learn basic programming concepts

https://doi.org/10.1145/3328778.3366841
https://doi.org/10.1145/3328778.3366841

Figure 1: An example of one houseplant, at the beginning,
and at the end of the workshop.

and author programs. A houseplant was provided as an appropriate
stimulus that enables the students to connect a micro-controller,
different sensors (e.g., light, temperature, humidity, sound) and ac-
tuators (e.g., LED light, water-pump, mp3-player, RGB LCD) to it.
The students can program the sensors and actuators in a way that
they react to each other, and build a smart houseplant. For instance,
students can use a micro-controller (in this case, Arduino) and
connect a humidity sensor, a relay, and a water-pump to it. Then,
the students can program the micro-controller using block-based
programming in order to enable the water-pump to pump water
into the houseplant as soon as the sensor measures the humidity of
the flower soil is below a certain degree (see Fig. 1). It is a special
feature of this study that we examine the path of students’ attitudes
towards programming and their performance based on repeated
open-ended qualitative questionnaires and programming questions
at the beginning, in the middle and at the end of the workshop.
The paper begins with a review of previous work and how they
employ tangible objects and hardware platforms to teach basic
programming concepts together with block-based programming
environments. Then, we describe the study design. We continue
with our findings, followed by a discussion of the implications of
these findings. The paper closes with conclusions and future works.

2 BACKGROUND AND RELATED WORK

The importance of learning computer programming has been shown,
and it has been established as an area of research in computer sci-
ence discipline [20, 33, 35]. Young students become familiar with
the use of technologies (e.g., smartphones, tablets, computers, etc.),
while they do not have programming skills [11, 20]. In the computer
science education community (CSE), a large number of studies in
the field of computing education highlighted the need to engage
young students to learn basic programming concepts [18, 20, 34, 35].
In particular, they aim to motivate young female students learning
the basics of computer programming and to enable them writing
computer code [20, 28, 31]. However, there is limited consideration
of how to improve young female students’ attitudes and computer
programming performance when it is channeled through appropri-
ate stimuli, such as creating a smart object.

Tangible objects and block-based programming have been used
[2, 26], and their benefits in learning programming have been
shown, especially for young students [19, 20, 29, 30]. Findings show
that their technological confidence benefited from block-based pro-
gramming environments and tangibles, such as robotic computing
platforms [18, 20] and computational textiles [12, 24]. Merkouris et
al. [20] explored the benefits of learning to author programs for tan-
gible hardware platforms such as robots and wearable computers in
comparison to programming for desktop computers among young
students. For this purpose, the authors used similar block-based
programming environments (all based on Scratch [17]) in order to
measure attitudes and programming performance in formal class-
rooms. It was shown that students’ performance in learning basic
programming concepts were not affected by the tangibles, although
they showed a higher intention of learning programming when

they program the robots compared with the desktop computers.
Concerning gender, the girls performed better in the programming
tests than the boys, although they felt less confident. Nevertheless,
no information was provided on how the students’ performance
and attitudes changed over time from the beginning of the course
towards the end of it.

The literature also reports that children learn better when they
are engaged in designing and creating visible objects such as in-
teractive applications, animations, robots, and computational tex-
tiles [20]. With respect to gender, according to [3, 15, 20] com-
putational textiles activities make use of soft everyday materials
(e.g., design bag with colors and LED lights), which are meaning-
ful and give forms of expression to young students who are not
primarily interested in technology. In addition, finding shows that
girls underestimate their computer abilities and they struggle with
assembling and programming materials (e.g., motors and gears)
in robotic courses. Therefore, they enter programming courses
with less confidence than boys [9, 10, 21]. However, Nourbakhsh et
al. [21] found that girls’ confidence increased more than boys by the
end of the robotic courses. Furthermore, Kelleher and Pausch [16]
show that performance and interest in programming highly depend
on time spent in programming activities and prior programming
experiences but not on gender. Nevertheless, research has not yet
been conducted on the effectiveness of creating smart everyday
objects together with block-based programming on young female
students’ programming skills and attitudes towards programming.

Most interventions to teach computer programming with block-
based programming environments and tangible objects achieved
high success to establish confidence and engagement among young
students. However, it is still required to understand more how the
use of these objects during a programming course together with
block-based programming fosters programming skills, as well as
promotes positive attitudes towards programming and computer
science in general. In this work, we investigate the impacts of
programming a houseplant as a tangible object and making it smart
on female students’ attitudes, performance, and level of interest in
programming over time.

3 METHODS

The goal of this study was to experimentally investigate the impacts
of tangible objects and block-based programming environments on
young female students’ programming skills and attitudes towards

programming. We conducted a pilot study with 12 6th grade fe-
male students (11-12 years old) in a 4-day non-formal programming
workshop. A visual block-based programming environment based
on Google Blockly, and a houseplant as the tangible everyday object
were used. Three dimensions of students’ attitudes were considered:
confidence, enjoyment, and interest in future programming learn-
ing opportunities. The students’ perception of using block-based
programming and creating a smart object was measured with three
questionnaires. Furthermore, the performance of the students was
assessed with three programming questions. The questionnaires
and programming questions were given to students: (i) at the begin-
ning of the workshop (pre questions), (ii) at the end of the second
day when the students had learned programming concepts (inter-
mediate questions), and (iii) at the end of the workshop, when the
students had implemented their newly learned programming skills
in the houseplant and made it smart (post questions).

3.1 Study Design and Data Collection Strategy

In this study, we used a block-based programming environment in
order to enable students to program a tangible everyday object. The
programming environment is based on BEESM [27], which is built
with the Blockly library [8] (see Fig. 2). BEESM is primarily designed

Table 1: 10-point Grading Rubric Scale

10-points (Connection) 8-points (Analysis)

6-points (Summary)

4-points (Incomplete) 2-points (Attempted)

Answer shows mastery
of content and a deeper
understanding of it.

understanding of content,
but it has a minor issue.

Answer shows mastery and Answer shows some understan- Answer does not show understanding Answer does not address
ding of essential content, but it of basic content, or it shows that mas-
has a lack of greater evidence.

the programming ques-

tery of the general content is missing. tion or is off-topic.

Dicara L Rosr

...... arie: crmarin votmacer (EEIEY Serial Monitor Output:

Figure 2: Screenshot of the programming environment, in-
cluding the final program for a group; translated to English.

for inexperienced users and novices to learn and write code for
smart environments, mobile robots, and micro-controllers one at a
time and in combination with each other. The design and additional
features of BEESM can be found in more detail in [27] and [29].
We changed the BEESM user interface to allow our students to
use three different panels and have a full vision of blocks (Block
Panel), code syntax (Code Panel), and output of the code (Output
Panel). Furthermore, the tangible object in this workshop was a
houseplant. This was used as an appropriate stimulus to enable the
students to connect a micro-controller, as well as different sensors
and actuators, program them, and build a smart object (see Fig. 1).

Pre, intermediate, and post questionnaires were employed to
collect data concerning the students’ attitudes and perceptions of
programming, prior programming experience, and age group. The
acquisition of basic programming skills was assessed, using a pre,
an intermediate, and a post programming question.

Pre questionnaire (preQ). PreQ, which was distributed before
the programming activities, consists of five open-ended questions
to find out the students’ attitudes towards programming and the
programming workshop. With this regard, students’ confidence,
enjoyment, and interest in future programming learning opportu-
nities were recorded. The students’ confidence was asked through,
"how do you rate your programming skills?" (Q1), and "do you think
you will be successful in this workshop?" (Q2). The enjoyment was
recorded using two questions "I find programming... (Q3)", and "what
are you looking forward to in this workshop?" (Q4). The interest of
students in learning programming was asked via the question "how
would you like to learn programming? why?" (Q5). Furthermore, the
students were required to determine their prior programming ex-
perience with block-based programming environments using the
"yes" or "no" question "have you ever worked with a block-based
programming environment?" (Q6).

Intermediate and post questionnaires (intermediateQ and postQ).
IntermediateQ was distributed after learning basic programming
concepts and activities in order to measure the students’ attitudes
towards programming. The students’ perception of using block-
based programming and creating a computer system consists of
micro-controller, sensors, and actuators were also considered. This
questionnaire was composed of the same questions as the pre ques-
tionnaire, just with different words for two questions; Q2 changed to
"do you think you were successful in this workshop?", and Q4 changed
to "what did you like/dislike about the workshop?". Furthermore, the
students were required to answer two additional questions. These
questions were about the block-based programming, "how do you

1 increase Variable by : 3 delavseconds 5 Variable 7 set Variable to :

2 delayseconds 4 clear Display @ read sensor at a Pin 8 show on the Display :

Figure 3: Block-shaped elements in the pre programming
question (prePQ); translated to English.

like programming with blocks?" (Q7); and programming the sensors
and actuators, "what do you think about programming a computer
system? (e.g., sensors and actuators)' (Q8). In postQ, Q8 was changed
to "what do you think about programming a real smart object? (e.g.,
smart houseplant)". All other questions remained the same as they
were in intermediateQ.

Programming questions (prePQ, intermediatePQ, and postPQ). In
order to evaluate the students’ prior programming experience and
measure the acquisition of programming skills, they were asked
to perform a pre programming question (prePQ), an intermediate
programming question at the end of the second day of the work-
shop (intermediatePQ), and a post programming question at the
end of the workshop (postPQ). In each pre, intermediate and post
programming question, block-shaped elements were designed inde-
pendent of the block-based programming environment in order to
test how well the students acquire the basic programming concepts
which were taught during the workshop (e.g., see Fig. 3).

PrePQ asked to program the micro-controller to get the data
from a connected sensor, write the sensor’s value into a variable
and show it in an RGB LCD for 2 seconds. We added control-flow
statements in intermediatePQ; therefore, we asked this time that if
the value of the sensor is less than 20, then the RGB LCD should
show the value for 5 seconds in the second row and fifth column.
PostPQ contains all previous concepts plus loops. This time, we
asked that if the value of the sensor is more than 30, then the RGB
LCD should show the value for 3 seconds in the first row and the
fourth column. In addition, the LCD should then blink in green for
3 times with 1 second delay in between.

In each programming question, students were asked to answer
the question via selecting a set of blocks and identifying the order of
them in a correct logical way. It was noted that some blocks might
not be needed and some may appear more than one time in their
answers. All programming questions are slightly different from
each other, and they are getting more advanced from the beginning
towards the end of the workshop. This counterbalance design of
questions is to ensure that students read the questions carefully and
identify the order of blocks based on the question. Furthermore,
these questions represent realistic programming problems for a
micro-controller (e.g., Arduino), a sensor (e.g., light, temperature)
and an actuator such as RGB LCD. The solution given by the student
were collected for each programming question and evaluated by a
10-point grading rubric [25] (see Table 1). Each solution was scored
independently by two researchers to ensure consistent grading.

3.2 Participants

Atotal of 12 6! grade female students (between 11 and 12 years old)
of a German secondary school participated in this study. The school
teacher was contacted regarding our programming workshop. Then,
students and their parents were informed by their school to register
for it. Therefore, the students who participated in this study were
self-selected, and interested in learning programming and having
programming activities. None of the students had received teaching
in programming as part of their regular school curriculum. However,

we employed a question to record their previous programming
experiences, and six students indicated that they had worked with
block-based programming environments and tangibles in the past.

3.3 Procedure

The duration of each daily session was five hours, with one hour
break. One female and one male instructor led the whole work-
shop. Both instructors had a computer science background with
experience in working with young students. In this study, students
worked in pairs on each of the activities. Students with prior pro-
gramming experience were paired together, and those without
experience were paired with each other. All students answered pre,
intermediate, and post questionnaires and programming questions
individually. The questionnaire was filled first each time, followed
by the programming question. Each day, an oral explanation was
given, using prepared slides. Additionally, we used supplementary
documents—including an explanation of all materials and neces-
sary blocks for programming and activities—in order to help the
students, as well as minimize and control the instructor effects. The
topics and activities were covered during each day as follows:

Day 1. First, the students filled in preQ and prePQ. They were
then informed that they are going to have a set of programming
activities in each group, and that these activities help them to pro-
gram and design a smart houseplant. Then, pairs of two students
(2 experienced or 2 inexperienced) were assigned to one computer.
This session was followed by an introduction to the block-based
programming environment. The programming concepts introduced
in this session were variables, loops, and RGB coloring model, using
Arduino and RGB LCD. Students also learned how to show string
and numerical values on the RGB LCD in different courser positions,
and how to change the LCD color. We asked the students to explore
the corresponding blocks in the programming environment.

Day 2. First, we continued with how variables and loops func-
tion. Then, students were introduced to sensors (light, temperature,
humidity, sound, etc.) and actuators (LED light, water-pump, mp3-
player, RGB LCD, etc.). They also learned how to get data from a
sensor and put it into a variable. The programming concepts in-
cluded in this session were the definition of control-flow statements,
such as conditions and logical operators. Students were required to
execute and understand the blocks. In this respect, they started to
program actuators to react to sensors data. At the end of the second
day, students filled in intermediateQ) and intermediatePQ.

Day 3. At the beginning of this session, each group of students
was asked to present and share with others how the Arduino, sen-
sors, actuators, variables, loops, and control-flow statements work
and are executed. Then, each group chose a houseplant. We asked
them to give a character to the houseplant and think of how the sen-
sors and actuators in their desire houseplant should communicate
and react to each other. This session followed by the implementation
of the programming concepts in Arduino and start programming it
based on the character of the houseplant.

Day 4. In this session, students continued with programming
and designing the houseplant. At the end of this session, postQ and
postPQ were given to the students to find out the changes in their
performance and attitudes from the beginning of the workshop
towards the end of it. The workshop ended with the presentation
of the character and the functionality of each houseplant.

4 RESULTS

All participants filled out preQ and intermediateQ, as well as prePQ
and intermediatePQ. One participant did not show up on the last
day, and thus, postQ and postPQ were filled by eleven students.
Please note, this student showed a negative attitude in preQ and
intermediateQ. This case is not addressed in the description of

Table 2: Students’ Programming Performance
Experienced Inexperienced

Questions M (SD) M (SD) ANOVA Results

PrePQ 5.00 (2.45) 2.00 (1.26) F(1,10) = 7.11, *p = 0.024
IntermediatePQ 5.33 (2.73) 3.33(1.03) F(1,10) = 2.81,p = 0.12
PostPQ 5.67 (2.94) 2.40 (0.89) F(1.9) = 5.63, ~"p = 0.042

M: Mean SD: Standard Deviation ~ F: F-distribution p: p-value **p < 0.05: Significant Difference

—P1 P2 P3 P4 ——P5 P6 ——P1 P2 P3 P4 ——P5 P6
—+—P7 —P8 —P9 —+-P10-#-P11 —4—P12 ——P7 ——P8 ——P9 —+—P10-#-P11 —4—P12
others. others

great (very good)

yes, itely
good /
. N yes
improving : S
not so good, not sure

not so bad

not so good (bad) no, not really

PREQ INTERMEDIATEQ POSTQ PRmDIATEQ PosTQ
(a) (b)
Figure 4: (a) Students rate their programming skills (Q1); (b)
Students’ thoughts on their success in the workshop (Q2).

results, but it is included in the diagrams and we refer to it in
Section 5. The written responses to the questionnaires were coded
independently by two researchers and then discussed in order to
find an agreement on final categories. In each diagram (Fig. 4 to
Fig. 6), P1 to P6 are students with prior experience, and P7 to P12
are students without prior experience in programming.

4.1 Acquisition of Programming Skills

The students’ performance was assessed three times, at the be-
ginning, in the middle and at the end of the workshop (described
in Section 3). The experienced students performed significantly
better than the inexperienced students in prePQ and postPQ, and
their performance improved (descriptively) from prePQ towards
the postPQ (see Table 2). Furthermore, the performance of inex-
perienced students improved (descriptively) in intermediatePQ,
where no significant difference was obtained compared with the
performance of experienced students. However, their performance
dropped in postPQ (see Table 2). No significant difference occurred
within each group of experienced and inexperienced students from
prePQ towards postPQ.

4.2 Attitudes and Perceptions of Programming

4.2.1 Confidence. Concerning the students’ confidence, they were
asked to rate their programming skills (Q1). After coding their
responses, we had the following categories: "not so good (bad)", "not
so good but not so bad", "improving", "good", "great (very good)", and
"others" (see Fig. 4a). We saw a positive trend in intermediateQ
for two-third (8) of the students while it remained the same for
the other participants. It decreased for one student who did not
show up on the last day (P9). No specific difference was observed
between inexperienced and experienced students. In postQ, we saw
an increase in confidence for two participants (P2 and P10). One
(P4) rated her skills less positive than in intermediateQ, but equal
to preQ. The remaining participants rated their skills the same as
in intermediateQ.

The students were also asked whether they think that they would
be successful in the workshop (Q2). The answers were categorized
as "no, not really", "not sure", "yes", "yes, definitely", and "others" (see
Fig. 4b). At the beginning, three students were unsure (P1, P3, and
P12), and one said "no" (P9). The confidence increased or remained
the same (positively) for all students, except one (P9), towards the
end of the workshop. At the end, no unsureness was seen, and all

students rated their success with "yes" or "yes, definitely".

4.2.2 Enjoyment and Interest. With respect to the enjoyment of
programming, students were asked to indicate how they find pro-
gramming (Q3). The answers were categorized in "complicated",
"fascinating and interesting", "hard fun" (inspired by [22]), "easy

——P1 P2 P3 P4 ——P5 —o-P6
——P7 —P8 —P9 —+—P10-—#-P11—+P12

others
itis useful

others for my future
fun (great) itis interesting
itis fun
easy and logical
learn how it works
hard fun
1 do not want to
fascinating & learn
interesting
compli:ated P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
PREQ INTERMEDIATEQ POSTQ = PreQ IntermediateQ PostQ
(a) (b)

Figure 5: (a) How students found programming (Q3); (b) Why
students like to learn programming (Q5).

——P1 P2 P3 P4 ——P5 —e—P6

——P7 —P8 —P9 —+—P10-8-P11—4—P12
others

fun (great)

easy
hard fun
scope of action

exhausting
INTERMEDIATEQ POSTQ

Figure 6: How students like to program with blocks (Q7).

and logical", "fun (great)", and "others" (see Fig. 5a). All participants
liked programming in intermediateQ and postQ more than in preQ.
However, four students (P2, P7, P19, and P11) changed their mind
from intermediateQ to postQ; for instance, they realized that the
programming is not only "fun", but fun and, at the same time, chal-
lenging ("hard fun"), or just "interesting".

The students were also required to indicate why they would like
to learn programming (Q5). This question aimed to find out about
their general interest in learning programming. The answers were
categorized as "I do not want to learn", "learn how it works", "It is fun",
"It is interesting", "It is useful for my future", and "others" (see Fig. 5b).
Four students (P1, P7, P19, and P11) mentioned that programming
is "fun" from the beginning of the workshop towards the end of
it. One student (P3) finally found that the programming is "fun".
Furthermore, three students found it "useful for their futures" (P5,
P6, and P8). However, P8 changed her idea and found programming
is "fun" during the workshop. For seven participants, the reason to
learn programming remained the same throughout the workshop.
In particular, the motivation of inexperienced students to learn
programming was (expecting) "fun", while experienced students
mentioned the learning of how technical things work.

4.2.3 Block-based Programming and Smart Objects. In intermedi-
ateQ and postQ, participants were required to respond to how they
liked programming with blocks (Q7). The answers were categorized

non

as "exhausting”, "scope of action (e.g., opportunities to be creative)",
"hard fun", "easy", "fun (great)", "others". Here, the answers changed
from intermediateQ to postQ for half of the participants (see Fig. 6).
Experienced participants often mentioned that "it is easy", or appre-
ciated the "scope of action", while inexperienced students found it
"fun" or "hard fun". Please note that all experienced students men-
tioned in Q6 (in preQ) that they had worked with other block-based
programming environments before.

We also distinctly asked how they liked programming a tangible
(smart) object ((Q8) in intermediateQ and postQ). Categories were
"great (very cool)", "fun (cool)", "interesting", "no response" (see Fig. 7).
We saw a difference between experienced and inexperienced stu-
dents. Half of the experienced students indicated that it was "fun
(cool)" in both intermediateQ (P2, P4, and P6) and postQ (P2, P3,
and P6). P4 found it "interesting" in postQ, and P3 did not answer
this question in intermediateQ. Inexperienced students indicated

PROGRAMMING A TANGIBLE (SMART) OBJECT

L 17%
17%
9 ™ Great (very cool
33% 33% e

Fun (cool)
’
Interesting

50¢ : Did not respond

PROGRAMMING A TANGIBLE (SMART) OBJECT

¥ Great (very cool)
Fun (cool)
Interesting
Did not respond

xR

i

]

(a) Experienced students (b) Inexperienced students

Figure 7: How students like to program a tangible object (Q8).

LIKE ABOUT WORKSHOP LIKE ABOUT WORKSHOP

= Programming with blocks
Programming the

object (houseplant)
17% Learning new things

Programming the
obiject (houseplant)
Learning new things

IntermediateQ
Ioms Everything
o7
) ® Others

33% 4

Everything

H Others

= Did not respond = Did not respond

(a) Experienced students

Figure 8: What students like about the workshop (Q4).

(b) Inexperienced students

that it was "great (very cool)" (P8 and P11) or "fun (cool)" (P7, P9
and P10) in intermediateQ; P12 found it "interesting" to program a
tangible object in intermediateQ. Their enthusiasm grew towards
the postQ with a shift of two students (P10 and P12) to "great (very
cool)". In general, half of the students did not change their minds
between intermediateQ and postQ.

Students were also asked (Q4) to answer what they look forward
to in the workshop (preQ) and what they liked about the workshop
(in intermediateQ and postQ). Categories are "teamwork", "learning
programming/technical things", "program a real object", "others", and
"no response” in preQ. In addition, categories in both intermediateQ

non

and postQ are "programming with blocks", "programming the object
(houseplant)", "learning new things", "everything", "others", and "did
not respond" (see Fig. 8). In preQ, students were mostly (5) looking
forward to "learning new and technical things". For inexperienced
students, this was about two-third (P7, P8, P10, and P12). However,
experienced students were more differentiate, and two of them spec-
ified "programming a tangible object" (P4 and P6). In intermediateQ,
the distribution of categories changed, and we can see a clear differ-
ence between experienced and inexperienced students. With this
regard, experienced participants mostly mentioned: "programming
with blocks" (P2 and P3), and "everything" (P1 and P4) in intermedi-
ateQ. In postQ, two-third (4) of them mentioned: "programming the
object (houseplant)" (P3, P4, P5, and P6). Inexperienced participants
mostly answered, "everything" (P11 and P12) and "programming
with blocks" (P7 and P8) in intermediateQ. In postQ, three of them
(P10, P11, and P12) mentioned "everything", and two of them (P7
and P8) mentioned "programming with blocks".

5 DISCUSSION

In this study, the students’ performance in the programming ques-
tions did not correlate with their confidence concerning perceived
programming concepts. Therefore, although girls had some dif-
ficulties in understanding the subject, they still felt positive and
confident about their programming skills and success. This is in line
with the results presented in [1, 20, 21] that girls’ confidence level
increases by visual programming environments and experience
with interactive tangible objects.

With respect to the confidence, enjoyment and interest, a clear
difference between experienced and inexperienced students was

not observed. However, some differences were seen in the stu-
dents’ responses to the questions regarding the workshop activities
and items. The majority of experienced participants mentioned
that they liked creating a smart object in this workshop, while
the inexperienced students remained rather vague and mentioned
"everything" or only "programming". The results showed that es-
pecially the experienced students appreciated working with the
houseplant (as a tangible everyday object) and, due to their prior
experience, they were able to articulate clearly what they like and
why it was fun for them. Furthermore, the opportunity of apply-
ing their programming skills to a tangible object and making it
smart was more meaningful and interesting for them. In contrast,
the inexperienced students did not mention the tangible everyday
object (in this case, houseplant) but they were mostly impressed by
programming with a visual block-based programming environment.
In addition, the findings showed that programming by itself was
interesting for the inexperienced students and applying it to the
tangible object did not stand out. We can assume that they did not
yet have the terminology to distinguish between programming with
and without tangibles. From these results, we can draw implications
on designing courses for experienced and inexperienced (female)
students. For experienced students, it is indicated that having a
meaningful application area for programming such as a tangible
everyday object, as well as making it smart is an important area that
needs to be taken into account. This supports the results from the
programming questions that experienced students performed sig-
nificantly better than inexperienced students in the postPQ, while
it was not significantly better in intermediatePQ. This result is in
line with findings from [28], which showed that experienced stu-
dents had more benefits from tangible objects and platforms than
inexperienced students.

Our initial research question was how programming skills and
attitudes change over time in the context of programming and creat-
ing smart everyday objects. This also includes finding out whether
using a tangible everyday object and providing the possibility to
make it smart changes young female students’ attitudes towards
programming. Concerning the confidence in programming, the
biggest changes were observed between preQ and intermediateQ.
After the introduction to the block-based programming environ-
ment, the confidence in programming increased. Except for one
(the dropout student), all students felt that they performed equal
or better than what they had expected. The findings showed that
the students’ confidence in programming was not affected by the
implementation of the programming concepts in a tangible every-
day object and the experience gained by that time. This is in line
with their opinion about programming. After initial excitement in
intermediateQ, their confidence dropped. This indicates that they
realized programming is not just fun but also challenging after
programming and creating the smart object. However, the feeling
of being successful increased after working with the tangible object
and making it smart. One reason could be that "smart houseplant"
was the general topic and the objective of the workshop, which our
participants felt that it was achieved.

Enjoyment of programming increased in intermediateQ, and it
had a decrease for a few participants after using the tangible object.
We assume, one reason is that the complexity of the tasks increased.
Nevertheless, working with tangibles did not indicate a distinct
effect on enjoyment but helped to keep it up.

As mentioned in Section 4, one student dropped out. Although
she had excused herself to the workshop instructor in advance that
she had another commitment on the last day, she showed negative
confidence and attitude in her responses to some questions in preQ
and intermediateQ. While the results which are obtained from the
other students are promising, we would like to highlight that we

can probably learn a lot more from dropout participants. Thus, we
argue for looking more in-depth into these cases in future iterations
of this work; for instance, using ethnographic methods.

5.1 Limitations and Future Work

While we tried to provide insights into the relationship between
creating smart objects and improving young female students’ at-
titudes and programming performance, this study has limitations
which are addressed in the following.

The first limitation of this study relates to the number of pro-
gramming tasks and the period of the workshop. For instance, the
findings of this study are limited to the diversity of the program-
ming tasks that the students performed and how they speak to
more diverse programming activities and computational skills. A
second similar limitation is that the intermediate questionnaire and
programming question might have had an influence on students’
performance in learning basic programming concepts and their
motivation. Further work is needed to address these limitations and
to generalize the findings beyond the specifics of this study, such
as the period of programming workshop and type of programming
tasks.

Another limitation of this pilot study is related to the number of
participants. We would like to emphasize that the relatively small
sample size (12 female students) lowers the power of findings to
be generalized on a large scale. Thus, we look at this as a major
concern that needs to be addressed in future directions when we
expand the scope of this work with a larger sample size.

A final limitation of this study relates to the control group. This
is another pathway of future work to find out the impacts of pro-
gramming courses on students’ attitudes and programming skills
over time without using tangible objects as well as when young
male students are targeted for such programming courses.

6 CONCLUSION

As the presence of women in computer science discipline is lower
than men in most western countries, raising girls’ interest in the
programming side of computer science is an active area of research.
In this paper, we present a pilot study investigating the impacts of
programming and creating a smart everyday object (smart house-
plant) on girls’ programming skills and attitudes. Programming
performance, enjoyment, interest, and confidence were not only as-
sessed with programming questions and open-ended questionnaires
before and after a non-formal programming workshop but also in-
termediately before starting to implement programming in the
tangible everyday object (a houseplant). Our findings indicate the
girls’ confidence did not match their actual performance. Their con-
fidence increased after introducing the block-based programming
environment, and it remained high after creating the smart object.
However, being able to program the houseplant was perceived dif-
ferently by experienced and inexperienced participants. Data shows
that block-based programming was interesting "enough" for inexpe-
rienced students, while experienced students appreciated more to
apply their skills to make the houseplant smart. Furthermore, our
study supports the claim that creating smart objects has a direct im-
pact on young female students’ performance and attitude towards
programming. By studying the influence of creating smart every-
day objects as an application of computing in reality, we enhance
our understanding of designing appropriate programming courses
concerning the students’ prior experience. While many questions
still remain on how to best introduce programming to girls, the
findings of this study are essential to inform other researchers and
educators about the relation between tangible objects together with
block-based programming, and girls’ programming performance
and attitudes towards programming.

7

ACKNOWLEDGMENTS

This work was funded by the German Federal Ministry for Educa-
tion and Research (BMBF) within the project SMILE under grant
number 01FP1613. The authors would like to thank for this support.

REFERENCES

(1]

=

[10

(11

[12

(13

[14

[16]

[17]

(18]

[19]

[20

[21]

[22

(23]

[24

Sally R Beisser. 2005. An examination of gender differences in elementary con-
structionist classrooms using Lego/Logo instruction. Computers in the Schools
22, 3-4 (2005), 7-19.

Paulo Blikstein. 2015. Computationally Enhanced Toolkits for Children: Historical
Review and a Framework for Future Design. Foundations and Trends in Human—
Computer Interaction 9, 1 (2015), 1-68. https://doi.org/10.1561/1100000057
Leah Buechley, Mike Eisenberg, Jaime Catchen, and Ali Crockett. 2008. The
LilyPad Arduino: using computational textiles to investigate engagement, aes-
thetics, and diversity in computer science education. In Proceedings of the SIGCHI
conference on Human factors in computing systems. ACM, 423-432.

John W Coffey. 2017. A Study of the Use of a Reflective Activity to Improve
Students’ Software Design Capabilities. In Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education. ACM, 129-134.

Microsoft Corporation. 2017. Why Europe’s girls aren’t studying STEM. (2017).
retrieved August 10, 2019 from http://hdl.voced.edu.au/10707/427011.

Inés Friss de Kereki and Areti Manataki. 2016. "Code Yourself" and "A Programar":
a bilingual MOOC for teaching Computer Science to teenagers. In Frontiers in
Education Conference (FIE), 2016 IEEE. IEEE, 1-9.

Bernhard Ertl, Silke Luttenberger, and Manuela Paechter. 2017. The impact of
gender stereotypes on the self-concept of female students in stem subjects with
an under-representation of females. Frontiers in psychology 8 (2017), 703.

Neil Fraser. 2014. Google blockly-a visual programming editor. ~ URL:
http://code.google.com/p/blockly. Accessed Sep (2014). Now available at
https://developers.google.com/blockly/; accessed 10-August-2019.

Elena Gorbacheva, Jenine Beekhuyzen, Jan vom Brocke, and Jérg Becker. 2019.
Directions for research on gender imbalance in the IT profession. European
Journal of Information Systems 28, 1 (2019), 43-67.

Denise Giirer and Tracy Camp. 2002. An ACM-W literature review on women in
computing. ACM SIGCSE Bulletin 34, 2 (2002), 121-127.

Yasmin B Kafai. 2016. From computational thinking to computational participa-
tion in K-12 education. Commun. ACM 59, 8 (2016), 26-27.

Yasmin B Kafai, Eunkyoung Lee, Kristin Searle, Deborah Fields, Eliot Kaplan,
and Debora Lui. 2014. A crafts-oriented approach to computing in high school:
Introducing computational concepts, practices, and perspectives with electronic
textiles. ACM Transactions on Computing Education (TOCE) 14, 1 (2014), 1.

Filiz Kalelioglu. 2015. A new way of teaching programming skills to K-12 students:
Code. org. Computers in Human Behavior 52 (2015), 200-210.

Eva-Sophie Katterfeldt and Nadine Dittert. 2018. Co-designing Smart Home
Maker Workshops with Girls. In Proceedings of the Conference on Creativity and
Making in Education. ACM, 100-101.

Eva-Sophie Katterfeldt, Nadine Dittert, and Heidi Schelhowe. 2009. EduWear:
smart textiles as ways of relating computing technology to everyday life. In
Proceedings of the 8th International Conference on Interaction Design and Children.
ACM, 9-17.

Caitlin Kelleher and Randy Pausch. 2005. Lowering the barriers to program-
ming: A taxonomy of programming environments and languages for novice
programmers. ACM Computing Surveys (CSUR) 37, 2 (2005), 83-137.

John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. 2010. The scratch programming language and environment. ACM Trans-
actions on Computing Education (TOCE) 10, 4 (2010), 16.

Cecilia Martinez, Marcos] Gomez, and Luciana Benotti. 2015. A comparison of
preschool and elementary school children learning computer science concepts
through a multilanguage robot programming platform. In Proceedings of the 2015
ACM Conference on Innovation and Technology in Computer Science Education.
ACM, 159-164.

Edward F Melcer and Katherine Isbister. 2018. Bots & (Main) Frames: exploring the
impact of tangible blocks and collaborative play in an educational programming
game. In Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems. ACM, 266.

Alexandros Merkouris, Konstantinos Chorianopoulos, and Achilles Kameas. 2017.
Teaching programming in secondary education through embodied computing
platforms: Robotics and wearables. ACM Transactions on Computing Education
(TOCE) 17, 2 (2017), 9.

Illah R Nourbakhsh, Emily Hamner, Kevin Crowley, and Katie Wilkinson. 2004.
Formal measures of learning in a secondary school mobile robotics course. In IEEE
International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04.
2004, Vol. 2. IEEE, 1831-1836.

Seymour Papert. 2002. Hard Fun. Bangor Daily News (Bangor, Maine) (2002).
retrieved August 1, 2019 from http://www.papert.org/articles/HardFun.html.
Vivek Paramasivam, Justin Huang, Sarah Elliott, and Maya Cakmak. 2017. Com-
puter Science Outreach with End-User Robot-Programming Tools. In Proceedings
of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education.
ACM, 447-452.

Kanjun Qiu, Leah Buechley, Edward Baafi, and Wendy Dubow. 2013. A curriculum
for teaching computer science through computational textiles. In Proceedings of

[25

[26

[27

(28]

[29

[30

[31

(32]

(33]

(34]

(35]

the 12th International Conference on Interaction Design and Children. ACM, 20-27.
Y Malini Reddy and Heidi Andrade. 2010. A review of rubric use in higher
education. Assessment & evaluation in higher education 35, 4 (2010), 435-448.
Mitchel Resnick, Fred Martin, Robert Berg, Rick Borovoy, Vanessa Colella, Kwin
Kramer, and Brian Silverman. 1998. Digital manipulatives: new toys to think with.
In CHI ’98: Proceedings of the SIGCHI conference on Human factors in computing
systems. ACM, New York, NY, 281-287. https://doi.org/10.1145/274644.274684
Mazyar Seraj, Serge Autexier, and Jan Janssen. 2018. BEESM, a block-based
educational programming tool for end users. In Proceedings of the 10th Nordic
Conference on Human-Computer Interaction. ACM, 886—-891.

Mazyar Seraj, Cornelia S Grof3e, Serge Autexier, and Rolf Drechsler. 2019. Look
What I Can Do: Acquisition of Programming Skills in the Context of Living
Labs. In Proceedings of the 41th International Conference on Software Engineering:
Software Engineering Education and Training. IEEE.

Mazyar Seraj, Cornelia S Grof3e, Serge Autexier, and Rolf Drechsler. 2019. Smart
Homes Programming: Development and Evaluation of an Educational Program-
ming Application for Young Learners. In Proceedings of the 18th ACM International
Conference on Interaction Design and Children. ACM, 146-152.

Jaekwoun Shim, Daiyoung Kwon, and Wongyu Lee. 2016. The effects of a robot
game environment on computer programming education for elementary school
students. IEEE Transactions on Education 60, 2 (2016), 164-172.

Amanda Sullivan and Marina Umashi Bers. 2016. Girls, boys, and bots: Gender
differences in young children’s performance on robotics and programming tasks.
Journal of Information Technology Education: Innovations in Practice 15 (2016),
145-165.

David Weintrop. 2019. Block-based programming in computer science education.
Commun. ACM 62, 8 (2019), 22—-25.

David Weintrop and Nathan Holbert. 2017. From blocks to text and back: Program-
ming patterns in a dual-modality environment. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education. ACM, 633-638.
David Weintrop and Uri Wilensky. 2015. Using Commutative Assessments to
Compare Conceptual Understanding in Blocks-based and Text-based Programs..
In ICER, Vol. 15. 101-110.

David Weintrop and Uri Wilensky. 2017. Comparing block-based and text-based
programming in high school computer science classrooms. ACM Transactions on
Computing Education (TOCE) 18, 1 (2017), 3.

https://doi.org/10.1561/1100000057
https://doi.org/10.1145/274644.274684

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Methods
	3.1 Study Design and Data Collection Strategy
	3.2 Participants
	3.3 Procedure

	4 Results
	4.1 Acquisition of Programming Skills
	4.2 Attitudes and Perceptions of Programming

	5 Discussion
	5.1 Limitations and Future Work

	6 Conclusion
	7 Acknowledgments
	References

