
PolyMiR: Polynomial Formal Verification of the
MicroRV32 Processor

Lennart Weingarten
Institute of Computer Science

University of Bremen
Bremen, Germany

len wei@uni-bremen.de

Kamalika Datta
Institute of Computer Science

University of Bremen/DFKI
Bremen, Germany

kdatta@uni-bremen.de

Rolf Drechsler
Institute of Computer Science

University of Bremen/DFKI
Bremen, Germany

drechsler@uni-bremen.de

Abstract—Formal verification techniques ensure completeness
as opposed to simulation-based techniques. In general, the process
of formal verification is computationally complex, and it is
difficult to quantify the exact time and space complexities. Some
of the recent works have shown that it is possible to achieve
polynomial space and time complexities for verifying specific
designs, like arithmetic circuits. However, this cannot be directly
extended to complex circuits, like processors. A recent work has
reported a formal verification method for the RISC-V processor
with polynomial complexity, where only single-cycle instruction
execution was considered and it was computation intensive. This
method cannot be directly extended to multi-cycle operations,
which are typical for most real processors. This paper introduces
an improved data structure leading to Binary Decision Diagram
(BDD) based Polynomial Formal Verification (PFV) with support
for both single-cycle and multi-cycle operations. We use the
MicroRV32 processor as a case study. Our method leads to
significant improvement in runtime over the previous method.
The entire process of verification can be carried out in polynomial
space and time complexities for multi-cycle operations.

Index Terms—Polynomial Formal Verification, RISC-V, BDD

I. INTRODUCTION

With the increasing complexity of present-day designs, it
is imperative to verify the designs before they are manufac-
tured. Formal verification techniques are widely practiced by
the industry towards achieving this objective. However, such
methods are computationally complex and time consuming.
Specifically, for complex designs like processors, it is very
important to ensure design correctness before manufacturing
them. Earlier efforts towards processor verification mostly
relied on simulation-based techniques. However, over the last
decades, there has been a distinct paradigm shift towards using
formal methods for this purpose, and approaches based on
equivalence checking, theorem proving, and model checking
have been proposed (e.g. [1], [2]). Such methods guarantee
completeness in the verification process; however, the space
and time complexities of these methods remain unpredictable.
This causes major problems during a typical processor design
cycle, as it is not possible to predict beforehand the time
estimate to complete the verification process. This often results
in delays in the fabrication process and the time-to-market for
newly manufactured products.

The difficulty of the verification process is typically evalu-
ated in terms of time and space complexities. If the complexity
is a polynomial function of n, then the approach can be
used to verify bigger circuit instances. In this context, the

problem of Polynomial Formal Verification (PFV) of circuits
has become very important and several works in this area have
been reported very recently [3], [4], [5]. These can be broadly
classified into two categories – (a) try to establish polynomial
complexity bounds for existing verification approaches, or (b)
try to extend existing methods to ensure PFV. Some of the
works specifically focus on arithmetic circuits, where it has
been shown that adder [3] and multiplier [6] circuits can be
verified with polynomial time and space complexities. In these
works, bit-level methods based on Binary Decision Diagrams
(BDDs) [7], word-level methods based on Symbolic Computer
Algebra (SCA), or a combination of both, have been used.
However, in spite of good progress in this area, PFV of a
complete processor design has been rarely investigated.

In a recent work [8], a BDD-based PFV method has been
proposed to verify the single-cycle implementation for a subset
of the RISC-V instruction set. This is the first attempt towards
PFV, but has limited utility as most practical processors
have complex instructions with multi-cycle implementations.
Moreover, the method uses complex data structures with
implementations that result in higher verification time. Also
the method cannot be directly extended to tackle multi-cycle
operations due to its limited capabilities.

In this paper, we propose a PFV approach for a RISC-V
processor (MicroRV32 [9]) that supports multi-cycle opera-
tions in the data path, which is the first such attempt to the
best of the authors knowledge.

The main contributions of the present work can be sum-
marised as follows:

• We present our verification results for a more compre-
hensive set of instructions as compared to earlier work.

• We incorporate improved data structure and code base
that results in faster verification time as compared to
the previous method, while verifying a more complex
processor.

• We implement improved modeling of shift operations that
was one of the bottlenecks of the previous approach.

The paper is organized as follows. Section 2 provides the
necessary background and related works in this domain. In
Section 3 we present the proposed verification methodology.
In Section 4 we show how the proposed method ensures PFV.
In Section 5 we present the experimental results followed by
concluding remarks in Section 6.

II. BACKGROUND AND RELATED WORK

In this section we first provide the necessary background
information about the RISC-V processor architecture, and then
we briefly discuss BDD-based formal verification techniques.
Finally we summarize the related works in the broad area of
processor verification.

A. RISC-V Processors

RISC-V is a popular open-source Instruction Set Archi-
tecture (ISA) developed at the University of Berkeley. It
is based on the classical load-store architecture, and forms
the foundation of the next-generation Reduced Instruction
Set Computer (RISC) designs. Two distinguishing features of
the RISC-V architecture are its modularity and extensibility.
The open-source ISA specification for RISC-V provides base
model support for 32-, 64-, and 128-bit integer instructions,
and as such can be extended to include newer functionalities. It
encourages the designers to customize the ISA to suit specific
applications, by allowing them to create customized add-ons,
thereby leveraging the enormous flexibility that it offers. This
design flexibility, however, also adds to the complexity of
processor verification and it becomes a challenge to complete
the process within a reasonable amount of time.

B. BDD based Formal Verification

A Binary Decision Diagram (BDD) [7] is a popular data
structure used for compact representation of Boolean func-
tions. It is basically a finite Directed Acyclic Graph (DAG)
with a designated root node. Each non-leaf node is labeled
with a variable (say, x), and consists of two outgoing edges
corresponding to x = 0 and x = 1 respectively. There
are two terminal nodes labelled with constant values 0 and
1. An Ordered BDD (OBDD) is a BDD with a specified
variable ordering that is consistent for every path from the
root to the terminal nodes. By repeated application of a set
of reduction rules, an OBDD can be converted to a Reduced
Ordered BDD (ROBDD), which is a canonical representation
containing minimum number of nodes. In the rest of the paper,
we shall be using the terms BDD and ROBDD synonymously.

One of the most important applications of BDD is to
verify the equivalence of two functions. The basic idea is
that the ROBDD of two equivalent functions will be identical
for the same variable ordering. We can use the If-Then-Else
(ITE) operator [10] to carry out function transformations for
achieving this.

The function ITE can be invoked recursively to decompose
a given function progressively, as illustrated below for one
step:

ITE(f, g, h) = ITE(xi, ITE(fxi , gxi , hxi), ITE(fxi , gxi , hxi))
(1)

In Eqn. (1), fxi and fxi are the positive and negative co-
factors of f corresponding to the variable xi. We get the result
by replacing xi with either 0 or 1. For the algorithm the result
is calculated recursively using Eqn. (1). While generating
the result for the BDDs (f , g and h), the BDD sub-graphs
corresponding to f , g and h nodes are required. These sub-
graphs are passed as arguments for subsequent calls to the

ITE function. The number of nodes present in the BDD will
be equal to the number of sub-graphs. The function is called
at most once for each of the three arguments. Under the
assumption that a search in the Unique Table can be performed
in constant time, the worst-case computational complexity of
the ITE algorithm will be O(|f | · |g| · |h|), where |f |, |g| and
|h| represent the sizes of the BDDs with respect to the number
of nodes [10].

Now for the purpose of formally verifying a multi-output
circuit, we need to build the BDDs for each of the outputs.
We use symbolic simulation to generate the BDD for each
output function. In a conventional simulation run, all the
possible input values are applied to a circuit model, and the
outputs are matched against the expected values. But using
symbolic simulation we can use a single symbolic test that
generally covers the whole input space. We begin the symbolic
simulation by generating the BDDs for the corresponding input
variables. Then using the ITE algorithm we get the BDD of
the output(s) of the gate or building block that are directly fed
from the primary inputs. The process is repeated till we reach
one of the primary outputs. At the end the output BDDs are
verified to check whether there is match against the original
function specification.

C. Related Works

Formal verification has been an active area of research over
the last several decades. Some of the techniques that have been
explored include model checking, theorem proving, equiv-
alence checking, and using formal specification languages.
Some specific attempts in this regard range from verifying
the operation of the control unit in pipelined processors [11],
verifying correctness of complex data path operations [12],
co-verification of hardware and software modules [13], etc.
In [14], the authors have proposed techniques for verifying
the functional operation of a processor at the microcode level,
and developed an automated tool that uses SAT/SMT solvers
for backward compatibility check coupled with assertion-
based verification. In an alternate approach, authors in [15]
proposed a technique for generating the complete property
suite from a given architectural specification, which can be
used for verifying the processor functionality at the Register
Transfer Level (RTL). The verification approaches proposed
in [16], [17] employ theorem proving techniques along with
SAT solver to verify the processor microcode as well as
RTL operations. It may be noted that none of the above
approaches target Polynomial Formal Verification (PFV) of a
given processor specification. In [18], the authors proposed a
BDD-based PFV approach to verify the functional operation of
a very simple Arithmetic Logic Unit (ALU) that support single-
cycle operations; however, the other processor components are
not considered. In a very recent work [8] the authors have
proposed PFV method to verify a processor, but only single-
cycle operation in the datapath is considered.

In this paper, we propose a generalized PFV method to
prove the correctness of RISC-V processors supporting both
single-cycle and multi-cycle operations. We establish polyno-
mial upper-bound complexities in both space and time, and

demonstrate good performance through rigorous experimental
evaluation.

III. PROPOSED VERIFICATION METHODOLOGY

A. Motivation

There have been very few prior works that consider PFV of
digital circuits in general and processor verification in particu-
lar. In [8], a PFV scheme for a single-cycle RISC-V processor
was proposed, where an instruction is assumed to be executed
in a single cycle. In other words, for every instructions a
pure combinational circuit is extracted for execution, with the
clock period greater than the maximum instruction latency. For
verification, it is necessary to have a reference model against
which the extracted circuit specifications can be matched.
The authors in [8] used a BDD-based reference model that
models the function of each instruction. Also the verification
time is higher due to complex code base and implementation
strategies. One of the main drawbacks of this work is that it can
be used only for single-cycle data paths, and for a limited set
of RISC-V instructions. However, this work can be regarded
as the first step towards a unified PFV solution for processor
architectures.

Fig. 1 shows the high-level operation of single-cycle and
multi-cycle execution of instructions. Fig. 1(a) shows the basic
execution control in a single-cycle implementation, where the
inputs (i.e., the instruction to be executed) are fed to a com-
binational circuit that produces the outputs (i.e., results from
the execution). Fig. 1(b) shows the operation schematic for a
multi-cycle MicroRV32 processor [9], where the instruction
cycle is divided into four stages, Fetch (IF), Decode (ID),
Execute (EX), and Write Back (WB). The normal sequence
of execution of an instruction is IF → ID → EX → WB,
which can be disturbed in the presence of interrupt or trap
during instruction execution. This paper presents an improved

(a) (b)

Fig. 1. Overall operation schematic for: (a) single cycle processor, and (b)
multi-cycle processor.

PFV approach for multi-cycle implementations of processor
architecture. As a case study, we consider the MicroRV32
processor [9], with the following assumptions:

a) The instruction cycle is split into four simpler stages,
viz. (IF), (ID), (EX), and (WB). Each of these stages
can be executed in a single clock cycle.

b) All instructions may not need all the four stages for
execution. Thus, the number of clock cycles required
may vary from one instruction type to another, with the
maximum being 4.

c) We assume a non-pipelined processor implementation.
This implies that the instructions are executed sequen-
tially, and there is no overlap in the execution of two
instructions.

Let k denote the number of stages with execution times
{t1, t2, . . . , tk}, and N denote the number of instructions.
For a single-cycle implementation, the clock period is lower
bounded by ∆single ≥

∑k
i=1 ti. However, in the correspond-

ing multi-cycle implementation, the clock period will be lower
bounded by ∆multi ≥ maxki=1{ti}. The total execution time
in the single-cycle and multi-cycle implementations can be
estimated as:

Tsingle = N∆single (2)

Tmulti =

N∑
i=1

δi∆multi (3)

where δi denotes the number of cycles required to execute the
ith instruction. In general, Tsingle > Tmulti.

B. Overall Methodology
In this subsection we present the model assumptions and

the overall verification flow of the proposed approach.
We use the SpinalHDL [19] model of the RISC-V processor,

and consider certain assumptions regarding extraction of the
instruction execution stages from the model. The interconnec-
tions between the stages are assumed to be free from any
faults. The overall verification flow used is shown in Fig. 2.
For the considered MicroRV32 processor, the RTL specifica-
tion is first exported into its equivalent Verilog description.
Subsequently, for verification the following steps are carried
out in sequence.

a) The RISC-V processor core represented in SpinalHDL
is first converted into an Verilog RTL representation, and
then into an AND-Inverter Graph (AIG) [20] represen-
tation.

b) The functionalities of the different stages (viz., IF, ID,
EX and WB) are then extracted from the AIG descrip-
tion, and converted into equivalent AIG representations
using partial simulation (see Section III-C).

c) For every instruction type, the AIGs for the stages
that are actually used in the instruction are combined
together. The final AIG is converted into an equivalent
BDD representation using symbolic simulation. We gen-
erate one output BDD for each instruction type.

d) In the next step, we generate the reference model for our
design, i.e., the reference BDD. We have used a divide-
and-conquer strategy to limit the exponential growth in
the BDD size.

e) Finally, we perform equivalence checking to verify
whether the two BDD representations are functionally
equivalent or not.

In this work, both the functional specifications of indi-
vidual instructions and the corresponding reference models
are expressed in the form of BDDs. To handle multi-cycle
instruction execution, the present work supports storage units
like latches in the graph structure. We divide the larger
problem of processor verification into smaller sub-problems
each of which can be solved in polynomial time.

Fig. 2. Proposed verification methodology for PFV

C. Partial Simulation
Partial simulation is an important step in the verification

flow. The Partial Simulator (PSIM) tool takes two inputs,
an AIG and a set of stimuli. In the present work, the AIG
contains the complete specification of the RISC-V processor.
In the proposed framework as shown in Fig. 2, we have used
an improved data structure for the intermediate representation
in the form of AIG. In the previous work [8] CUDD [21]
was directly incorporated in the AIG-data-structure itself.
In contrast, the present work separates the BDD generation
and the AIG representation, where a symbolic simulator is
used for generating the BDDs. The stimuli set is obtained
from the instruction descriptions as specified in the RISC-V
manual. A final configuration file is created by consolidating
the stimuli files for all the instructions. Stimuli consist of a
set of bit vectors, with the individual bits being ’0’, ’1’ or
’X’ (unknown). To extract the hardware corresponding to the
instruction, we need to suitably configure the stimuli. Firstly,
depending on the instruction type, the opcode bit vector is
set accordingly. Other bit vectors in the instruction encoding
are set to specify the type of the operation (e.g. register or
immediate operand, etc.). The other bit-vectors that depend
on the operand values (e.g. register or immediate) are set to
’X’. For more details about the RISC-V standard see [22],
[23].

In the first step of partial simulation, we apply the values
specified in the stimuli to the primary inputs of the circuit
under consideration, and each node of the graph is evaluated.
In an iterative simplification step, we observe whether an input
to a node is a fixed value; if so, we remove the node. Further,
the garbage fan-ins that do not impact the circuit outputs and
also the associated hardware, are removed.

D. Generation of Reference Model
The Reference Model Generator (RMG) is a key component

in the verification process. For the RISC-V architecture, we
first generate a library consisting of one reference BDD for
each of the instructions. To generate the reference BDD, we
consider a simplified architecture for a functionally equivalent
realization of an instruction. As an example, for the ADD
instruction, we consider an implementation that uses an Ripple
Carry Adder (RCA). The RMG must create all the reference
BDDs for the outputs of the instruction processing hardware.

In order to generate the smallest possible BDDs for a
majority of the instructions, RMG exploits the benefit of

interleaved variable ordering for some of the instructions
like ADD,SUB, which also matches with that generated by
symbolic simulation.

The RISC-V instruction set contains logical instructions
like AND, OR, and XOR, and also their counterparts that use
immediate addressing, like ANDI, ORI and XORI. For such
instructions, bitwise logical operations are used to generate the
reference BDDs.

In RISC-V, the addition function is used variously in the
different instructions. For the ADD and ADDI instructions, an
adder is needed to add the operands to produce the result.
Similarly, for the LOAD and STORE instructions, we need to
compute the effective address of an operand in memory by
adding the contents of a register with an offset value specified
as part of the instruction. And for instructions that modify the
value of the Program Counter (PC), like JAL and JALR, we
need to add an offset specified in the instruction with the value
of the PC.

The subtraction instructions, SUB requires subtraction of
one operand from the other. The branch instructions (like
BEQ, BNE, BLT and BGT) require comparison of two register
operands and decide based on the outcome. This is performed
by subtracting the operands and checking the relevant flag. A
very similar structure appears for the various SET instructions
(like SLT, SLTU, etc.), where we need to subtract two register
operands. In RMG, there is an implementation of the subtrac-
tion operation, which can be used to generate the reference
BDDs for all these instructions.

The shift operations, SLL and SRL, do not involve any
arithmetic or logical computation to generate the results. We
implement a generic shift operation for various shifts and their
immediate counterpart.

IV. ENSURING POLYNOMIAL FORMAL VERIFICATION

In this section we show how polynomial formal verification
can be achieved for the RISC-V processor architecture, by pro-
viding upper bounds for space and time complexities for the
corresponding multi-cycle processor design. The four stages
in the instruction execution cycle for the RISC-V processor
are considered individually for the verification process.

The (IF) stage loads one full instruction from the memory
into the instruction register, and can be achieved in constant
time. Hence, the complexity is O(1). In the (ID) stage, we
consider two different scenarios depending on the type of
instruction. An instruction can be either register-to-register

type (e.g., ADD, SUB, etc.) or register-immediate type (e.g.,
ADDI, SLLI, etc.). Depending on the instruction type, the
instruction execution is expressed in terms of its components:
R – register, I – immediate, S – load and store, B – branch,
U – upper immediate, and J – jump.

All instruction types, except R-type, use immediate values
and therefore utilize the Extension Unit. Independent of those
two scenarios the verification time should be O(1). For the
memory constraint using BDDs the upper bound is dependent
on the number of input bits n and the number of instruction
types k supported by the decoder k ·O(n).

Depending on the instruction type, the (EX) stage will
perform the operations specified by the instruction. The com-
plexity of this stage heavily depends on the complexity of the
instruction; therefore, it will be upper bounded by the most
complex instructions. We group the instructions depending on
the underlying functionality, as follows: Logic, Shift, Addition
and Subtraction. Similar to the approach used in [8], we argue
about the complexity of each operation, by utilizing symbolic
simulation and the properties of the ITE-operator. For the
Logic group (AND, ANDI, OR, ORI, XOR, XORI) the
instruction time complexity is bounded by O(n), as for each of
the n input bits one of the logic gates is executed to calculate
the result.

The Shift group of instruction (SLL, SRL, etc) can shift the
contents of a register by maximum n bit positions, where n
is the number of bits in a register. As there are n different
possibilities, the complexity will be O(n). Since the time
complexity of verifying all the instructions as part of the
RISC-V ISA has been shown to be polynomial, it is possible
to achieve PFV of the multi-cycle RISC-V processor using
the proposed approach. For the addition the upper bound has
already been shown to be O(n2) [3][8]. Hence we consider
the same time complexity in this work.

The Subtractive group of instructions consists of all the
instructions that utilize the subtraction operation during ex-
ecution. This includes the subtraction instruction itself SUB,
comparison (e.g., SLT, SLTU, etc.) and branch (e.g., BEQ,
BNE). We consider that the subtraction operation A − B is
carried out using an adder as (A+B′+1), where B′ denotes
the ones complement of B. We assume that a RCA is used
for the addition operation, an array of n XOR gates produce
the ones complement of the second operand, and the addition
by 1 is achieved by setting the carry input to 1. The overall
complexity will be similar to that of addition, with the time
complexity of symbolic simulation bounded by O(n2).

V. EXPERIMENTAL EVALUATION

The experiments are conducted on a Thinkpad T490 with
Intel i7-8565U CPU (1.80GHz) and 16GB of memory. The
proposed PFV method, partial simulation, reference model
creation and equivalence checking are all implemented using
C++. For BDD generation, the CUDD package [21] is used.
We have used the MicroRV32 multi-cycle processor specifi-
cation [9] to evaluate our proposed verification method. The
MicroRV32 core supports the base instruction set I and M, C
extensions with CSR Registers for SW traps and timer IRQ.
In this work we focus on the verification of the base 32I.

TABLE I
RESULTS OF ALU, DECODE- AND EXTENSION UNIT(DEU)

ALU DEU

G. Inst. PSIM
[ms]

PFV
[ms]

Nodes Peak PSIM
[ms]

PFV
[ms]

L
og

ic

AND 4.41 0.10 97 100 0.83 0.09
ANDI 4.13 0.09 97 100 0.91 0.09
OR 4.66 0.09 97 100 0.77 0.10
ORI 4.13 0.09 97 100 0.83 0.10
XOR 4.48 0.11 161 164 0.72 0.10
XORI 4.66 0.12 161 164 0.84 0.11

Sh
if

ts

SLL 5.57 0.73 1632 1671 0.84 0.10
SLLI 4.59 0.73 1632 1635 0.87 0.10
SRL 4.91 0.62 1431 1434 0.78 0.10
SRLI 4.83 0.69 1431 1434 0.88 0.10
SRA 4.77 0.75 1396 1399 0.72 0.10
SRAI 4.86 0.80 1396 1399 0.83 0.09

A
dd

iti
on

ADD 12.33 0.54 1327 1330 5.14 0.24
ADDI 4.73 0.42 1327 1330 0.81 0.09
JAL 4.87 0.42 1327 1330 0.75 0.06
JALR 4.53 0.47 1327 1330 0.88 0.08
AUIPC 4.62 0.41 1327 1330 0.83 0.07
LUI 4.64 0.42 1327 1330 0.84 0.07
LB 4.37 0.50 1327 1330 0.82 0.10
SB 4.95 0.45 1327 1330 0.85 0.06
LW 4.84 0.32 804 807 0.87 0.07
SW 4.59 0.28 804 807 0.74 0.07
LH 5.10 0.26 804 807 0.96 0.08
SH 4.98 0.33 804 807 0.95 0.09
LBU 4.35 0.29 804 807 0.89 0.08
LHU 4.98 0.30 804 807 0.97 0.08

Su
bt

ra
ct

io
n

SUB 5.49 0.42 1415 1418 1.01 0.12
BEQ 4.74 0.33 951 954 0.92 0.10
BNE 4.42 0.26 951 954 0.77 0.10
BGE 4.44 0.25 951 954 0.81 0.10
BLT 4.53 0.26 951 954 0.87 0.10
BLT 4.53 0.26 951 954 0.87 0.10
BLTU 4.47 0.26 954 957 0.78 0.10
BGEU 4.40 0.25 954 957 0.83 0.09
SLT 4.98 0.69 992 995 0.79 0.07
SLTU 4.63 0.65 809 812 0.82 0.11
SLTIU 5.01 0.67 809 812 0.84 0.10∑

182.23 14.99 35797 35944 35.39 3.51

The verification results are reported in Table I for the
ALU, Decode and Extension Unit (DEU). The first column
(G) represents the group of the various operations, and the
second column (Inst) represents the instruction. The next two
columns show the time for partial simulation (PSIM) and the
polynomial formal verification (PFV) respectively (in ms),
while the next two columns respectively denote the number of
BDD nodes (Nodes) and the peak number of nodes required
during the BDD creation (Peak). It may be noted that the third
to sixth columns represent the results for the ALU unit.

The last two columns in the table reports the PSIM and
PFV values for the DEU respectively. The number of nodes
and peak values are not mentioned in the table, where the
values are 65 and 68 respectively for all the instructions.
The sum for number of (Nodes) and (Peaks) are 2405 and
2516 respectively. PFV includes the times for BDD generation,
BDD reference model generation and comparison of both
models.

From Table I, we can infer a more general view of the
results. As expected, the most simple instructions (viz., the
Logic group) consist of the least number of nodes, as compared

to all other groups. The time taken for partial simulation is
significantly higher than the verification process. From Table I,
the number of Nodes for individual group of operations are
similar (e.g. for Addition group it is 1327 for most and 804
for all the load and store instructions).

In the subtraction group, the SUB instruction has the most
number of nodes. This is because for the SUB instruction,
subtraction is defined for all the output bits; however, for all
other instructions in the group only the last sign extended node
is used for comparison. All other output nodes correspond to
the zero BDD.

From the two columns Nodes and Peak, we can infer that
the number of temporarily required nodes (peaks) is slightly
above the number of exact nodes to represent the function
itself.

The total time to partially simulate the ALU stage takes
around 0.18 seconds (182.23ms), while the total verification
time is 0.015 seconds (14.99ms) and for DEU the partial
simulation takes 0.035 seconds (35.39ms) and the verification
takes 0.003 seconds (3.51ms). This results in total partial
simulation time to 0.22 seconds and the verification time 0.019
seconds.

A. Comparison with Previous Work

We incorporate more operations compared to the previous
work in [8] – specifically, nine new operations have been
added. Moreover, in the previous work the instructions were
run using single-cycle whereas in this work we use a multi-
cycle processor that consists of various stages wherein we
report the results for ALU and DEU. For our method the total
time for the verification process is less than half a second, as
compared to 16 minutes reported previously. It can be seen
from Table I that the runtime for verification is significantly
less as compared to [8]. In the earlier work the shift operations
were generated manually; for each shift operation, all possible
shift combinations were generated which required several
partial simulations. In our work we only need one general
reference model; hence we implement a generic shift operation
for all (SLL, SRL, SRA) and their immediate counterparts.
Also, the use of improved data structures and code base in the
present work helps in reducing the overall runtime.

VI. CONCLUSION

In this paper we present a Polynomial Formal Verifica-
tion (PFV) method to verify a 32-bit multi-cycle RISC-V
processor (MicroRV32). We perform partial simulation to
extract information about the hardware associated with each
instruction, and then carry out symbolic simulation to generate
the corresponding output BDD. To ensure the equivalence, we
generate a reference BDD that is compared with the BDD
generated using symbolic simulation. The use of improved
data structure, code base and generic shift implementation
results in significantly less PFV time compared to state-of-
the-art methods. We further show that the polynomial upper
bound complexity is indeed achieved. As a future work we
plan to verify a pipelined processor.

ACKNOWLEDGMENT

This work was supported in part by DFG within the Reinhart
Koselleck Project PolyVer (DR 287/36-1) and partly by the
German Federal Ministry of Education and Research (BMBF)
within the ECXL project under grant no. 01IW22002. We are
grateful to Sallar Ahmadi-Pour for his support in providing
the MicroRV RISC-V code and helpful guidance.

REFERENCES

[1] V. Patankar, A. Jain, and R. Bryant, “Formal verification of an ARM
processor,” in VLSI Design, 1999, pp. 282–287.

[2] P. Mishra and N. Dutt, “A methodology for validation of microprocessors
using equivalence checking,” in MTV Workshop, 2003, pp. 83–88.

[3] R. Drechsler, “PolyAdd: Polynomial formal verification of adder cir-
cuits,” in DDECS, 2021, pp. 99–104.

[4] R. Drechsler and A. Mahzoon, “Polynomial formal verification: Ensur-
ing correctness under resource constraints,” in ICCAD, 2022, pp. 70:1–
70:9.

[5] J. Kleinekathöfer, A. Mahzoon, and R. Drechsler, “Polynomial formal
verification of floating point adders,” in DATE, 2023, pp. 1–2.

[6] M. Barhoush, A. Mahzoon, and R. Drechsler, “Polynomial word-level
verification of arithmetic circuits,” in MEMOCODE, 2021, pp. 1–9.

[7] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” TC, vol. 35, no. 8, pp. 677–691, 1986.

[8] L. Weingarten, A. Mahzoon, M. Goli, and R. Drechsler, “Polynomial
formal verification of processor: A RISC-V case study,” in 24th Inter-
national Symposium on Quality Electronic Design (ISQED), 2023, pp.
1–7.

[9] S. Ahmadi-Pour, V. Herdt, and R. Drechsler, “The microrv32 framework:
An accessible and configurable open source risc-v cross-level platform
for education and research,” Journal of Systems Architecture, vol. 133,
p. 102757, 2022.

[10] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation
of a BDD package,” in DAC, 1990, pp. 40–45.

[11] J. R. Burch and D. L. Dill, “Automatic verification of pipelined micro-
processor control,” in CAV, ser. Lecture Notes in Computer Science, vol.
818, 1994, pp. 68–80.

[12] R. Kaivola and K. R. Kohatsu, “Proof engineering in the large: formal
verification of pentium 4 floating-point divider,” Int. J. Softw. Tools
Technol. Transf., vol. 4, no. 3, pp. 323–334, 2003.

[13] R. Kaivola, “Formal verification of pentium® 4 components with
symbolic simulation and inductive invariants,” in CAV, ser. Lecture Notes
in Computer Science, vol. 3576, 2005, pp. 170–184.

[14] T. Arons, E. Elster, L. Fix, S. Mador-Haim, M. Mishaeli, J. Shalev,
E. Singerman, A. Tiemeyer, M. Y. Vardi, and L. D. Zuck, “Formal
verification of backward compatibility of microcode,” in CAV, ser.
Lecture Notes in Computer Science, vol. 3576, 2005, pp. 185–198.

[15] U. Kühne, S. Beyer, J. Bormann, and J. Barstow, “Automated formal
verification of processors based on architectural models,” in FMCAD,
2010, pp. 129–136.

[16] J. Davis, A. Slobodová, and S. Swords, “Microcode verification - another
piece of the microprocessor verification puzzle,” in Interactive Theorem
Proving (ITP), ser. Lecture Notes in Computer Science, vol. 8558, 2014,
pp. 1–16.

[17] S. Goel, A. Slobodová, R. Sumners, and S. Swords, “Verifying x86
instruction implementations,” in International Conference on Certified
Programs and Proofs (CPP), 2020, pp. 47–60.

[18] R. Drechsler, A. Mahzoon, and L. Weingarten, “Polynomial formal
verification of arithmetic circuits,” in ICCIDE, 2021, pp. 457–470.

[19] C. Papon, “SpinalHDL: Scala based HDL,” https://github.com/
SpinalHDL/SpinalHDL, 2021.

[20] A. Kuehlmann, M. K. Ganai, and V. Paruthi, “Circuit-based boolean
reasoning,” in Proceedings of the 38th annual Design Automation
Conference, 2001, pp. 232–237.

[21] F. Somenzi, “CUDD: CU decision diagram package release 2.7.0,”
available at https://github.com/ivmai/cudd, 2018.

[22] A. Waterman and K. Asanović, “The risc-v instruction set manual;
volume i: Unprivileged isa,” in SiFive Inc. and CS Division, EECS
Department, University of California, Berkeley, 2019.

[23] ——, “The risc-v instruction set manual; volume ii: Privileged architec-
ture,” in SiFive Inc. and CS Division, EECS Department, University of
California, Berkeley, 2019.

https://github.com/SpinalHDL/SpinalHDL
https://github.com/SpinalHDL/SpinalHDL
https://github.com/ivmai/cudd

	Introduction
	Background and Related Work
	RISC-V Processors
	BDD based Formal Verification
	Related Works

	Proposed Verification Methodology
	Motivation
	Overall Methodology
	Partial Simulation
	Generation of Reference Model

	Ensuring Polynomial Formal Verification
	Experimental Evaluation
	Comparison with Previous Work

	Conclusion
	References

