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Abstract—Data movement costs constitute a significant bottle-
neck in modern machine learning (ML) systems. When combined
with the computational complexity of algorithms, such as neural
networks, designing hardware accelerators with low energy foot-
print remains challenging. Finite state automata (FSA) constitute
a type of computation model used as a low-complexity learning
unit in ML systems. The implementation of FSA consists of
a number of memory states. However, FSA can be in one of
the states at a given time. It switches to another state based
on the present state and input to the FSA. Due to its natural
synergy with memory, it is a promising candidate for in-memory
computing for reduced data movement costs. This work focuses
on a novel FSA implementation using resistive RAM (ReRAM)
for state storage in series with a CMOS transistor for biasing con-
trols. We propose using multi-level ReRAM technology capable
of transitioning between states depending on bias pulse amplitude
and duration. We use an asynchronous control circuit for writing
each ReRAM-transistor cell for the on-demand switching of the
FSA. We investigate the impact of the device-to-device and cycle-
to-cycle variations on the cell and show that FSA transitions
can be seamlessly achieved without degradation of performance.
Through extensive experimental evaluation, we demonstrate the
implementation of FSA on 1T1R ReRAM crossbar.

Index Terms—FSA, Machine Learning, ReRAM, Memristors,
In-Memory Computing

I. INTRODUCTION

In-memory computing (IMC) using memristive devices has
become popular in elevating the von Neumann bottleneck by
storing and processing data in memory, especially for ma-
chine learning (ML) applications [1]–[5]. Memristive devices
connected in a crossbar structure allow the program to run
in parallel, making the IMC comparable with conventional
computing in terms of energy efficiency and performance [6].
Memristive devices, such as resistive random access memory
(ReRAM) [7], can be configured as multi-level cell [8], where
the device has multiple intermediate states between low resis-
tive (LRS) and high resistive state (HRS). Still, modern ML
workloads require massive storage resources and parallelism
to accelerate. However, finite state automata (FSA) capture the
real-world constraint of finite memory to implement learning
applications [9]. The multi-level behavior of ReRAM can be
used to design FSA in memory.

FSA is an abstract machine that can be at exactly one of
the finite number of states at any given time. FSA changes
its state from one to another, called a transition, when a
specific event occurs [10]. FSA has a significant edge on
applications that require low-latency or real-time processing,
such as automated verification [11], autonomous vehicles [12],

Fig. 1: 1T1R cell for FSA (a) cell structure, (b) device material
stack, and (c) multi-level characteristic of a device.

and tsetlin machine [13]. The energy efficiency, high density,
and IMC properties of ReRAM devices make them suitable for
FSA implementation [14] [15]. Multiple states of ReRAM,
between LRS and HRS, can be mapped to the states of
FSA. An FSA cell can be represented as a single ReRAM
device with a CMOS transistor in series (1T1R), as shown in
Fig. 1(a). The material stack of the memristive cell is shown
in Fig. 1(b), along with the I-V characteristics of the 1T1R
cell in Fig. 1(c). Fig. 1(c) shows the multiple states in SET
(switching to LRS) and RESET (switching to HRS) states,
which have been utilized in this study to implement the FSA
on ReRAM devices [16].

However, transitions of FSA from one state to another
with accurate detection of the current FSA state under device
variations remains challenging. In this paper, we propose an
architecture to implement the FSA on the ReRAM crossbar
for IMC. We show in the proposed architectures how a single
1T1R cell can be used to design a six-state FSA. Next, We
evaluate the proposed architecture in terms of energy efficiency
and performance. Moreover, we assess the architecture under
device variations such as device-to-device (D2D) and cycle-
to-cycle (C2C) [17]. To summarize the main contributions:

• The integration of 1T1R ReRAM technology into FSA
design by utilizing the multi-level behavior of ReRAM.
The gradual RESET method has been utilized to achieve
the multi-level behavior.

• Investigation of the impact of D2D and C2C variations
on state transitions and detection.

• Extensive evaluation of the efficiency of the proposed
architecture in terms of energy efficiency and latency.

The remainder of the paper is organized as follows: Sec-
tion II presents the proposed architecture to design FSA on
ReRAM. Section III presents experimental results and valida-
tion for the design. Finally, Section IV concludes the paper.
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Fig. 2: Architecture to train the FSA using 1T1R cell (FAmn),
where ‘m’ and ‘n’ represent rows and columns in a crossbar,
respectively, and ‘p’ is the number of ADC bits, which is given
as dlog2(s)e, ‘s’ is the number of states in a FA cell.

II. PROPOSED ARCHITECTURE

This section discusses the architecture to implement the
FSA on the 1T1R ReRAM crossbar, depicted in Fig. 2. At
the core of the proposed architecture, 1T1R cells connected in
a crossbar structure called finite automaton (FA) are used.

A. FA using 1T1R cell

The FA cell is constructed using one memristor and one
NMOS transistor in series. The structure of a single FA cell
is shown in Fig. 1. The I-V characteristics shown in Fig. 1(c)
show the multi-level characteristics of FA, which have been
mapped to different states in FA. In this study, the FA has
seven states (‘s’) from S0 to S6, starting from LRS to HRS.
S0 has a minimum resistance of around 7.8KΩ and S6 has
maximum resistance of around 1.5MΩ. All other states are
mapped into the intermediate values between S0 to S6. Each
FA in the crossbar represents six states (excluding S0), and
they can be independently programmed. However, multiple
FAs can be combined to run a complex application that needs
more than six states. For this work, we will limit our study
to the working of independent FA in the crossbar. The state
transitions of FA are examined next.

B. State transitions in FA
An FA has a finite number of states, seven in this study, and

it changes the state from one to another or the next state (qi+1)
based on the input (ii) and current state (qi) similar to a mealy
machine. A pulse generation module in Fig. 2 can generate
the different pulse widths of a fixed voltage amplitude. The
control circuit selects the appropriate signal for the next state
based on the present state and input. The parameter to switch
the state from S0 to any possible state is given in Table I.
Next, the analog demultiplexer (DeMUX) and bit-line encoder
select a FA in the crossbar by applying an ON voltage to the
NMOS transistor and the required pulse signal at the row of
the crossbar.

For the functional correctness of the FSA transition, it is
important to identify the present state correctly. FSA can

Fig. 3: State transitions in a FA cell (a) and (b) shows the use
of FSA as Krinsky learning automaton [18].

jump from the present state to any other possible state in
FA. So, it is expected from the FSA that it should give the
same current value for the same state transition. However, the
gradual RESET method limits the transitions of the states only
in the forward direction (S1 → S6). In order to change the
state which is less than the current state (backward direction),
FA needs to switch to S0 (intermediate state) before switching
to the next desired state. Also, it is expected that states
after switching can correctly be identified during forward or
backward direction switching. Therefore, an intermediate state
is added in every state transition in FA, which provides three
main advantages; (a) switching to any state in FA, (b) state
retention while looping in the same state, and (c) reducing the
complexity of control circuitry.

The state transition graph of single FA is shown in Fig. 3(a).
It can be used for learning applications such as Krinsky
automaton [18]. The mapping of a Krinsky learning automaton
has been shown in Fig. 3(b). The unfavorable response (β = 1)
gradually moves toward the boundary states separating the
two actions, behaving as binary states. In another response
(β = 0), Si switches to S1 and S4 for (1 ≤ i ≤ 3)
and (4 ≤ i ≤ 6), respectively. The proposed architecture
is highly flexible regarding its control circuit and switching
characteristics. It provides the facility to transit from the
current state to any next state via S0 with an adaptive STG
control unit. The proposed approach can accommodate FSM
with more than 6 states by utilizing multiple 1T1R cells
arranged to represent different states and encoded into binary
form, offering flexibility for varying numbers of states.

C. Peripherals to control FSA

Various peripherals around the crossbar are required to
implement FSA on the ReRAM crossbar, as shown in Fig. 2.
The control unit decided the transitions in FA, which are
functions of xi and qi.

Pulse generation module generates the voltage pulses with a
required duration for transitioning the state from one to another
according to Table I. Since state S0 is an intermediate state,

TABLE I: State transition of 1T1R cell
Vfixed = 1.8V, VSET= −2V , VREAD= 0.1V

State Pwidth (ns) Id (µA) Resistance (KΩ)
S0 10ns at -2V 12.8 7.8
S1 5ns 12.6 8.0
S2 10ns 1.6 95.2
S3 15ns 0.56 196.1
S4 30ns 0.3 342.5
S5 60ns 0.2 588.2
S6 150ns 0.07 1492.5
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Fig. 4: Multi-states behavior using gradual RESET method.
the small gap between S0 and S1 will not pose an issue in
state estimation.

Multiplexer (MUX), demultiplexer (DeMUX), and bit-line
encoder are the selection peripherals. For a given (m×n) size
crossbar, (1×m) sized DeMUX are attached to select a row
of the crossbar to apply a pulse for transition. Bit-line encoder
enables the transistor of selected FA. At column, (n×1) MUX
is connected to read the state of a FA.

Current sense amplifier (CSA) and Analog-to-digital con-
verter (ADC) are sensing peripherals. The CSA converts the
current to an amplified voltage, which is further used by the
ADC to detect the current state of FA. A common CSA and
ADC have been used in the proposed architecture, where a
FA can be read in each cycle. A ‘p’ bit ADC is required to
correctly detect the ‘s’ number of states in FA.

Control unit contains the algorithms to switch the states
of FA in sequence. The control unit manipulates the select
lines of MUX and DeMUX to select an FA and generate the
required pulses for transitions via the pulse generation module.
It takes input from the digital interface (xi) and ADC (qi) and
calculates the required control signal to switch the state to
qi+1; alternatively, qi+1(qi, xi), where 0 <= |xi| <= 1 and
S1 <= qi <= S6.

III. EXPERIMENTAL RESULTS

This section evaluates the proposed methodology in terms
of energy efficiency and area. First, we study the switching
characteristics of a FA and the state transitions from one
to another. Next, we look at the impact of D2D and C2C
variations on state transitions.

A. 1T1R cell characterization

1T1R cell used for this study is designed using a
Pt/Ti/TiOx/HfO2/Pt material stack memristive devices in series
with a 45nm transistor. The material stack used in the memris-
tive device adheres to the characteristics of the experimental
devices. Fig. 1 shows the configuration of the 1T1R cell along
with the material stack of the device and I-V characteristics.
Table II shows the parameters used for the ReRAM device
model. The device has multiple-state characteristics, and the
gradual RESET method has been used to achieve this behavior.
In the gradual RESET method, the device is initialized to an
LRS state by applying a positive voltage of a specific duration

Fig. 5: State switching from S0 to S6. For the desired state,
the device is first switched to S0 and then directly switched
to the required state by applying the appropriate pulse.
on the ohmic electrode (OE). Next, the device is switched into
HRS by applying RESET pulses gradually. Fig. 4 shows the
gradual RESET method, where the voltages across the device
and its corresponding resistance states have been plotted. The
gradual RESET method results in multi-level behavior of
1T1R cells. Additionally, a transistor in series helps to control
the current precisely.

B. Realization of state transitions
As the memristive devices change their states based on the

value of integral over time of the applied voltage, the width of
the applied pulse can be used for state transitions instead of
gradually varying voltage. Table I shows the switching of FA
from S0-S6 with different pulse widths. The state S0 is the
initial state or LRS state, which can be switched by applying a
10ns pulse of -2V voltage. The states from S1 to S6 (6 states)
are the actual states used for FA. Generally, the FA switches
the state in the forward (S1-S6) or backward (S6-S1) direc-
tions. However, the gradual method only works in forward
state switching. The backward state switching is tackled by
switching to the intermediate state (S0) before switching to the
desired state. For example, the current state is S3, and the next
expected state is S2. In this case, the device first is switched
to S0 and then switched from S0 to S2 (S3 → S0 → S2). To

TABLE II: Model parameters
Symbol Value Symbol Value

lcell 3 nm ldet 4 nm
rdet 20 nm Nplug 20× 1026 m−3

a 0.25 nm µn 1× 10−6 m2/V s
ε 17 ε0 Ndisc,min 0.008× 1026 m−3

εφβ 5.5 ε0 Ndisc,max 20× 1026 m−3

eφβn0 0.3 eV eφβn 0.1 eV
∆WA 0.7 eV A 0.00392 1/Ω
Rseries 650 Ω Ro 719.244 Ω
Rth,line 90.47 KΩ Rth0 1.572× 107 Ω
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Fig. 6: STG of the control unit, (a) state transition cycle, and
(b) reading the present state in FA.

reduce the complexity of the control circuit and accurate state
detection, the intermediate state has been used in forward, and
backward switching. Fig. 5 shows the switching of the states
through the intermediate state. Table I also shows the states’
current and resistance, indicating enough margin between the
state’s current/resistance for accurate state detection.

C. Impact of variations
The D2D and C2C variation in ReRAM devices can affect

the switching behavior. To simulate D2D variations, the ran-
dom set of values for device parameters such as radius, length,
and minimum and maximum oxygen vacancy in the disc are
drawn from the experiment-verified Gaussian distribution [17].
These variations were then independently applied to the avail-
able devices in the crossbar. C2C variations are simulated by
changing the variable parameters in a period of a single cycle.
It has been observed that states from S0 to S3 (low states)
have a larger impact of the variations compared to high states
(S4 to S6), which is around ±50% change in the read current
for low states and ±20% for high states. However, for low
states, the margin between the state is more than five times
which enables the accurate detection of the state even if the
variations have a larger impact. Moreover, switching through
the intermediate state prevent error accumulation over time
and reduces the impact of variations.

D. Control circuitry
An asynchronous digital controller has been designed using

Workcraft [19] to coordinate data flow between different com-
ponents in the architecture. Faster operation and lower power
consumption are some of the advantages of asynchronous
circuits over global clocked-based circuits. The control unit’s
signal transition graphs (STG) [20] to perform state detection
(Read cycle) and state transitions (write cycle) are shown in
Fig. 6. When there is a request to read the state of FA, the
control unit receives a data reading strobe (DR+) from the
digital interface environment, and a reading cycle begins. It
activates MUX and bit line encoder to select a device (MEN+).
Next, it starts reading the data for the nth FA (DN+) after
receiving acknowledgment from MUX (MACK+). Lastly, the
data is read, and the next read cycle is prepared by resetting
DN-, MEN-, and MACK-. The final ACK signal is sent out
as an acknowledgment for the digital interface.

TABLE III: 1T1R cell energy consumption
State

Switching
Intermediate

State
Energy
(pJ)

State
Switching

Intermediate
State

Energy
(pJ)

S0 → S1 – 1.74 S1 → S2 S0 8.2
S2 → S3 S0 8.3 S3 → S4 S0 8.5
S4 → S5 S0 8.8 S5 → S6 S0 9.25

Average energy 7.5pJ

The control circuit for state transitions provides a facility
to transition the FA state from any present state to any other
possible state. This increases the flexibility of the proposed
architecture to run any FSA application. However, every state
transition in FA is done via S0 to maintain functional correct-
ness and reduce controller complexity. The control circuitry
handles this situation by generating an acknowledgment signal,
which includes the transition of S0 and desired state (Sn).
The transition cycle is initiated whenever there is a request on
a DW+ signal from the environment. The first step for state
transition includes switching to the S0 state. The FA is selected
by enabling the row multiplexer and bit-line encoder (MEN+).
The FA changes the state from the nth state to S0 and disables
the row MUX before sending the acknowledgment for the final
transition. At this time of the cycle, FA is in S0 and ready to
be switched to the desired state (Sn). Similar to S0 switching,
the final transition starts by enabling the peripherals. Before
the transition cycle is finished, the signal DN- initiates the
ACK+ that will be delivered to the digital interface, resetting
DW-, MEN-, and MACK-. The final acknowledgment for the
digital interface is ACK- signal, which indicates a successful
state transition.
E. Energy and latency analysis

Each state transition in FA consumes different energy, which
is given in Table III. In every transition in FA, 7.5pJ energy
is consumed on average. An FA has to switch to the inter-
mediate state before the desired transition, which increases
energy consumption. However, the intermediate state makes
the state switching robust against D2D and C2C variations.
As the proposed architecture used different pulse duration to
state transitions, state S6 takes 150ns pulse. Hence the pulse
generation module generates each pulse for a 150ns period
with varying widths. However, latency can be improved further
by increasing the voltage amplitude of the applied pulse, which
increases energy consumption. So, there is a trade-off between
energy consumption and latency.

IV. CONCLUSIONS
In this work, for the first time, we proposed the architecture

to implement the FSA using a 1T1R ReRAM crossbar. This
paper offers insights into the scope of FSA utilizing ReRAM
and CMOS technology. We use the multi-level characteristics
of ReRAM, achieved using the gradual RESET method, to
implement FSA on the crossbar. We studied the impact of vari-
ation on state transitions. Finally, we evaluated the proposed
framework in terms of latency and energy consumption. The
results are encouraging and demonstrate the potential for using
ReRAM-based FSA designs. We will explore the prototyping
of the proposed designs and test the architecture with learning
automaton applications in the future.
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