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Abstract—Resistive Random-Access Memory (RRAM) crossbar
arrays provide a high-density, low-power platform for neuromorphic
computing. In this work, we implement an RRAM-based architecture
for alphabet recognition using the EMNIST dataset, where all 26
English letters are represented as 28 x 28 binary images. Beyond ideal
conditions, we study the impact of hardware imperfections, including
stuck-at faults, random bit flips, and process variations, on recognition
performance. To improve resilience, we evaluate two fault tolerance
strategies: Triple Modular Redundancy (TMR) and Algorithm-Based
Fault Tolerance (ABFT). TMR delivers strong reliability by masking
faults through replication, while ABFT efficiently detects and corrects
at a lower storage overhead, but at a higher computational cost.
Our results demonstrate that RRAM crossbars combined with
lightweight fault tolerance provide accurate, energy-efficient, and
resilient neuromorphic computing, highlighting their promise for
robust and efficient edge AI deployment.

Index Terms—RRAM crossbar arrays, Neuromorphic computing,
Fault tolerance, TMR, ABFT

I. INTRODUCTION

Neuromorphic computing, inspired by the structure and function
of biological neural systems, was introduced as a conceptual
framework in [1]. It aims to develop Very Large Scale Integra-
tion (VLSI) architectures that emulate neural behavior. During the
past few decades, traditional CMOS technology has been used
predominantly to build neuromorphic systems [2], [3]. However,
CMOS-based designs now face critical challenges as they approach
physical scaling limits [4], [5].

To overcome these limitations, Resistive Random Access Mem-
ory (RRAM) devices have emerged as a promising alternative.
RRAM offers high-density storage and analog computation
capabilities, making it particularly suitable for In-Memory Com-
puting (IMC) architectures [6], [7]. IMC aims to bypass the
memory bottleneck inherent in von Neumann systems by enabling
computation directly within memory arrays, thus eliminating the
need to transfer data between memory and the CPU. The low
power consumption, scalability, and fast switching characteristics
of RRAM make it an excellent candidate to enable practical
neuromorphic applications such as image and speech recognition.

RRAM crossbars naturally support parallel Multiply-And-
Accumulate (MAC) operations by summing currents along memory
columns, where device conductances are tuned to represent weights.
This enables efficient matrix-vector multiplication, a core operation
in neuromorphic processing [8]-[10].

Although RRAM-based crossbar architectures have shown
significant potential, their adoption in real-world systems is
hindered by several reliability concerns. Device-level imperfec-
tions, such as stuck-at faults, random bit flips, and process-
induced variations, can significantly degrade system performance.
Therefore, achieving reliable operation under these non-ideal
conditions requires effective fault tolerance mechanisms.

Fault tolerance has been a central theme in the design of digital
systems since the advent of computing [11]. Traditional approaches
rely on techniques such as redundancy, error detection and
correction, and voting mechanisms to ensure correct functionality
in the presence of faults. In emerging hardware paradigms like
RRAM, however, such techniques must be reimagined to suit
analog characteristics and high integration densities [12]-[14].

In this work, we explore the use of RRAM crossbar arrays for a
pattern recognition task, specifically, the classification of alphabet
characters. For this purpose, we utilize the EMNIST dataset [15],
an extended version of the well-known MNIST database, in which
each character image is represented as a 28 x 28 pixel image.

We investigate the impact of several hardware faults and evaluate
the system’s robustness under degraded conditions. To improve
fault tolerance, we study two complementary redundancy-based
approaches. The first is Triple Modular Redundancy (TMR), which
increases the memory footprint by a factor of three. TMR stores
each data bit in triplicate and employs majority voting to mask
errors, providing strong resilience at the cost of significant area
overhead. The second is an algorithm-based strategy, Algorithm-
Based Fault Tolerance (ABFT), which introduces lightweight
checksum constraints that enable fault detection and, in some
cases, correction without requiring full replication. ABFT leverages
the structure of computations to identify inconsistencies, offering
reduced redundancy overhead compared to TMR while maintaining
competitive accuracy in the presence of faults.

While prior works have demonstrated RRAM-based recognition
systems, most of them focus on functionality and performance
under ideal conditions, without systematically analyzing the
impact of hardware faults or evaluating fault-tolerance mechanisms
[16]-[18]. In contrast, our work explicitly models multiple fault
types and provides a comparative study of two complementary
fault-tolerance approaches, TMR and ABFT. To the best of our
knowledge, this is the first work that quantitatively compares
hardware-oriented and algorithm-oriented fault tolerance in RRAM



crossbars for character recognition. This contribution addresses an
important gap between proof-of-concept crossbar demonstrations
and practical, fault-resilient neuromorphic architectures.

These complementary approaches demonstrate a trade-off
between fault coverage, hardware cost, and energy efficiency:
TMR offers strong resilience at high hardware and power overhead,
while ABFT provides lightweight error detection with lower cost
but limited correction ability and additional time overhead [14],
[19], [20].

The rest of the paper is organized as follows: Section II provides
the preliminary concepts necessary for understanding the proposed
approach. Section III details the methodology and implementation
of the RRAM-based recognition system. Section IV presents the
experimental results and comparisons. Finally, Section V concludes
the paper.

II. BACKGROUND
A. RRAM Crossbar Array

RRAM is an emerging non-volatile memory technology built
on a simple metal-oxide-metal structure [21], [22]. By applying a
voltage of appropriate magnitude and polarity, the resistance of the
device can be modulated between a Low Resistance State (LRS),
representing logic 1, and a High Resistance State (HRS), represent-
ing logic 0. RRAM devices are commonly arranged in a crossbar
architecture, where each memory cell is located at the intersection
of perpendicular nanowires, known as bitlines (horizontal) and
wordlines (vertical).

Programming a device into the HRS involves applying V/2
to the bitline and —V/2 to the wordline, while switching to the
LRS requires —V/2 on the bitline and V/2 on the wordline.
The binary interpretation of the resistance states and the voltage
biasing scheme enables RRAM crossbars to serve not only as
dense memory arrays but also as computational elements. These
structures have demonstrated success in both digital and analog
in-memory computing applications [10], [23]-[25].

B. MAC Operation

RRAM'’s unique analog computation capabilities distinguish it
from other emerging memory technologies, particularly in neural
network implementations. These capabilities enable efficient MAC
operations, crucial for matrix-vector multiplication.

The RRAM devices within the crossbar structure (Fig. 1) are
initialized in a resistive state of aj_),i. Here, a; j represents the
conductance of the device at the intersection of row j and column
k. By applying voltages z1,...,x, to the rows, up to m MAC
operations can be performed simultaneously across m crossbar
columns.

The outputs are the currents flowing in the corresponding
crossbar columns, which is the sum of currents in each RRAM
device, i.e. i; = >, _, ) - a;j . This can be denoted as I = X A,

where I = (i1,...,%m), X = (21,...,2,) and the matrix A is
defined as follows:
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Thus, m MAC operations, each involving n multiplications,
can be computed in parallel within a single cycle.
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Fig. 1: MAC computation in RRAM crossbar

C. Related Work

Several works have investigated memristor crossbar architectures
for neuromorphic pattern recognition, primarily focusing on image
and character recognition. Le et al. [16] proposed a memristive
crossbar-based character recognition system using a single crossbar
array with bipolar inputs to perform XNOR operations between
the input vector and stored 8x8 character patterns. Their approach
showed high accuracy and tolerance to memristance variation but
did not investigate the impact of faults or process variations.

In [17], a single memristor crossbar circuit with bipolar inputs
was proposed for neuromorphic image recognition. This design
implements a simplified XNOR function to measure similarity
between input and stored patterns while reducing the number
of memristors by 50% compared to complementary and twin
architectures. It also achieves lower power consumption and
improved fault tolerance, maintaining higher recognition accuracy
even with 10% defective devices. However, the effects of random
faults or process variation beyond fixed defect rates were not
explored.

Another work [18] introduced a twin crossbar architecture using
two identical M+ memristor arrays instead of the traditional
complementary M + /M setup. By applying Discrete Cosine
Transform, this design reduces the number of low-resistance state
cells, significantly lowering power consumption. Depending on
the degree of coefficient reduction, power savings of up to 77.4%
were achieved compared to previous complementary designs. This
study focused on power optimization and did not address the
impact of faults on recognition accuracy.

Finally, Truong et al. [26] proposed a binary memristor crossbar
for neuromorphic speech recognition, demonstrating strong robust-
ness to memristance variation in filamentary-switching devices.
Although their focus was on speech signals and fabrication
advantages, their results highlight the potential of binary memristor
arrays for reliable pattern recognition under variability.

Our work builds on these approaches by explicitly modeling
faults, noise, and process variations in RRAM-based character
recognition, evaluating system reliability under realistic computing
conditions.

ITI. RRAM-BASED CHARACTER RECOGNITION

In this section, we discuss our proposed RRAM-based character
recognition methodology, hardware fault modeling, and the fault-
tolerance strategies based on hardware and algorithmic redundancy.

A. Proposed Recognition Method

As the initial step of our methodology, we use 26 binary
black-and-white images from the EMNIST dataset [15], each
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Fig. 2: Representative samples of binary images from the EMNIST
dataset [15]

representing a capital English letter (‘A’ to ‘Z’) with a resolution
of 28 x 28 pixels. These images serve as the input patterns
for character recognition. Each image is then flattened into a
1 x 784 vector, forming the corresponding input pattern vector.
Representative examples of these input images are illustrated in
Fig. 2.

These vectors are then stored column-wise in the RRAM
crossbar array. Consequently, the crossbar is configured with 784
rows and 26 columns, resulting in a matrix of size 784 x 26. We
refer to this matrix as the weighted memory array A. In this
representation, each column of A corresponds to one character:
the first column to “A,” the second to “B,” and so on, with the
26th column representing “Z”. In the kth column, the RRAM cell
at the ¢th row is programmed to a resistive value of either LRS
or HRS, depending on whether the corresponding pattern bit is 1
or 0, respectively.

For character recognition applications, RRAM crossbar arrays
perform the bitwise Exclusive-NOR (XNOR) operation between
an input pattern and the pre-stored reference patterns within the
array. This operation effectively measures the similarity between
the input and the stored patterns, as expressed in Eq. (2) [17]:

XPA=XA+X'(1-A)
=XA-XA+X'

=(X-X"A+ X 2

Here, X denotes the input vector of size 1 x 784, X’ represents
its bitwise complement, and A refers to the memory array matrix
containing the stored patterns. Since X’ does not directly interact
with A during the core computation, its contribution can be
separated, allowing for simplification of the matrix operation
between X and A. By defining I = (X — X’), Eq. (2) can be
reformulated as:

Y=X0A=1IA 3)

Assuming the input vector X = [z, 2, ...,2,] has a dimen-
sion of 1 x n, the resulting vector I also has the dimension 1 x n,
as shown in Eq. (4):

I=(X—-X)=i, i )

Each element i in I is a bipolar value, which can be +1 or
—1 depending on the corresponding bit in X. For example, if
X =10,0,1], then I = [—1,—1, 1]. Substituting Eq. (1) and Eq.
(4) into Eq. (3), the output vector Y is obtained as follows:
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Each output element y; is obtained through a MAC operation
between the vector I and the jth column of the memory matrix

A as shown in Eq. (6). Thus, the entire output vector Y can be
computed in a single MAC cycle across the crossbar array.

n
i =) k- an,
k=1

The resulting vector Y, derived from the XNOR-based similarity
comparison between the input X and the stored patterns in A,
quantifies the degree of match between the input and each stored
pattern. A Winner-Take-All (WTA) mechanism as described in
[16], [26] is then applied to identify the index j at which y; is
maximized, thereby indicating the stored pattern that most closely
matches the input.

(6)

B. Modeling Hardware Faults

To evaluate the robustness of our RRAM-based character
recognition system under non-ideal conditions, we incorporate
three common sources of hardware-level imperfections: stuck-at
faults, random bit flips, and memristance variation.

Stuck-at faults are a well-known defect in resistive memory
technologies, in which certain memory cells become permanently
fixed at either a logic high (LRS) or logic low (HRS), regardless
of the intended value. To evaluate their impact, we inject randomly
distributed stuck-at faults into the memory cells of the crossbar
array, represented by the stored matrix A. The fault rate is defined
as the ratio of faulty cells to the total number of memory cells.
For each defective cell, a stuck-at value of O or 1 is assigned
uniformly at random.

Random bit flips simulate soft errors and transient noise that
can occur during inference. In this fault model, individual bits
in the input vector X or in the memory cells represented by the
stored matrix A can randomly flip from O to 1 or from 1 to 0,
according to a defined bit flip probability. These bit flips represent
dynamic and non-permanent disturbances that may result from
thermal noise, radiation, or circuit instability.

Memristance variation reflects the analog variability in RRAM
devices caused by manufacturing imperfections and environmental
conditions [27]-[31]. These variations affect the resistance levels
of the LRS and HRS states, known as memristance values, and can
degrade the accuracy of analog computations. To capture this effect,
the memristance values are modeled using a Gaussian (normal)
distribution centered around the nominal LRS/HRS values, with a
specified standard deviation representing the level of variation.

All three types of non-idealities are introduced exclusively
during the inference phase, allowing us to evaluate the post-
deployment resilience of the system without modifying the training
process.

C. Redundancy Technique for Fault Tolerance Design

In fault-tolerant design, redundancy provides the additional
information required to mitigate the impact of failures. Hardware
redundancy is the most widely adopted approach and can be
implemented in several forms. One of the most prominent is
static redundancy, which provides fault tolerance without the
explicit detection of errors. Within this category, two fundamental
techniques are Duplication with Comparison and Triple Modular
Redundancy (TMR) [32].

Hardware redundancy, however, comes with substantial trade-
offs, most notably increased area, power consumption, weight,
and cost. For example, the duplication-with-comparison method
requires duplicating every functional unit, resulting in a 100%
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Fig. 3: Triple modular redundancy diagram [33]

hardware overhead, which is often prohibitive in resource-
constrained environments. TMR imposes an even greater overhead
of 200% [33], [34], as each module must be triplicated. This very
high hardware overhead is a significant drawback of redundancy-
based techniques. Nonetheless, TMR remains attractive in safety-
critical systems due to its robustness: it can tolerate a single
module failure without disrupting normal operation. This makes
it particularly valuable in applications where system availability
and high reliability are of paramount importance.

In this work, we employ TMR as one of our fault-tolerance
strategies. As shown in Fig. 3, the architecture consists of
three identical modules (denoted M), each executing the same
computation independently. Their outputs are forwarded to a
majority voter (denoted V), which selects the majority value
as the final output. Since the outputs are binary and the number of
modules is odd, the majority vote guarantees an unambiguous and
fault-tolerant result, even in the presence of a faulty module [35],
[36]. This mechanism enables effective masking of both transient
and permanent faults, thereby enhancing system reliability despite
the overhead.

D. Algorithm-Based Fault Tolerance (ABFT)

In addition to hardware redundancy techniques such as TMR, we
also investigate an ABFT scheme as a lightweight alternative [37].
ABFT introduces checksum-based redundancy directly at the data
level of the RRAM crossbar computation, enabling detection
and correction of faulty memory cells with significantly reduced
overhead compared to TMR.

For an m X n memory array, ABFT augments the matrix with
one checksum row and one checksum column, producing an
(m+1) x (n+ 1) encoded array. Each element of the checksum
row stores the sum of the corresponding column entries, while each
element of the checksum column stores the sum of the respective
row entries. The additional corner cell at position (m + 1,n + 1)
holds the checksum of all row or column checksums, ensuring
global consistency.

During inference, the row and column checksums are recom-
puted from the received data and compared against the stored
checksums. A mismatch in row ¢ indicates at least one error in
that row, while a mismatch in column j indicates a fault in that
column. By intersecting these conditions, a faulty element can
often be precisely localized at position (7, j). Once localized, the
correct value of the cell can be reconstructed using either the row
checksum or column checksum equation:

a; ; = RowChecksum(i) — Z a; k
k£

)

or symmetrically using the column relation. This enables single-
cell fault correction.

In comparison to hardware redundancy, ABFT has a much lower
storage overhead. By expanding from m and n to (m + 1) and
similar n + 1 elements, the overhead ratio is given by:

(m+1)(n+1)7mn:m+n+1 @®)

mn mn

For the 784 x 26 EMNIST-based memory array, the overhead
is approximately 4%, in contrast to the 200% overhead of TMR.
This makes ABFT attractive in scenarios where area and power
efficiency are critical.

IV. EXPERIMENTAL RESULTS

This section presents simulation results evaluating the perfor-
mance and fault tolerance of the proposed RRAM-based character
recognition system under various hardware-level imperfections,
including permanent faults and memristance variations. All
experiments were carried out on a machine equipped with an
Intel® Core™ i7 2.10 GHz processor and 8GB of main memory.

A. Performance in Ideal Environment

The RRAM-based crossbar array used in our character recog-
nition system was modeled and simulated in Python, based on a
simplified behavioral abstraction of the Verilog-A model developed
by the Stanford Nanoelectronics Research Group [38]. Each
RRAM device in the crossbar operates in two distinct resistance
states: an HRS of 1 M(2 representing binary ‘0’, and an LRS of
10 k2 representing binary ‘1°.

The character inputs, which are binary images of size 28 x 28,
are flattened into 784-element vectors according to Eq. (4). This
transformation yields bipolar vectors, where logical ‘1’ and ‘0’ are
mapped to voltage levels of +1V and —1V, respectively. These
vectors are then applied to the word lines of the crossbar array.

By applying these bipolar inputs, the crossbar performs analog
current summation at the bit lines, effectively carrying out a MAC
operation. The resulting output currents form distinctive profiles
that are used for character recognition. This computation method
not only exploits the analog nature of RRAM but also leverages
its inherent parallelism for efficient processing.

Fig. 4(a) illustrates the distribution of output currents across the
first ten columns of the crossbar array when the input character
“A” is applied, as conceptually depicted in Fig. 1. Among the ten
columns of the reference matrix A, the highest output current,
11, is observed in the first column. This indicates the strongest
correlation between the input pattern and the reference pattern
stored in column one, confirming correct recognition of character
A

Recognition results for other characters, including “B”, “C”,
and “D”, are also shown in Fig. 4(b)-(d). In each case, the
highest current is observed in the expected column, demonstrating
the effectiveness and accuracy of our RRAM-based system in
distinguishing between different input patterns.

These results validate the suitability of RRAM crossbar arrays
for low-power, parallel, and analog computation tasks, particu-
larly suitable in edge Al applications where memory and logic
integration are critical [39].

B. Impact of Hardware Faults

To assess fault tolerance, we randomly inject defects into the
RRAM crossbar matrix by assuming a fault rate e, which defines
the percentage of affected cells. Each faulty cell is randomly
assigned one of three fault types, stuck-at-0, stuck-at-1, or random
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Fig. 4: Output currents of the first 10 columns for: (a) Character
”A” (b) Character "B” (c) Character ”C” (d) Character ”D”

bit flip, with equal probability. For each fault level, we run 100
independent trials and report average recognition accuracy. For
visualization, Fig. 5 shows per-letter accuracy for a representative
subset (A-J); the remaining letters exhibit the same monotonic
trend with varying sensitivity.

As expected, increasing the fault rate leads to a gradual
degradation in classification performance. Within the displayed
subset (A-J), letters such as “F”, “I”, and “J” show stronger
sensitivity. Averaged over the entire 26-character dataset, the non-
redundant baseline system achieves 89.8% accuracy at a 50% fault
rate, highlighting both its resilience and the need for additional
fault-tolerance mechanisms.

To improve robustness against hardware faults, we implement
a TMR scheme within the RRAM crossbar architecture. In TMR
each character is stored in three separate columns of the crossbar
array. During inference, the MAC operation is performed on
all three redundant copies, and the final recognition result is
obtained via majority voting. This ensures that even if one copy
is corrupted by faults, the remaining two can recover the correct
output, thereby enhancing overall reliability. To evaluate fault
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Fig. 5: Per-letter recognition accuracy with the baseline system
for the representative subset (A-J)
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Fig. 6: Per-letter recognition accuracy with TMR for the repre-
sentative subset (A-J)
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Fig. 7: Average ABFT detection rate as a function of increasing
fault rate

tolerance, we repeated the fault-injection experiments described
earlier, using the same fault rates and types across the replicated
memory blocks. This guarantees that all blocks are uniformly
impacted by faults, simulating a realistic scenario where no region
is completely fault-free. As shown in Fig. 6, the TMR design
consistently outperforms the non-redundant baseline.

To evaluate the effectiveness of ABFT, we repeated the same
fault-injection experiments described in Section III-B, this time
using the checksum-based redundancy scheme. For each fault
rate, 100 Monte Carlo trials were conducted to obtain average
recognition accuracy, fault detection, and correction rates. The
results indicate that ABFT achieves consistently high fault-
detection coverage. Beyond a 5% fault rate, more than 96% of
injected faults are detected, and detection exceeds 99% once the
fault rate reaches 15%, as shown in Fig. 7.

The overall comparison across the three systems is summarized
in Fig. 8. For TMR, averaged over the full 26-character dataset,
recognition accuracy remains at 96.8% even under a 50% fault rate,
compared to 89.8% without redundancy. ABFT also maintains
robust performance, achieving 90.2% accuracy at the same fault
rate. At fault rates below 20%, all systems achieve nearly perfect
accuracy, confirming that TMR and ABFT effectively mitigate the
impact of hardware faults in RRAM-based computing systems.
In contrast to TMR’s straightforward replication, ABFT not only
detects errors but can also correct certain faults: when a single
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memory cell within a row or column is faulty, checksum constraints
enable accurate localization and recovery of the correct value.
Consequently, ABFT maintains recognition accuracy close to the
baseline, while providing fault detection and selective correction
with only modest storage overhead. The trade-off, however, lies in
computation time, as checksum calculations introduce additional
latency compared to TMR’s simpler replication mechanism.

Overall, the complementary strengths of TMR and ABFT
indicate their suitability for different deployment scenarios: TMR
is preferred when efficiency and low latency are critical, while
ABFT is beneficial when fault diagnosis and correction are vital
design requirements.

C. Impact of Memristance Variation

In addition to analyzing permanent faults, we investigate the
impact of device-to-device variability in memristance, a common
and significant source of uncertainty in RRAM-based systems
arising from process variations and fabrication imperfections. This
variability is modeled by introducing random multiplicative noise
to the conductance values of memristive elements within the
crossbar array.

Specifically, the conductance G of each memristor is perturbed
by a Gaussian-distributed random variable with mean 1 and
standard deviation o, yielding:

Ghoisy = G X N (1, 0) ®

where N(1,0) represents a normal distribution with mean 1
and standard deviation o [16]. This multiplicative noise model
effectively captures relative variations in conductance, thereby
reflecting realistic device-level process-induced fluctuations. The
variability parameter o is varied from O to 0.4, corresponding
to up to 40% standard deviation from the nominal conductance
values.

As o increases, both HRS (1 M) and LRS (10k2) exhibit
proportional fluctuations, introducing uncertainty in readout op-
erations. For each variation level, we perform 100 independent
Monte Carlo trials to mitigate stochastic effects and compute the
average recognition accuracy. The impact of memristance variation
on system performance is illustrated in Fig. 9.

The results show that the proposed single-crossbar architecture
maintains high recognition accuracy under moderate variation. For
instance, recognition rates remain at 100% and 99.1% for variation
levels of 20% and 25%, respectively. This robustness is primarily
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Fig. 9: Impact of memristance variation on recognition accuracy

attributed to the large HRS/LRS ratio of 100, which facilitates
clear separation between logic states even in the presence of
variability.

However, as variation increases further, performance deteriorates
significantly. At 0 = 0.4 (i.e., 40% standard deviation), the
recognition accuracy drops to 66%. This degradation results from a
broader spread in resistance values, particularly when considering
the £30 range that covers 99.7% of the Gaussian distribution.
Under such high variability, the overlap between the resistance
distributions of HRS and LRS increases, thereby reducing the
system’s ability to reliably distinguish between logic states.

V. CONCLUSION

We presented an RRAM-based architecture for alphabet recogni-
tion using the EMNIST dataset, representing all 26 English letters
as 28 x 28 binary images. The proposed crossbar system achieved
high accuracy under ideal conditions, confirming RRAM’s suit-
ability for large-scale, parallel in-memory computation.

To evaluate robustness, we introduced hardware fault models
including stuck-at faults, bit flips, and memristance variations. Our
experiments showed that these non-idealities degrade recognition
accuracy, and we investigated two complementary fault-tolerance
strategies: Triple Modular Redundancy (TMR) and Algorithm-
Based Fault Tolerance (ABFT). Both approaches demonstrated
strong resilience, highlighting trade-offs between hardware cost,
energy efficiency, and fault tolerance.

To the best of our knowledge, this work provides the first
comparative evaluation of hardware-oriented (TMR) and algorithm-
oriented (ABFT) fault tolerance in RRAM crossbars for character
recognition under realistic fault models. The findings demonstrate
that RRAM crossbars equipped with redundancy schemes enable
accurate, fault-tolerant, and energy-efficient neuromorphic comput-
ing, offering a scalable path toward robust edge Al systems. Future
work will extend this framework to device-level circuit validation
and integration with more advanced neuromorphic architectures.
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