
Machine Learning-based Prediction of Test Power
Harshad Dhotre∗ Stephan Eggersglüß‡ Krishnendu Chakrabarty§ Rolf Drechsler∗†

∗Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
†Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

‡Mentor, A Siemens Business, Hamburg, Germany
§Duke University, Durham, NC 27708, USA

dhotre@uni-bremen.de, drechsler@uni-bremen.de

Abstract—With the increase in circuit complexity, the gap
between circuit development time and analysis time has widened.
A large database is required in order to perform essential analysis
tasks such as power, thermal, and IR-drop analysis, which, in
turn, leads to long run times. This work focuses on test power
analysis. Due to the large number of test patterns for modern
designs and the excessive power analysis run time for each
test, it is not feasible to obtain complete power profiles for
all the tests. However, test power-safety is essential to produce
reliable manufacturing test results and prevent yield loss and
chip damage. Accurate power profiling can typically be done
for a small subset of pre-selected tests only. An essential task
is therefore to determine those tests, which potentially provide
the worst-case scenarios with respect to test power. We propose
machine learning-based power prediction for test selection. The
prediction is applied in two different ways. First, we predict the
activity of a test to identify tests with high power consumption.
Second, the switching activity and the power information are
related to the layout of the chip to identify local hot spots.
Various machine learning-based algorithms are used to evaluate
this approach. Additionally, the algorithms are compared against
each other. The results indicate high prediction accuracy and
effectiveness. This makes these algorithms well suited for worst-
case test selection.

I. INTRODUCTION

The manufacturing test is an essential part in the chip
development and production process. Its goal is to find and sort
out defective devices. A test set is pre-generated and applied
to each manufactured chip. In order to ensure timely and
cost-effective testing, on-chip scan structures are heavily used,
which create non-functional operating conditions. This, in turn,
creates power issues [12], [25]. The chip’s power consumption
is tightly regulated by control mechanisms to meet the strin-
gent power specification. However, non-functional operating
conditions as used during test application exceed the power
specification. This can lead to unreliable test results and even
chip damage. Therefore, tests have to be checked in advance
to ensure that they meet the power requirements to guarantee
test power-safety. Another related issue is IR-drop, which can
cause timing violations. Accurate simulation methods have
to be applied to obtain reliable results in the sign-off stage
before tapeout. But the corrective measures may take several
iterations to reduce the IR-drop of each and every instance
separately.

Unfortunately, accurate power and timing simulations need
considerable resources and excessive runtime. Furthermore,
the analyses can only be performed in a very late stage of the
development process close to tapeout [19], [21]. The complete
simulation of all tests is therefore infeasible. A small subset of
tests is typically chosen to be simulated accurately. Ideally, this

Fig. 1: Illustration of the proposed method.

subset contains the potential worst-case scenarios. A critical
issue is the selection of tests covering the scenarios, which
can lead to power issues during test application. After the
accurate analysis of some tests covering worst-case scenarios,
it might be still possible that other tests exist, which will
cause power-related issues. Also the corrective iteration for
some patterns may not be applicable to other test patterns.
This paper targets the identification of worst-case test power-
related issues by means of prediction. We propose the use
of a Machine Learning (ML)-based prediction mechanism
to characterize the test power behavior of all tests, thereby
avoiding the detailed resource-consuming analysis of all test
patterns.

Figure 1 illustrates the general idea. First, a few pre-selected
tests are accurately simulated as in the regular flow. These
tests are referred to as training test vectors (Tt). The training
test vectors as well as the corresponding analysis results, i.e.
the simulation data, are then used to train an ML model f .
Then, this trained model is used to predict the power analysis
result of the set of prediction target test vectors (Tp) without
an explicit simulation of Tp. This methodology allows us to
predict the overall power profile of a test. The application is
done in two different ways:
• The overall (global) power consumption of a test t is

targeted and predicted to identify critical tests.
• Since a low global power consumption does not guarantee

the absence of hot spots, the power consumption is related
to the layout of the chip. In this way, local hot spots can
also be predicted.

The proposed methodology is based on the use of supervised
learning algorithms. This approach has been implemented
using various learning algorithms and the results have been
evaluated. The prediction time is very small compared to the

actual accurate analysis time. At the same time, the predicted
values are highly reliable and show only a small variance to
the actual values obtained by the accurate simulation. This
enables the processing of all tests and their corresponding
power profile prediction in order to find potentially power-
unsafe tests. The proposed approach therefore increases the
overall possibility to cover critical tests during the sign-off
stage.

The structure of the paper is as follows. Section II describes
related prior work. Section III discusses the analysis, test data
and features used for the learning techniques. The different
learning algorithms are briefly described in Section IV. The
application of the learning algorithms is discussed in Section V
and the experimental results are reported in Section VI.
Conclusions are drawn in Section VII.

II. RELATED PRIOR WORK

Power-estimation techniques offer a trade-off between accu-
racy and run time. Simulation-based power analysis gives the
most accurate results. However, these techniques are very time
consuming. Usually, the accuracy varies within various stages
of the design flow, i.e., from the specification across system
level, algorithmic level, RTL, gate level to the circuit level.
The analysis time increases significantly with the increase
in accuracy. Sometimes, detailed analysis techniques, e.g.,
IR-drop analysis, are even not possible at a higher level
because of the structure-dependent characteristics. The Sys-
temC transaction level power-estimation presented in [20] for
different applications is highly approximate due to its abstrac-
tion level. Functional-level power-estimation methodologies
for predicting the power dissipation of embedded software are
presented in [23]. Statistical methods for estimating the peak
power dissipation are explained in [7], [26]. Other work [13]
introduced the prediction of switching statistics at RTL with
the help of analytical models. In contrast to these methods,
our work deals with the prediction at the circuit level, which
is used in the sign-off stage of the chip development. Monte-
Carlo based approaches [10], [19], [24] and other statistical
approaches [3], [4], [6], [8] estimate the average power in
a less simulation-dependent way and need less time for the
average functional power estimation.

However, these previous methods cannot be used to predict
the test power, which is very high compared to the functional
power [12]. A recently proposed ML-based method [11], [16]
predicts the IR-drop after an engineering change order (ECO)
by using simulation results generated before the ECO. How-
ever, this approach also suffers from the targeted problem of
completeness and test selection since it relies on the accurate
simulation results. In contrast, we use an ML-based method to
predict the test power of tests based on the accurate analysis
data from a small fraction of the tests. Additionally, the feature
set used in the proposed approach includes the test patterns.

Neural network-based methods for VLSI power estimation
[15] give acceptable results with a specific net structure. How-
ever, the accuracy of the results is low because no technology
parameters, i.e., the liberty or spice (.lib or .sp), are used.
Additionally, only the switching of the functional operation
mode is targeted using I/O information and cell numbers.
A similar approach is presented in [14]. This work targets

Fig. 2: Data preparation and feature extraction.

the specification level. In contrast, we consider parameters
from the technology library, design and simulation stages in
order to predict the switching activity in a more accurate way.
Furthermore, the power activity with respect to the layout is
considered.

The method in [17] identifies areas where excessive power
consumption is likely to occur. This is done in a vectorless
manner by considering the probability measures based on the
circuit structure. In contrast, the proposed approach uses ML
techniques to predict the power profile of explicit test vectors.

III. POWER ANALYSIS AND FEATURE EXTRACTION

Since it is not feasible to simulate all test patterns in an
accurate way to obtain their power profile, the use of ML
techniques to predict the activity of all test patterns globally
and locally to save run time is proposed. In our work, global
activity refers to the overall power of a test, while local activity
refers to the test power with respect to the layout.

The features and the training data are the most important
constituents for the use of learning algorithms. For test power
prediction and its distribution over the layout, features are
to be extracted from different stages of the design flow. The
design-related data is available in different formats, used by
different tools, and it needs to be processed accordingly. The
information in these files is used for different purposes. The
required information has to be extracted and formulated for
the learning part. Figure 2 illustrates the data-set preparation
and the extraction of features for the learning algorithm. The
necessary data is as follows:
• Design information – In order to read, store and annotate

the extracted and learned data, design information is
necessary, e.g., hierarchy and port information.

• ATPG generated test patterns – An essential part of the
test is made up by the test patterns or test vectors, which
are generated by ATPG tools. Typically, scan structures
enable a direct assignment of the flip-flops of the circuit
without using functional operations. In order to provide
a high test coverage and short test application time,
scan structures are heavily used. A scan test is first
scanned in using shift cycles and than applied during
the capture cycle(s). As a disadvantage in the context
of test power, scan tests induce non-functional behavior,
since the scanned state of the flip-flops is not guaranteed
to be reachable in the functional mode. In our proposed
methodology, the required data, i.e., the content of the
scan cells during shift and capture operation for each scan
chain and test pattern, is extracted from the test-pattern
files and stored for further processing.

• Simulation and analysis data – Shift and capture opera-
tions of the applied tests cause activity in the logic parts
of the design. The activity can be obtained by simulating
the test patterns. After simulation, this information is
extracted and can be stored, e.g., in a VCD file (or
in another format), which describe the change in logic
values over discrete time. Note that logic simulation
usually does not process technology information and,
therefore, it does not provide information regarding power
consumption. Figure 3 illustrates the simulation and
analysis results (after accessing the switching activity
information from the simulation) for a test pattern. In
order to obtain a power profile of a simulation run,
the simulation data has to be simulated again with the
necessary cell and technology data. This is the resource-
and time-consuming part. After power analysis, this data
is stored for training purposes.

• Technology and physical layout information – For the
case that only the global power consumption is targeted,
the physical location of the gates and other layout data
is not required. However, this data has to be processed
and stored in order to identify local hot spots. Therefore,
the location and sizes of the cells are extracted from
the layout information, e.g. from the .def and .lef files.
This data can be fed into commercial EDA tools or other
approaches in order to identify power-critical areas, e.g.,
by using heatmaps.

IV. MACHINE-LEARNING ALGORITHMS

We use supervised ML algorithms to predict the power
profile of a test. The extracted data and features are used to
generate and train the underlying model. Figure 4 shows the
generalized structure of the prediction method. Here, features
are extracted from the design and simulation data to form the
training data, which is passed to the ML model. Based on the
trained model, results for other data can be predicted. How-
ever, the accuracy and performance of the overall approach
depends on the underlying ML algorithm. In order to find
the best suited approach for the targeted application, different
approaches were evaluated. These are briefly described below
[9]:

A. Linear Least-Square Regression
Linear Least-Square (LLS) regression is a basic and widely

used modeling method in machine learning [9]. The LLS
method generates a model by the linear approximation tech-
nique for the estimation function. The error (residual sum of
squares) between the predicted values and actual values is
minimized to generate the coefficients w = (w1, . . . , wm) for
the model. During the training period, the error of the predicted
value is minimized. i.e., the goal is given by:

min
w
||Xw − y||2

The model generated is sensitive to random errors if the matrix
X becomes singular. The model terms are independent of the
estimated coefficients. If the columns of the design matrix X
have linear dependencies due to correlated terms then there
is the problem of multi-collinearity [5], [22]. Due to this, the
error can be large while predicting multiple values.

B. Ridge Regression
In order to minimize the error of LLS based methods, the

Ridge Regression algorithm has been introduced [18]. Here,
an additional parameter to compensate the error is used. The
additional parameter, known as ridge coefficient, reduces the
error by imposing a penalty on the size of the coefficients.
The cost function to minimize the error becomes:

min
w
||Xw − y||2 + α||w||2,

where α is the tuning parameter that controls the strength of
the penalty.

C. Nearest Neighbors Regression
The parametric-based regression methods described above

are difficult to balance. Hence, we also used a non-parametric
approach, i.e., K-Nearest Neighbors (KNN) regression, which
identifies the training observation To, that is nearest to the
prediction point Po [2]. This method further estimates the final
value, i.e., V (Po), by averaging the responses around To. The
formal representation is given by:

V (Po) =
1

K

∑
xi∈To

yi,

where the optimum value of K depends on a bias-variance
tradeoff. The value of K can be specified during the execution
or can be estimated. Usually, a small value of K provides a
low bias but a high variance, and vice-versa.

D. Neural Network Regression
A Neural Network-based learning technique, namely Multi-

Layer Perceptron (MLP), has been proposed in order to
improve the accuracy of the predicted result. In this prediction
model, the non-linearities are hidden within layers between
inputs and outputs. During training, the MLP-based learning
algorithm predicts a function f(·) : Ri → Ro, where i is
the number of dimensions for the inputs and o is the number
of dimensions for the outputs. If the training data is labeled
i.e. has both the feature X = x1, x2, ..., xm and a target y,
MLP can predict a non-linear function approximator for the
regression.

V. APPLICATION

This section describes the problem formulation as a
learning-based application. A test vector t is a sequence of
Boolean values {0, 1}. As described before, a set of training
vectors Tt is used to train a model f . Simulation is conducted
for this small subset in order get a power profile of each test.
The proposed methodology is independent of the estimation
metric, i.e., Weighted Switching Activity (WSA) or other more
accurate power dissipation metrics can be used. The simulation
data is used to train the model f .

The first application is the prediction of the total (global)
power profile. The power profile Pt is defined as a function

Pt = w1(n1) + w2(n2) + . . .+ wm(nm),

where w1, . . . , wm are the coefficients representing the power
metric value of their corresponding node n1, . . . , nm. The data
is obtained by the accurate (time-consuming) simulation of the
training test vectors for the training purpose.

Fig. 3: Test simulation and analysis.

Fig. 4: Prediction method.

During training, the learning algorithms, which are used
as a black box, learn a function fg to predict the value of Pt

depending on the logic values at the input nodes of the circuit,
i.e., the scan cells:

fg(Pt) = f(v1, v2,, vk),

where v1, v2,, vk represent the value of the input nodes.
This is done by continuous refinement of fg(Pt) during
training. For the i-th training example and the j-th node, the
error e is internally represented as ej(i) = tj(i)−pj(i), where
t represents the actual training value and p is the predicted
value of this node. Depending on the learning algorithm used,
a mathematical optimization function is applied to fg(Pt) in
order to minimize the error between the predicted value and
the original value, e.g. by adjusting weights.

After the training phase, the function fg(Pt) is applied to
the other test vectors Tp to predict their power profile based
on the trained model fg(Pt).

The second application is the prediction of the power
distribution over the layout (local power). In order to apply
the learning algorithms, the coordinates of the nodes x, y in
the layout have to be included in the learning process.

fl(Pt(x, y)) = f(w1(x1, y1), w2(x2, y2),, wn(xn, yn))

Therefore, a node n is replaced with its location (x, y). By
doing this, the layout of the circuit is taken into account for
the prediction of the activity of each node. The training and
the prediction of the test vectors is done in a similar way as
described above. The outcome of the prediction process is then
the switching activity related to the location.

The predicted local data can then be processed in the same
way as the original accurate data in the test validation flow. For

TABLE I: Benchmark ‘ac97 ctrl’

#Alg #TS #PS Err(%) #Var #T(s) #Tr(ms) #Bt #Avg #Bs

NNwk

10 80 10.40 -1.30 35.83 50.16 42 16 22
20 70 6.01 -0.39 33.88 82.92 35 22 13
40 50 5.57 -0.54 31.89 40.00 30 14 6
60 30 5.08 -0.17 31.38 46.72 26 2 2
80 10 3.96 -0.58 29.87 37.81 8 0 2

LSR

10 80 18.03 -13.06 35.20 20.16 27 19 34
20 70 10.19 -0.63 34.76 20.85 20 23 27
40 50 5.71 -0.66 32.88 22.44 18 20 12
60 30 5.54 -0.34 30.59 22.35 10 12 8
80 10 5.25 -0.42 29.55 31.14 3 4 3

NNbr

10 80 10.19 -0.44 37.22 22.89 29 21 30
20 70 6.02 -0.41 33.72 22.68 15 32 23
40 50 5.08 -0.54 32.32 25.05 16 20 14
60 30 4.16 -0.52 31.51 25.99 11 11 8
80 10 4.08 -0.49 29.89 24.983 4 3 3

RR

10 80 10.142 -0.52 35.12 308.45 33 24 23
20 70 5.72 -0.63 34.49 565.5 21 25 24
40 50 5.30 -0.62 33.44 1354.4 20 21 9
60 30 5.24 -0.33 32.29 1878.6 11 12 7
80 10 4.52 -0.41 32.08 2375.3 6 2 2

example, it can be fed into EDA tools or clustering algorithms,
where hot spots can be identified based on the calculated data.

VI. EXPERIMENTAL RESULTS

The experiments were performed on IWLS benchmark
circuits [1]. Commercial tools were used for test pattern
generation as well as for the accurate simulation. The test
patterns, the simulation database, the technology files and the
design files were processed using an in-house tool to generate
the data set and extract the features for the learning stage.
The application of the ML algorithms was done in Python
using publicly available algorithms [5], [22]. The capture cycle
transitions were considered for the simulation of the data. The
method can also be used for other simulated time cycles such
as shift-in and shift-out. Note that this work does not provide
new metrics to assess power-criticality, but it relies on the data
generated by the underlying simulation method. The (power)
simulation methods can be easily interchanged.

The predicted results of the global power of the test patterns
are shown in Table I, II, III and IV for all the described
learning algorithms. The concrete results for each pattern are
not given due to space limitation. The mean error values
and the variance of the algorithms are used to compare the
results effectively. The ‘#Alg’ columns provide the informa-
tion about the algorithm, where ‘NNwk’, ‘LSR’,‘NNbr’ and

TABLE II: Benchmark ‘wb conmax’

#Alg #TS #PS Err(%) #Var #T(s) #Trn(ms) #Bt #Avg #Bs

NNwk

10 167 6.52 -8.92 52.96 68.40 89 46 32
20 157 4.94 -5.50 49.11 104.06 86 43 28
40 137 3.25 -0.49 44.95 88.14 79 40 18
60 117 3.15 -0.33 43.68 91.00 68 34 15
80 97 3.13 -0.13 40.51 66.14 57 28 12

120 57 2.85 -0.28 47.27 55.66 30 22 5

LSR

10 167 9.73 -10.03 40.43 35.24 68 34 65
20 157 5.03 -2.13 48.67 63.72 56 49 52
40 137 4.25 -1.29 50.62 44.28 51 47 39
60 117 3.83 -0.49 40.49 41.14 48 44 25
80 97 3.69 -0.83 43.78 53.23 44 35 18

120 57 3.23 -0.53 50.79 54.41 24 19 14

NNbr

10 167 6.69 -4.49 49.56 49.53 75 39 53
20 157 4.03 -1.12 50.26 53.17 71 38 48
40 137 3.78 -0.48 43.69 45.23 54 41 42
60 117 3.64 -0.88 49.56 49.35 50 39 28
80 97 3.51 -0.73 44.66 51.25 45 35 17

120 57 3.22 -0.53 51.39 48.49 22 23 12

RR

10 167 3.23 -0.39 43.94 1898.72 79 37 51
20 157 3.15 -0.14 41.54 3124.51 74 36 47
40 137 3.11 -0.46 45.90 3286.66 58 39 40
60 117 2.89 -0.33 49.30 2578.15 52 42 23
80 97 2.85 -0.28 50.46 2766.22 47 34 16

120 57 2.80 -0.27 48.12 1277.11 24 23 10

‘RR’ represent ‘Neural Network’ , ‘Least Square’, ‘Nearest
Neighbor’ and ‘Ridge’ regression techniques, respectively. The
two columns ‘#TS’ and ‘#PS’ give the number of training tests
Tt as well as the number of predicted tests Tp.

The size of Tt has an effect on the predicted results.
Therefore, experiments with training test sets of different sizes
are done to show the impact. The mean error percentage
and variance are shown in the ‘#Err’ and ‘#Var’ columns,
respectively. The variance need not always be the squared
value of the distribution. In the regression methods, it is the
deviation of the prediction model in distribution on predicted
values [22]. The next two columns ‘#T’ and ‘#Tr’ give the
total run time and the training time, respectively. The result of
the test patterns are categorized in three groups. Each group
represents a prediction accuracy interval:
• ‘#Bt’: Prediction accuracy of 95% and above (Best)
• ‘#Avg’: between 95% and 85% (Average)
• ‘#Bs’: between 85% and 75% (Base)

The actual accurate values were only generated in order to
assess the quality of the prediction. In practice, only the
training vectors have to accurately analyzed.

The results show that with a small training set of 20-40 test
vectors, a very low error rate can be achieved. Increasing the
number of training vectors shows further improvements in the
prediction accuracy.

It can be seen that the Neural Network-based approach and
the Ridge Regression-based approach are the most accurate
prediction approaches, i.e., they have the lowest error rates.
Since the Neural Network-based approach is significantly
faster and also has more tests in the ‘Best’ category, this
approach is recommended for actual use.

In another experiment, we used the learning algorithm for
local power prediction. The results are shown in Table V.
Due to page-count limitation, we only show the results for
the preferred Neural Network-based approach. It can be seen
that the prediction is also effective for local power.

TABLE III: Benchmark ‘ethernet’

Alg TS PS Err(%) Var T(s) Tr(ms) Bt Avg Bs

NNwk

10 90 4.83 -0.35 22.19 61.24 44 19 27
20 80 4.71 -0.09 21.96 48.69 37 18 25
40 60 4.62 -0.13 23.90 57.20 32 14 14
60 40 4.51 -0.03 24.07 39.15 20 12 8
80 20 4.50 -0.03 23.63 43.35 12 5 3

LSR

10 90 18.03 -13.06 23.55 24.31 34 18 38
20 80 4.99 -0.44 18.82 25.89 35 18 27
40 60 4.73 -0.09 20.32 24.35 27 15 18
60 40 4.64 -0.14 20.41 43.67 15 9 16
80 20 4.51 -0.04 22.26 23.45 7 3 10

NNbr

10 90 7.44 -1.64 20.61 22.44 35 24 31
20 80 7.29 -1.49 22.47 22.85 28 28 24
40 60 5.83 -1.16 18.66 24.71 24 21 15
60 40 4.53 -0.01 22.41 21.99 15 11 14
80 20 3.91 -0.38 33.71 21.00 8 3 9

RR

10 90 4.83 -0.35 25.14 6689.76 36 22 32
20 80 4.71 -0.09 27.13 5050.29 37 18 25
40 60 4.62 -0.13 25.31 3340.07 30 13 17
60 40 4.62 -0.13 25.31 3340.07 18 9 15
80 20 4.50 -0.03 24.85 870.17 10 3 7

TABLE IV: Benchmark ‘pci bridge’

Alg TS PS Err(%) Var T(s) Tr(ms) Bt Avg Bs

NNwk

10 184 5.97 -0.91 38.19 78.13 97 52 38
20 174 5.81 -1.00 36.06 82.608 95 47 32
40 154 4.94 -0.73 47.77 104.773 82 48 24
60 134 4.79 -0.66 47.24 72.481 74 41 19
80 114 4.38 -0.45 48.67 57.620 65 32 17

120 74 3.89 -0.22 47.24 56.690 43 18 13
150 44 3.56 -0.09 44.34 57.516 28 8 8

LSR

10 184 5.96 -0.91 45.16 65.26 83 49 52
20 174 5.80 -1.00 43.68 77.52 81 47 46
40 154 4.94 -0.73 49.50 69.97 75 49 30
60 134 4.86 -0.70 52.47 71.82 71 38 25
80 114 4.47 -0.50 52.68 72.08 61 34 19

120 74 3.89 -0.22 54.26 51.54 36 20 18
150 44 3.57 -0.09 48.11 56.30 12 18 14

NNbr

10 184 4.45 -0.44 44.16 62.01 84 50 50
20 174 4.20 -0.23 42.10 59.86 82 49 43
40 154 3.54 -0.08 76.45 72.74 76 48 29
60 134 3.54 -0.01 57.31 68.00 74 35 25
80 114 3.45 -0.05 42.62 48.40 58 36 20

120 74 3.45 0.00 55.38 47.88 35 22 17
150 44 3.36 -0.01 48.12 60.95 12 20 12

RR

10 184 6.29 -0.96 46.43 8368.61 88 48 48
20 174 6.17 -1.07 45.79 10293.27 86 47 41
40 154 5.20 -0.75 45.95 5797.38 77 50 27
60 134 5.05 -0.68 46.51 5538.73 75 35 24
80 114 4.61 -0.47 46.13 3407.77 64 35 18

120 74 4.10 -0.22 47.88 1439.64 43 20 16
150 44 3.75 -0.09 44.76 738.67 14 19 11

The training data set is important for the tuning of the
generated model. Typically, the larger the training test is, the
smaller is the error between the predicted value and the actual
value. Another experiment was carried out to evaluate the
impact of the training data selection on the prediction results
in terms of error and variance. It has been observed that the
predicted values differ for different training sets because of
the change in the model, i.e., a change in the coefficients of
the learned equations. Still, the overall error was less than 4%
for all training sets. The selection of an optimal training set
is therefore left for future work.

In general, the results show that ML-based learning algo-

TABLE V: Prediction for local power activity of ’pci bridge’ benchmark

Algorithm Training set Prediction set Error(%) Variance Total time(s) Training time(s) Best Average Base

Neural Network

10 184 3.1708 0.1167 38.186638 0.078128 128 27 29
20 174 2.9552 0.3433 36.063363 0.082608 125 26 23
40 154 2.9312 0.3217 44.342213 0.057516 118 20 16
60 134 2.9243 0.2987 48.677432 0.057620 102 17 15
80 114 2.9221 0.3851 47.772351 0.104773 85 15 14

120 74 2.9144 0.4236 47.248791 0.072481 49 14 11
150 44 2.9092 0.2805 47.249760 0.056690 31 7 6

rithms are well suited to predict the power profile of a test.
The number of training tests influences the prediction quality.
The Neural Network based learning technique was found to
be the best choice compared to the other algorithms in terms
of overall accuracy as well as run time.

VII. CONCLUSION AND FUTURE WORK

It is difficult to carry out the power analysis for all tests
due to practical time and resource constraints. The accurate
simulation of the complete test set for complex circuits is not
possible. We have proposed the use of machine learning-based
techniques to predict the test power of test patterns without
explicitly simulating them. The detailed analysis results of a
few tests are used to train a model. The model is then applied
for the prediction of the power profile of the remaining tests to
identify potentially power-unsafe tests. The method is found
to be effective in predicting the test power profile of most
tests. The error is less than 5% when we rely on the accurate
simulation data of a few training vectors. Experimental results
show that hours of run time for the actual analysis is reduced
to seconds with the help of the prediction techniques. Here, the
Neural Network-based learning algorithm has been found to be
the best in terms of run time and error rate. Overall, it has been
shown that machine learning-based prediction is an effective
alternative to the accurate simulation of all test patterns to
identify power-critical tests when the latter is infeasible. In
future work, more parameters such as time-dependent features
will be considered to improve the accuracy further.

VIII. ACKNOWLEDGMENT
The work has been supported by the Deutsche Forschungs-

gemeinschaft (DFG) under contract number EG 290/5-1 and
SFB 1232 in subproject P01 Predictive function under Project
276397488 by German Research Foundation. The work of
Krishnendu Chakrabarty was supported in part by a Humboldt
Research Award from the Alexander von Humboldt Founda-
tion.

REFERENCES

[1] C. Albrecht, “IWLS 2005 benchmarks,” Tech. Rep., Jun. 2005.
[2] N. S. Altman, “An introduction to kernel and nearest-neighbor non-

parametric regression,” The American Statistician, vol. 46, no. 3, pp.
175–185, 1992.

[3] S. Bhanja and N. Ranganathan, “Switching activity estimation of vlsi
circuits using bayesian networks,” IEEE Trans. on VLSI Systems, vol. 11,
no. 4, pp. 558–567, 2003.

[4] ——, “Cascaded bayesian inferencing for switching activity estimation
with correlated inputs,” IEEE Trans. on VLSI Systems, vol. 12, no. 12,
pp. 1360–1370, 2004.

[5] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel,
V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. Van-
derPlas, A. Joly, B. Holt, and G. Varoquaux, “API design for machine
learning software: experiences from the scikit-learn project,” in ECML
PKDD Workshop: Languages for Data Mining and Machine Learning,
2013, pp. 108–122.

[6] R. Burch, F. N. Najm, P. Yang, and T. N. Trick, “A monte carlo approach
for power estimation,” IEEE Trans. on VLSI Systems, vol. 1, no. 1, pp.
63–71, 1993.

[7] M. Chadha, T. Ilsche, M. Bielert, and W. E. Nagel, “A statistical
approach to power estimation for x86 processors,” in International
Parallel and Distributed Processing Symposium Workshops (IPDPSW).
IEEE, 2017, pp. 1012–1019.

[8] R. Chandramouli and V. K. Srikantam, “Multimode power modeling and
maximum-likelihood estimation,” IEEE Trans. on VLSI Systems, vol. 12,
no. 11, pp. 1244–1248, 2004.

[9] M. B. Christopher, PATTERN RECOGNITION AND MACHINE LEARN-
ING. Springer-Verlag New York, 2016.

[10] Y. A. Durrani and T. Riesgo, “Statistical power estimation for ip-
based design,” in IEEE Industrial Electronics, IECON -32nd Annual
Conference on, 2006, pp. 4935–4939.

[11] Y.-C. Fang, H.-Y. Lin, M.-Y. Su, C.-M. Li, and E. J.-W. Fang, “Machine-
learning-based dynamic ir drop prediction for eco,” in Int’l Conf. on
CAD. ACM, 2018, p. 17.

[12] P. Girard, N. Nicolici, and X. Wen(Eds.), Power-Aware Testing and Test
Strategies for Low Power Devices. Springer, 2009.

[13] S. Gupta and F. N. Najm, “Analytical models for rtl power estimation
of combinational and sequential circuits,” IEEE Trans. on CAD of
Integrated Circ. and Systems, vol. 19, no. 7, pp. 808–814, 2000.

[14] L. Hou, X. Wu, and W. Wu, “Neural network based power estimation on
chip specification,” in International Conference on Information Sciences
and Interaction Sciences (ICIS). IEEE, 2010, pp. 187–190.

[15] L. Hou, L. Zheng, and W. Wu, “Neural network based vlsi power
estimation,” in International Conference on Solid-State and Integrated
Circuit Technology, ICSICT. IEEE, 2006, pp. 1919–1921.

[16] S.-Y. Lin, Y.-C. Fang, Y.-C. Li, Y.-C. Liu, T.-S. Yang, S.-C. Lin, C.-
M. Li, and E. J.-W. Fang, “IR-drop prediction of ECOs-revised circuits
using machine learning,” in VLSI Test Symp., 2018, pp. 1–6.

[17] K. Miyase, M. Sauer, B. Becker, X. Wen, and S. Kajihara, “Identifi-
cation of high power consuming areas with gate type and logic level
information,” in IEEE European Test Symp., 2015, pp. 1–6.

[18] K. P. Murphy and F. B. (Ed.), Machine Learning: A Probabilistic
Perspective (Adaptive Computation and Machine Learning series). MIT
Press, 2012.

[19] A. K. Murugavel, N. Ranganathan, R. Chandramouli, and S. Chavali,
“Least-square estimation of average power in digital cmos circuits,”
IEEE Trans. on VLSI Systems, vol. 10, no. 1, pp. 55–58, 2002.

[20] V. Narayanan, N. Dhanwada et al., “A power estimation methodol-
ogy for systemc transaction level models,” in Third IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System
Synthesis,CODES+ ISSS, 2005, pp. 142–147.

[21] N. Nicolici and B. Al-Hashimi, Power-constrained testing of VLSI
circuits. Kluwer Academic Publishers, Boston, MA, 2003.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[23] G. Qu, N. Kawabe, K. Usami, and M. Potkonjak, “Function-level power
estimation methodology for microprocessors,” in Design Automation
Conf., 2000, pp. 810–813.

[24] V. Saxena, F. N. Najm, and I. Hajj, “Monte-carlo approach for power
estimation in sequential circuits,” in Design, Automation and Test in
Europe, 1997, p. 416.

[25] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI Test Principles and Architec-
tures. Elsevier, 2006.

[26] Q. Wu, Q. Qiu, and M. Pedram, “Estimation of peak power dissipation in
vlsi circuits using the limiting distributions of extreme order statistics,”
IEEE Trans. on CAD of Integrated Circ. and Systems, vol. 20, no. 8,
pp. 942–956, 2001.

