
Polynomial Formal Verification of Arithmetic
Circuits

Rolf Drechsler1,2, Alireza Mahzoon1, and Lennart Weingarten2

1 Institute of Computer Science, University of Bremen, Bremen, Germany
2 Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

{drechsle, mahzoon, len wei}@uni-bremen.de

Abstract. The size and the complexity of digital circuits are increasing
rapidly. This makes the circuits highly error-prone. As a result, prov-
ing the correctness of a circuit is of utmost importance after the design
phase. Arithmetic circuits are among the most challenging designs to
verify due to their high complexity and big size. In recent years, sev-
eral formal methods have been proposed to verify arithmetic circuits.
However, the time and space complexity bounds are still unknown for
most of these approaches, resulting in performance unpredictability. In
this paper, we clarify the importance of polynomial formal verification
for digital designs particularly arithmetic circuits. We also introduce an
Arithmetic Logic Unit (ALU) and prove that formal verification of this
circuit is possible in polynomial time. Finally, we confirm the correctness
of the complexity bounds by experimental results.

Keywords: Formal Verification, Complexity, Polynomial, Arithmetic
Circuits, Arithmetic Logic Unit, Binary Decision Diagram

1 Introduction

With the invention of the transistor back in 1947, the cornerstone for the digital
revolution was laid. As a fundamental building block, the transistor enabled the
development of digital circuits. Their mass production revolutionized the field
of electronics, finally leading to computers, embedded systems, as well as the
internet. Hence, the impact of digital hardware on society, as well as economy,
was and is tremendous. Over the last decades, the enormous growth of complex-
ity of integrated circuits continues as expected. As modern electronic devices
are getting more and more ubiquitous, the fundamental issue of functional cor-
rectness becomes more important than ever. This is evidenced by many publicly
known examples of electronic failures with disastrous consequences. This includes
e.g. the Intel Pentium bug in 1994, the New York blackout in 2003, and a design
flaw in Intels Sandy Bridge chipset in 2011.

Such costly mistakes can only be prevented by applying rigorous verification
to the circuits before they get to production [4,5]. A lot of effort has been put
into developing efficient verification techniques by both academic and industrial
research. Only recently, the industry has recognized the great importance of

2 R. Drechsler, A. Mahzoon, L. Weingarten

automated formal verification (see e.g. functional safety standards such as ISO
26262 [30]). Hence, in the last few years, this research area has become increas-
ingly active. Essentially, the aim of automated formal verification is to automat-
ically prove that an implementation is correct with respect to its specification.
Depending on what is an implementation and what comprises a specification,
different verification problems arise.

Automated formal verification of arithmetic circuits is one of the most im-
portant goals of the verification community in recent years. Arithmetic circuits
are usually involved in many applications that require intense computations
(e.g., cryptography and signal processing) as well as in architectures for artifi-
cial intelligence (e.g., machine learning). They include a wide range of different
designs like adders, subtractors, multipliers, and dividers. The function of an
arithmetic unit is unique, e.g., a multiplier always computes the product of
its inputs. However, the architecture and size of them vary based on the ap-
plication and design parameters. Most of these circuits are highly parallel and
architecturally complex [17,32]. Therefore, the high complexity and the big size
of arithmetic circuits make them very challenging to verify.

During the last 20 years, researchers have proposed several formal methods
to verify arithmetic circuits: (a) Binary Decision Diagram (BDD) [2,10] verifi-
cation methods extract the BDDs for the outputs of an arithmetic circuit with
the help of symbolic simulation, then, the output BDDs are evaluated for the
correctness, (b) Boolean Satisfiability (SAT) [11,3] verification methods trans-
late the implementation and the specification into one Conjunctive Normal Form
(CNF) which is satisfiable if the implementation is correct, (c) Binary Moment
Diagram (*BMD and K*BMD) [8,12] approaches use word-level graphs to prove
the equivalence between the word-level design specification and the bit-level
circuit, (d) term rewriting [13,28,27] techniques take advantage of a library of
rewrite rules to prove the correctness of arithmetic circuit by several rewritings in
a theorem proving system, (e) reverse engineering techniques using Arithmetic
Bit-Level (ABL) [26,24] extract an arithmetic bit-level description of the cir-
cuit, and then use it for a fast equivalence checking, and (f) Symbolic Computer
Algebra (SCA) [20,21,23,15,22] methods capture the logical gates as polynomi-
als, then, prove the correctness of arithmetic circuit by dividing the word-level
specification by the gate polynomials.

Despite the success of formal verification approaches in proving the correct-
ness of a wide variety of arithmetic circuits, the complexity bounds for most of
these approaches are still unknown. It raises serious questions about the scalabil-
ity of the verification methods. Furthermore, unknown time and space complex-
ities make it difficult to compare two approaches and choose the best one with
respect to the type of arithmetic circuit, e.g., which formal method is suitable
for verification of an integer adder. In this paper, we first clarify the importance
of polynomial formal verification. Then, we review the known researches about
polynomial formal verification of arithmetic circuits. Subsequently, we introduce
a simple Arithmetic Logic Unit (ALU) with 8 operations and prove that its
formal verification is possible in polynomial time. For the first time, we also

Polynomial Formal Verification of Arithmetic Circuits 3

calculate the complexity bounds for verifying a subtractor (i.e., one of the ALU
units). We confirm the correctness of obtained complexity bounds by experimen-
tal results. Finally, we propose a verification strategy for more advanced ALUs
performing complicated operations such as multiplication.

2 Polynomial Formal Verification

In this section, we first clarify the importance of polynomial formal verification.
Subsequently, we review the three important works in the field of polynomial
formal verification of arithmetic circuits.

2.1 Importance of Polynomial Verification

The state-of-the-art formal verification techniques often give satisfying results
for a specific type of arithmetic circuits: (a) BDD and SAT-based verification
methods report very good results for different types of adder architectures, (b)
*BMDs are used to verify multipliers, and (c) SCA-based approaches are em-
ployed for the verification of complex multipliers and dividers.

However, the main shortcoming of these techniques is the unpredictability in
performance, leading to several verification problems:

1. It cannot be predicted before actually invoking the verification tool whether
it will successfully terminate or run for an indefinite amount of time; e.g., it
is not clear whether SAT-based verification can successfully verify all types
of adders or it runs forever for some of them.

2. The scalability of these techniques remains unknown, i.e., it is not predictable
how much the run-time and the required memory increase when the size of
the circuit under verification grows; e.g., it is not obvious how scalable is a
*BMD-based verification technique when it comes to proving the correctness
of an integer multiplier.

3. It is not possible to compare the performance of verification methods for a
specific design and choose the best one, e.g., it is not clear which verification
technique has a better performance when it comes to proving the correctness
of an integer adder.

In order to resolve the unpredictability of a verification method, its time and
space complexity should be calculated. Knowing the complexity bounds for a
verification technique alleviates the three aforementioned verification problems.
We are particularly interested in optimized time and space bounds with the
smallest possible polynomial order, i.e., O(nm) where n is the number of input
bits and m is a positive number. A formal verification method with a polynomial
complexity (time and space) is scalable and can be carried out successfully.

In the next section, we review the three works in the field of polynomial
formal verification of arithmetic circuits and illustrate their advantages and dis-
advantages.

4 R. Drechsler, A. Mahzoon, L. Weingarten

2.2 Research Works in Polynomial Verification

During the last 20 years, researchers have proposed several formal verification
methods to verify different types of arithmetic circuits. Despite rapid progress
in developing formal methods, the research on the complexity bounds of verifi-
cation methods is very limited. We now review the three notable works on the
polynomial formal verification of arithmetic circuits.

Polynomial Formal Verification of Adders using BDDs: It is known for
a long time that BDDs are very efficient in practice when it comes to the veri-
fication of adders. However, it has not been proven theoretically until recently.
PolyAdd [6] showed for the first time that the complete formal verification pro-
cess for three types of adders (i.e., ripple carry adder, conditional sum adder,
and carry look-ahead adder) can be carried out polynomially. It was achieved
by proving that the size of BDDs remains polynomial with respect to the num-
ber of input bits during the symbolic simulation. Although PolyAdd successfully
shows that the polynomial formal verification of the three adder architectures
is possible, it has two limitations: The proofs cannot be extended to the other
adders, e.g. parallel prefix adders, and it does not calculate the exact order of
complexity bounds. Recently, some progress has been made in calculating the
exact verification complexities of adder architectures, e.g., the exact complexity
bounds have been obtained for ripple carry adder and conditional sum adder
in [18,19].

Polynomial Formal Verification of Multipliers using *BMDs: Verifica-
tion of multipliers became possible after the development of word-level decision
diagrams. Particularly, *BMDs and K*BMDs reported very good results for ver-
ifying several types of integer multipliers. However, [16] is the only work on the
polynomial formal verification of multipliers using *BMDs. In the paper, the
authors analyzed *BMD-based verification by backward construction applied to
the class of Wallace-tree-like multipliers. They formally proved polynomial up-
per bounds on run-time and space requirements with respect to the number of
input bits. They showed that the whole verification process is bounded by O(n2)
and O(n4) with respect to space and time, where n in the number of input bits.
The proof in the paper is only for Wallace-tree-like multipliers and it does not
support other classes of multipliers.

Polynomial Formal Verification of Multipliers using SCA: Recently, the
SCA-based verification methods have been very successful in proving correctness
of a large range of multiplier architectures. AMulet [15] is one of the SCA-based
methods that is developed for verification of complex multipliers. The authors
have shown in [14] that AMulet has a polynomial complexity when it comes to
the verification of btor-multipliers (Generated by Boolector) and Wallace-tree
multipliers with Booth encoding. However, the proof for the second multiplier

Polynomial Formal Verification of Arithmetic Circuits 5

Fig. 1: Symbolic representation of the ALU

type is empirical, and it has not been done theoretically due to the irregular
structure of the multiplier.

In addition to these three works, some research works have been recently
done on polynomial BDD construction of totally symmetric functions [9] and
polynomial formal verification of tree-like circuits [7].

3 Polynomial Formal Verification of a simple ALU

In this section, we first introduce a simple ALU with 8 operations. Then, we
give a brief overview of the BDD-based verification. Subsequently, we calculate
the time complexity of verifying the ALU and show that polynomial formal
verification is possible for this architecture. Finally, we confirm our theoretical
calculations by experimental results.

3.1 ALU Overview

An ALU is a combinational digital circuit that performs arithmetic and bitwise
operations on integer binary numbers. The type and the number of supported
operations in an ALU depend on the application. Fig. 1 shows the symbolic
representation of a general ALU. It receives two n-bit inputs a and b as well as
an input carry c. The operation between the inputs is determined by an m-bit
select.

In this paper, we consider a simple ALU with 8 operations, i.e. the select sig-
nal has 3 bits. The complete list of supported operations is depicted in Table 1.
The ALU can perform two arithmetic operations (i.e., addition and subtrac-
tions) as well as three bitwise logical operations (i.e., XOR, OR, and AND). The
detailed architecture of the ALU is shown in Fig. 2.

3.2 BDD-based Verification

Definition 1. A Binary Decision Diagram (BDD) is a directed, acyclic graph.
Each node of the graph has two edges associated with the values of the variables
0 and 1. A BDD contains two terminal nodes (leaves) that are associated with
the values of the function 0 or 1.

6 R. Drechsler, A. Mahzoon, L. Weingarten

Table 1: List of supported operations
s2 s1 s0 function

0 0 0 0 . . . 0
0 0 1 b− a
0 1 0 a− b
0 1 1 a + b + c
1 0 0 a⊕ b
1 0 1 a ∨ b
1 1 0 a ∧ b
1 1 1 1 . . . 1

Fig. 2: ALU architecture

Definition 2. An Ordered Binary Decision Diagram (OBDD) is a BDD, where
different variables appear in the same order in each path from the root to a leaf.

Definition 3. A Reduced Ordered Binary Decision Diagram (ROBDD) is an
OBDD that has a minimum number of nodes for a given variable order. The
ROBDD of a Boolean function is always unique.

The ITE operator (If-Then-Else) is used to calculate the results of the logical
operations in BDDs:

ITE(f, g, h) = (f ∧ g) ∨ (f̄ ∧ h) (1)

Polynomial Formal Verification of Arithmetic Circuits 7

Algorithm 1 If-Then-Else (ITE)

Input: f , g, h BDDs
Output: ITE BDD
1: if terminal case then
2: return result
3: else if computed-table has entry {f, g, h} then
4: return result
5: else
6: v = top variable for f , g, or h
7: t = ITE(fv=1, gv=1, hv=1)
8: e = ITE(fv=0, gv=0, hv=0)
9: R = FindOrAddUniqueTable(v, t, e)

10: InsertComputedTable({f, g, h}, R)
11: return R

The basic binary operations can be translated into the ITE operator:

f ∧ g = ITE(f, g, 0),

f ∨ g = ITE(f, 1, g),

f ⊕ g = ITE(f, g, g),

f � g = ITE(f, g, g),

f̄ = ITE(f, 0, 1) (2)

ITE can be also used recursively in order to compute the results:

ITE(f, g, h) = ITE(xi, ITE(fxi , gxi , hxi), ITE(fxi , gxi , hxi)) (3)

where fxi
(fxi

) is the positive (negative) cofactor of f with respect to xi, i.e., the
result of replacing xi by the value 1 (0).

ITE operations can be computed with the help of Algorithm 1. The result is
obtained recursively based on Eq. (3) in this algorithm. During the calculations,
the sub-diagrams of f , g and h are the arguments for subsequent calls to the
ITE subroutine. The number of sub-diagrams in a BDD is equal to the number
of nodes. For each of the three arguments, the sub-routine is called at most once.
Assuming that Unique Table is searched at a constant time, the computational
complexity of the ITE algorithm, even in the worst-case, does not exceed O(|f | ·
|g|·|h|), where |f |, |g| and |h| denote the size of the BDDs in terms of the number
of nodes [1].

In order to formally verify a circuit, we need to have the BDD representation
of the outputs. Symbolic simulation helps us to obtain the BDD for each primary
output. During a simulation, an input pattern is applied to a circuit, and the
resulting output values are checked to see whether they match the expected
values. On the other hand, symbolic simulation verifies a set of scalar tests
(which usually cover the whole input space) with a single symbolic test. Symbolic
simulation using BDDs is done by generating corresponding BDDs for the input
signals. Then, starting from primary inputs, the BDD for the output of a gate

8 R. Drechsler, A. Mahzoon, L. Weingarten
Figure 2. Symbolic simulation for AND gate

Figure 3. Ripple Carry Adder

3.1 Ripple Carry Adder

The Ripple Carry Adder (RCA) simply consists of a se-
quence on n full adders. The cells are connected via the
carry chain (see Figure 3).

The RCA is very area efficient, since it only requires a
linear number of gates. But the RCA is also very slow, since
the delay – measured in the number of gates that has to be
traversed – is also linear in the number of inputs.

3.2 Conditional Sum Adder

The Conditional Sum Adder (CoSA) can be recursively
described. While the lower n/2 bits are computed by a
CoSA of bit-width n/2, for the higher n/2 bits the result
is computed by two CoSAs in parallel, where one assumes
an incoming carry, while the other does not. Thus, the adder
makes use of the fact that the higher bits only depend on the
incoming carry from the lower half. Both results are pre-
computed and the correct result is selected by a multiplexer
stage. The computation scheme is shown in Figure 4. For
the 1-bit adders, simply full adders can be used.

The CoSA is a fast adder, i.e. it has a depth of O(log(n)).
The circuit has a gate count of O(n · log(n)).

Figure 4. Conditional Sum Adder

3.3 Carry Look Ahead Adder

The Carry Look Ahead Adder (CLA) makes use of a
fast prefix computation in a block Pn (see Figure 5). From
Equation (2) it is obvious that it is sufficient to compute the
carry bits ci for all i. This can be done based on parallel
prefix computation of the generation and propagation prop-
erties for addition. These are described by function g and p,
respectively:

1. For 0 ≤ i < n: pi,i = ai ⊕ bi, gi,i = ai · bi
2. For i ≤ k < j: pj,i = pk,i · pj,k+1,

gj,i = gj,k+1 + (gk,i · pj,k+1),

This means that either a carry bit is generated in the upper
part or a carry is generated in the lower part and is propa-
gated through the higher part. Thus, the carry bits can be
computed as (0 ≤ i < n):

ci = gi,0 + pi,0 · c−1

The CLA has a logarithmic depth and a size linear in the
number of input variables.

4 Polynomial Verification

It is well known that the size of BDDs for the adder func-
tion is dependent on the variable ordering. It has also been
proven that the BDD size is linearly bounded (see Section
4.4 in [11]), where exact estimates are given for BDD sizes.
There, addition without the incoming carry bit has been
considered. The results can be extended to also consider
the incoming carry bit as it is required for all adder circuits
in the following.

Theorem 1. 1. The sum bit si of an adder has the BDD
size bounded by 3 · i+ 7.

Fig. 3: Ripple carry adder

(or a building block) is obtained using the ITE algorithm. This process continues
until we reach the primary outputs. Finally, the output BDDs are evaluated to
see whether they match the BDDs of the circuit.

We now prove that verification of the introduced ALU is possible in poly-
nomial time if we use the BDD-based verification. To do this, we should first
calculate the complexity bounds for each ALU operation.

3.3 Complexity Bounds of Arithmetic Units

The introduced ALU can perform two arithmetic operations, i.e., addition and
subtraction. We first focus on addition. We assume that the adder is a ripple
carry adder as shown in Fig. 3.

In order to obtain the computational complexity of an n-bit ripple carry
adder, we first calculate the complexity of BDD construction for a single FA.
The sum and carry bits of a FA can be shown by ITE operations as follows:

Si = Ai ⊕Bi ⊕ Ci−1 = ITE(Ci−1, Ai �Bi, Ai ⊕Bi) =

ITE(Ci−1, ITE(Ai, Bi, Bi), ITE(Ai, Bi, Bi)), (4)

Ci = (Ai ∧Bi) ∨ (Ai ∧ Ci−1) ∨ (Bi ∧ Ci−1) = ITE(Ci−1, Ai ∨Bi, Ai ∧Bi) =

ITE(Ci−1, ITE(Ai, 1, Bi), ITE(Ai, Bi, 0)) (5)

The ITE operations are computed by Algorithm 1 to get the BDDs for the
Si and Ci signals. Assuming that f , g and h are the input arguments of an ITE
operator, the computational complexity is computed as |f | · |g| · |h|. As a result,
the complexity of computing Si and Ci is as follows:

Complexity(Si) = |Ci−1| · |Ai|2 · |Bi|2 · |Bi|2 = 729 · |Ci−1| (6)

Complexity(Ci) = |Ci−1| · |Ai|2 · |Bi|2 = 81 · |Ci−1| (7)

where Ai, Bi, and Bi BDDs have only one internal node and two terminal nodes;
thus, the size of them is the same and equals 3.

Polynomial Formal Verification of Arithmetic Circuits 9

Fig. 4: Subtractor structure

It has been proven in [29] that the BDD size of the ith carry bit (Ci) is 3·i+6.
Thus, the overall complexity of verifying a ripple carry adder can be obtained
as follows:

complexity[RCA] = 810 ·
n−1∑
i=0

|Ci−1| = 2430 ·
n−1∑
i=0

(i + 1) = 1215n2 + 1215n (8)

We can conclude that the order of the verification complexity is O(n2), where
n is the number of bits per input (i.e., size of the adder). As a result, proving
the correctness of a ripple carry adder has quadratic time complexity.

Fig. 4 shows the structure of a subtractor. In a subtractor architecture, the
bits of one of the inputs are negated and the carry signal is set to one. The time
complexity of negating n bits is of linear order with respect to the number of
input bits. After the negation, the size of the BDD does not change, thus, the
same calculations for obtaining the complexity bounds of an adder are applicable
to a subtractor. As a result, formal verification of a subtractor has quadratic time
complexity, i.e., O(n2).

3.4 Complexity Bounds of Logic Units

The introduced ALU has three bitwise logical operations, i.e., XOR, OR and
AND. Each bitwise operation is done by n gates. The time complexity of obtain-
ing the output BDD of a gate (e.g., ai ⊕ bi) is constant. Thus, the overall time
complexity is linear (i.e., O(n)) with respect to the number of input bits.

The arithmetic units have a bigger order of time complexity in comparison
to the logic units. Therefore, they determine the overall bounds. Consequently,
verification of the simple ALU has quadratic time complexity, i.e., O(n2).

3.5 Experimental Results

We have implemented the ALU in Fig. 2 in Verilog. The size of the ALU is a
parameter and it can be set before the synthesis. Thus, we can easily generate

10 R. Drechsler, A. Mahzoon, L. Weingarten

Table 2: Run-time of verifying ALUs (seconds)
Size Run-time

1024 37.51
2048 83.51
3072 100.67
4096 111.30
5120 129.93
6144 146.82
7168 160.25
8192 171.81
9216 187.57

10240 206.79

ALUs of different sizes. The design has been synthesized using Yosys [31]. We
have also implemented the BDD-based verifier in C++. The tool takes advan-
tage of the symbolic simulation to obtain the BDDs for the primary outputs. In
order to handle the BDD operations, we used the CUDD library [25]. All exper-
iments are performed on an Intel(R) Xeon(R) CPU E3-1275 with 3.60 GHz and
64 GByte of main memory.

In order to verify the ALU, we first set a value to select signal (e.g., 011), then,
we obtain the output BDDs using our verifier. Finally, we evaluate the BDDs
to check whether they match the corresponding operation (e.g., addition). We
repeat the process for all possible values of select to cover all operations.

Table 2 reports the verification run-times for simple ALUs. We have done
the experiments for 10 ALUs of different sizes. The first column Size denotes
the size of the ALU based on the number of bits per input. The run-time (in
seconds) of the BDD-based verification method is reported in the second column
Run-time.

It is evident in Table 2 that the BDD-based based verification reports very
good results. An ALU with 10240 bits per input, which consists of more than
700K gates, can be verified in less than 4 minutes. Thus, the experimental results
for the simple ALU confirm the scalability of the BDD-based verification method.

4 Polynomial Formal Verification of Advanced ALUs

In the previous section, we proved that polynomial formal verification of a sim-
ple ALU is possible. However, the ALUs which are used in practice are more
complicated, and they contain arithmetic units such as multipliers. Thus, the
BDD-based verification fails for these advanced ALUs, as it has an exponential
time and space complexity for multiplier units. It is a general problem of mono-
lithic verification strategies in which only one formal verification technique is
used to prove the correctness of the whole design.

As we mentioned in Section 2.1, one of the advantages of knowing the com-
plexity bounds is the possibility of comparing verification methods and choosing

Polynomial Formal Verification of Arithmetic Circuits 11

the best one for a specific design. When it comes to the verification of an ad-
vanced ALU, we can use different verification methods to prove the correctness
of each operation based on the select signal; i.e., a verification method with the
smallest order of complexity is employed for verifying a specific operation. This
hybrid verification strategy (i.e., using different verification methods to verify
each operation) makes the polynomial formal verification of an advanced ALU
possible. Moreover, it also keeps the run-time and memory usage low.

As an example, a hybrid verification strategy can be used to verify an ad-
vanced ALU containing a multiplier unit. *BMD-based verification method re-
ported good results for proving the correctness of multipliers, and its time and
space complexity are polynomial [16]. On the other hand, we proved that poly-
nomial formal verification of adder, subtractor and logic units is possible using
BDD-based verification. Consequently, we use *BMD-based verification for the
multiplication and the BDD-based verification for the rest of the operations.

In the future, we plan to calculate the complexity bounds of more verification
methods. It helps us to compare the complexities and choose the best technique
for the verification of a specific operation. As a result, the hybrid verification
achieves better performance in terms of run-time and memory usage.

5 Conclusion

In this paper, we clarified the problem of performance unpredictability in the field
of formal verification. We then discussed the importance of polynomial formal
verification of arithmetic circuits and reviewed the most notable works in this
research area. Subsequently, as an example, we proved the complexity bounds
of a simple ALU using BDD-based verification and confirmed the theoretical
calculations by experimental results. Finally, we proposed the idea of hybrid
verification to prove the correctness of advanced ALUs containing complicated
arithmetic units such as multipliers.

Acknowledgements This work was supported by the German Research Foun-
dation (DFG) within the Reinhart Koselleck Project PolyVer: Polynomial Ver-
ification of Electronic Circuits (DR 287/36-1).

References

1. Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient implementation of a BDD pack-
age. In: Design Automation Conf. pp. 40–45 (1990)

2. Bryant, R.E.: Binary decision diagrams and beyond: enabling technologies for for-
mal verification. In: International Conference on Computer-Aided Design. pp. 236–
243 (1995)

3. Disch, S., Scholl, C.: Combinational equivalence checking using incremental SAT
solving, output ordering, and resets. In: ASP Design Automation Conf. pp. 938–943
(2007)

4. Drechsler, R.: Advanced Formal Verification. Kluwer Academic Publishers (2004)

12 R. Drechsler, A. Mahzoon, L. Weingarten

5. Drechsler, R.: Formal System Verification: State-of the-Art and Future Trends.
Springer (2017)

6. Drechsler, R.: PolyAdd: Polynomial formal verification of adder circuits. In: IEEE
Symposium on Design and Diagnostics of Electronic Circuits and Systems. pp.
99–104 (2021)

7. Drechsler, R.: Polynomial circuit verification using BDDs (2021), arXiv:2104.03024

8. Drechsler, R., Becker, B., Ruppertz, S.: The K*BMD: A verification data structure.
IEEE Design & Test of Computers 14(2), 51–59 (1997)

9. Drechsler, R., Dominik, C.: Edge verification: Ensuring correctness under resource
constraints. In: Symposium on Integrated Circuits and System Design (2021)

10. Drechsler, R., Sieling, D.: Binary decision diagrams in theory and practice. Int. J.
Softw. Tools Technol. Transf. 3(2), 112–136 (2001)

11. Goldberg, E.I., Prasad, M.R., Brayton, R.K.: Using SAT for combinational equiv-
alence checking. In: Design, Automation and Test in Europe. pp. 114–121 (2001)

12. Höreth, S., Drechsler, R.: Formal verification of word-level specifications. In: De-
sign, Automation and Test in Europe. pp. 52–58 (1999)

13. Kapur, D., Subramaniam, M.: Mechanical verification of adder circuits using
rewrite rule laboratory. Formal Methods in System Design 13(2), 127–158 (1998)

14. Kaufmann, D., Biere, A.: Nullstellensatz-proofs for multiplier verification. In: Com-
puter Algebra in Scientific Computing. Lecture Notes in Computer Science, vol.
12291, pp. 368–389. Springer (2020)

15. Kaufmann, D., Biere, A., Kauers, M.: Verifying large multipliers by combining
SAT and computer algebra. In: Int’l Conf. on Formal Methods in CAD. pp. 28–36
(2019)

16. Keim, M., Drechsler, R., Becker, B., Martin, M., Molitor, P.: Polynomial formal
verification of multipliers. Formal Meth. in Sys. Des. 22(1), 39–58 (2003)

17. Koren, I.: Computer Arithmetic Algorithms. A. K. Peters, Ltd., 2nd edn. (2001)

18. Mahzoon, A., Drechsler, R.: Late breaking results: Polynomial formal verification
of fast adders. In: Design Automation Conf. (2021)

19. Mahzoon, A., Drechsler, R.: Polynomial formal verification of area-efficient and
fast adders. In: Reed-Muller Workshop (2021)

20. Mahzoon, A., Große, D., Drechsler, R.: PolyCleaner: clean your polynomials before
backward rewriting to verify million-gate multipliers. In: International Conference
on Computer-Aided Design. pp. 129:1–129:8 (2018)

21. Mahzoon, A., Große, D., Drechsler, R.: RevSCA: Using reverse engineering to bring
light into backward rewriting for big and dirty multipliers. In: Design Automation
Conf. pp. 185:1–185:6 (2019)

22. Mahzoon, A., Große, D., Drechsler, R.: Revsca-2.0: SCA-based formal verification
of non-trivial multipliers using reverse engineering and local vanishing removal.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(2021)

23. Mahzoon, A., Große, D., Scholl, C., Drechsler, R.: Towards formal verification of
optimized and industrial multipliers. In: Design, Automation and Test in Europe.
pp. 544–549 (2020)

24. Pavlenko, E., Wedler, M., Stoffel, D., Kunz, W., Wienand, O., Karibaev, E.: Mod-
eling of custom-designed arithmetic components in ABL normalization. In: Forum
on Specification and Design Languages. pp. 124–129 (2008)

25. Somenzi, F.: CUDD: CU decision diagram package release 2.7.0. available at https:
//github.com/ivmai/cudd (2018)

https://github.com/ivmai/cudd
https://github.com/ivmai/cudd

Polynomial Formal Verification of Arithmetic Circuits 13

26. Stoffel, D., Kunz, W.: Equivalence checking of arithmetic circuits on the arithmetic
bit level. IEEE Transactions on Computer Aided Design of Circuits and Systems
23(5), 586–597 (2004)

27. Temel, M., Slobodová, A., Hunt, W.A.: Automated and scalable verification of
integer multipliers. In: Computer Aided Verification. pp. 485–507 (2020)

28. Vasudevan, S., Viswanath, V., Sumners, R.W., Abraham, J.A.: Automatic verifi-
cation of arithmetic circuits in RTL using stepwise refinement of term rewriting
systems. IEEE Trans. on Comp. 56(10), 1401–1414 (2007)

29. Wegener, I.: Branching Programs and Binary Decision Diagrams. SIAM (2000)
30. Wilhelm, U., Ebel, S., Weitzel, A.: Functional safety of driver assistance systems

and ISO 26262. In: Handbook of Driver Assistance Systems: Basic Information,
Components and Systems for Active Safety and Comfort, pp. 109–131. Springer
(2016)

31. Wolf, C.: Yosys open synthesis suit. available at http://www.clifford.at/yosys/
(2015)

32. Zimmermann, R.: Binary Adder Architectures for Cell-Based VLSI and their Syn-
thesis. Ph.D. thesis, Swiss Federal Institute of Technology (1997)

http://www.clifford.at/yosys/

	Polynomial Formal Verification of Arithmetic Circuits

