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Abstract — We present a technique to automatically gener-
ate SystemVerilog-Assertions from designs using dynamic depen-
dency graphs. We extract relations between signals of the design
using only a few simulation runs, which drastically reduces the
required number of use cases compared to other approaches. Ad-
ditionally, unlike previous approaches, we do not use expression
templates to establish those relations. We abstract from the con-
crete use cases by inserting symbolic values and by merging sim-
ilar conditions in time. A model-checker verifies the correctness
of the generated properties. The evaluation shows that our ap-
proach is able to create more expressive properties than state of
the art techniques, while requiring less simulation data.

I. INTRODUCTION

In modern chip design, especially for System-on-Chip
(SoC)-designs, the final chips are created by combining dif-
ferent functional blocks. Those blocks can be newly created
blocks, blocks from previous designs, or blocks licensed from
other companies [1]. Due to increase of design complexity and
integration of more and more functionality into a single chip,
the amount of reused and licensed blocks is steadily increas-
ing. In order to correctly use those blocks a good knowledge
of their behavior is required. Such information about the be-
havior of functional blocks includes definitions of correct in-
puts to the block, latency, changes of the internal state, and
the expected outputs. In the cases where the original designer
of the design is not available, the user must get the informa-
tion from the documentation of the design. There are different
ways to describe the behavior of functional blocks, e.g., infor-
mal descriptions in natural language or in a formal and stan-
dardized format. One example of such a standardized format
are SystemVerilog-Assertions. Formal and standardized speci-
fications have several advantages; they are unambiguous, they
can be automatically processed by different tools, and they can
be automatically checked for correctness. Further, they can be
used to create test cases for the design [2].

In this work, we present an approach to automatically gen-
erate formal properties for a given design. As discussed in [3]
generated properties are useful for understanding a design, re-
gression testing, or detecting holes in testbenches. In the first
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step, our approach simulates a given set of use cases. In con-
trast to other approaches, even a small number of use cases
suffice. The use cases may be provided by the user, or auto-
matically created. From these simulation runs Dynamic De-
pendency Graphs (DDG) are created. Utilizing the DDGs an
initial set of potential properties for the design is created. For
creating this initial set of properties, symbolic representations
of the observed concrete values are used. The use of symbolic
values already provides an abstraction from the concrete val-
ues. By combining properties with similar sequences we can
abstract temporal behavior over unbounded time ranges. In the
end a model checker decides whether the abstracted properties
hold for the design.

Our contribution is the first approach to generate properties
from DDGs for hardware. Starting from use cases ensures
guidance to the property inference. Using DDGs allows for
powerful generalization. In contrast to previous approaches,
which required a large amount of use cases and templates to
establish relations between signals of the design, we only need
a very small number of DDGs and no templates to find those
relations. This makes our approach complementary to previous
work.

Experiments with our approach showed that we can create
very good properties, even from a small set of simulation data.
In contrast to approaches using data mining, our technique
further allows to generate word-level properties utilizing the
whole set of SystemVerilog operators.

This paper is structured as follows. In Section II related
work is shown. Preliminaries are defined in Section III. Next,
our approach is presented in Section IV. Section V evaluates
our approach and Section VI concludes the paper.

II. RELATED WORK

Dynamic invariant mining is a technique to compute likely
invariants from example executions of a system. A well known
tool in this area is Daikon [4]. Daikon computes invariants by
instrumenting the design under consideration. Next, the de-
sign is executed using a set of use cases. Afterwards, statistical
analysis is performed on the gained data to obtain the invari-
ants. This analysis searches for values, which satisfies a set of
property templates. Our approach differs from the Daikon ap-
proach in three major facts. First, we use a model-checker to
verify the invariants to ensure the correctness of the generated
properties. Second, our approach uses the concrete computa-



tion of the values given by the DDG to compute the invariants
and not only the observed values. Finally, our approach does
not need expression templates, as the expressions are extracted
from the DDGs.

In [5] Nimmer and Ernst combine Daikon with the static
program checker ESC. In this combination the ESC is used to
model-check the invariants generated with Daikon. This com-
bination lifts the limitation of Daikon that the invariants are not
verified, but still the computation is only based on comparisons
of recorded values without any guarantee that they are related
in any way.

Gabel and Su describe the property mining tool Javert [6].
Javert computes temporal properties describing the correct us-
age of software artifacts. More precisely they compute a reg-
ular expression, which defines the correct sequence of func-
tion calls. However, their approach cannot simply be applied
to hardware designs. They use function calls as target for
their tracking and specification. For hardware designs at the
Register-Transfer-Level (RTL) the inputs to a design are not
provided as function calls. In fact the interface of a hardware
block does not show which inputs decide the functionality and
which are data for the function, data- and control-inputs may
even be time multiplexed, or inputs may be ignored at given
times. Applying the Javert approach to RTL-design would re-
quire a large manual effort to describe the requests for func-
tionality and when they are valid. This contradicts the goal of
an easy to use automated approach.

Vasudevan et. al. present the GoldMine tool in [7]. The tool
automatically generates properties for a given RTL-design.
The tool uses simulation traces, formal verification, and static
code analysis. GoldMine applies use cases to a design and
stores signal values during the simulation. In the next step a
decision tree based learning algorithm computes candidate re-
lations between signals. The resulting properties argue about
equality and non-equality of signal with constants. GoldMine
argues only over single bits. Afterwards a designer may mark
whether she considers the generated property useful which
supports the learning algorithm to direct the generation pro-
cess. The generated properties are mostly used for regression
testing; however they can also be checked against the spec-
ification to uncover incorrect behavior. In contrast to Gold-
Mine which uses simulation data for property generation, we
use the DDG to take control- and data-flow of the design into
account. Further, our approach can create word-level proper-
ties and uses a more expressive set of operands.

The approach in [8] relies on templates and statistical analy-
sis to infer formal properties from simulation traces. Similar to
our approach, formal verification ensures the validity of prop-
erties. However, no reasoning from expressions as given by
the DDG is considered.

The Inferno tool [9] analyzes a set of simulation traces to in-
fer transactions of the design. For this, Inferno considers a user
defined set of signals and the observed transitions of the val-
ues of these signals. First, this reduces a set of possibly large
simulation traces into a small Finite State Machine (FSM). The
Inferno tool searches for transactions in the simulation traces.
Transactions are sequences of signal valuations which appear
several times in the simulation trace and start and end in some

boundary valuations. In contrast to our approach Inferno re-
quires large amounts of simulation runs and requires additional
information from the user, if the operations of the system are
overlapping. Further, Inferno only describes the observed val-
ues and does not abstract symbolic values.

Dynamic symbolic execution is a technique to create use
cases [10]. The technique first computes the symbolic con-
straint for an existing use case. This constraint describes the
conditions under which a use case executes the same com-
putation path. Then, one of those conditions is negated and
from the constraint all subsequent conditions are pruned. In
the next step a constraint-solver computes a new use case, ful-
filling this new constraint. This new use case is expected to
follow a different execution path. Dynamic symbolic execu-
tion and our approach have in common that they compute the
path-constraints from concrete executions of the system, but
how those path-constraints are used largely differs between
both approaches.

III. PRELIMINARIES

Let D be some design, given in a hardware description lan-
guage (HDL), e.g., Verilog or VHDL. We say a use case for
D is a sequence of assignments to D’s primary inputs. The
simulation of a use case is called a run.

Given a design D and a run r a DDG G = (V,E) can be
computed. A DDG consists of a set V of vertices, represent-
ing expressions, statements, and values of signals including
primary inputs. In a DDG a statement, an expression, or a
signal may have more than one vertex assigned to it represent-
ing different time points or instances. The edges of the graph
E describe the dependency between those expressions, state-
ments, and variables. Based on the definitions for the different
types of dynamic slicing by Zhang, He, Gupta, and Gupta [11]
we define three types of dependencies. The first type is data-
dependency. A vertex v1 is data-dependent on a vertex v2, if v2
is an operand of v1 or if v1 is a signal value and v2 is the cor-
responding assignment to that signal. The second type is full-
dependency. Full-dependency contains all data-dependencies
and additionally also considers control-dependencies. A ver-
tex v1 is control-dependent on a vertex v2 if v2 is a control
statement and v1 is only executed because of control-decisions
made by v2. The last type is relevant-dependency. Relevant-
dependency subsumes full-dependency and extends the defi-
nition of control-dependency such that a vertex v1 represent-
ing a signal is also control-dependent on v2 if v2 is a control-
statement and v1 would have another value, if v2 would have
been evaluated differently.

IV. INFERRING PROPERTIES

In our approach we compute properties for hardware designs
using DDGs. The underlying idea is the following: Given
a vertex v in the DDG the subgraph which only contains the
elements on which v recursively dependent (backward slice),
yields a correct property for v. The user defines a set of in-
puts and outputs for the properties, those may include internal



signals or registers of the design. The properties generated by
the presented technique, describe a relation between the inputs
and the outputs. By default our technique assumes the primary
inputs of the design as inputs and the primary outputs of the
design as outputs. If other registers/signals, for example the
general purpose register of a CPU, shall be used, the user has
to provide corresponding information to the approach. We cre-
ate SystemVerilog [12] properties. The basic format is:

e1 r1 ##t1 e2 r2 ...##tn−1 en−1 rn−1 |− > ##tn o == en

Where o is an output, e1, ..., en SystemVerilog expressions,
t1, ..., tn non-negative integers and ri is a formula how often
ei is repeated (described in Section IV.H). The basic steps of
the approach are:

1. Creating DDGs
2. Computing initial properties
3. Combining similar properties
4. Splitting properties
5. Abstracting repetitions
6. Checking the properties

A. Notation

We use c as symbol for a constant. We denote a symbolic
expression with the symbol e. A symbolic expression is an ex-
pression over constants and variables using a set of operators
and the $past-function. In our case we allow all Verilog op-
erators with the exception of the ternary operator, which we
substitute with a conditional statement and an assignment to
the correct branch. Early results of our approach showed that
using the ternary operator in expressions leads to very poor
and hard to read properties. We assume that a set of basic sim-
plification rules are applied to the symbolic expressions, e.g.,
a∨ 0⇒ a. Further, let ei be a symbolic expression using only
inputs as variables and let eio be a symbolic expression using
inputs and outputs as variables.

We measure time in clock cycles. Given a variable v, vT

denotes the variable v at the clock cycle T . Given a sym-
bolic expression or property x, and let V = vT1

1 , ..., vTn
n be

all occurrences of variables in x. Let T = T1, ..., Tn be the
corresponding set of all clock superscripts. For convenience
we extend the superscript annotation to properties and sym-
bolic expressions, thus we write xT with T = max(T ∪ {0}).
Further, we define a transformation xT [c], c ∈ Z, such that
each variable vTx

x ∈ V is replaced with vTx+c
x . We use xT [↓]

as shorthand for xT [−min(T ∪ {T})], i.e., the transforma-
tion that causes the smallest value in T to become 0. Given
a collection of symbolic expressions E = {e1, ..en}, we de-
fine E[c] = {e1[c], ..., en[c]}.

We say a path-condition is a symbolic expression of the
form ei == c where ei is the (symbolic) condition of a condi-
tional statement and c is the concrete value to which this con-
dition has evaluated. The following sections describe the steps
of our approach in detail.

1 module C o n d i t i o n a l F l i p F l o p (
2 i n p u t w i r e c lk ,
3 i n p u t w i r e enab le ,
4 i n p u t w i r e d a t a I n ,
5 o u t p u t r e g d a t a O u t )
6

7 a lways @( posedge c l k )
8 i f ( e n a b l e )
9 d a t a O u t <= d a t a I n ;

10 endmodule
Fig. 1. The code for our minimal example.

TABLE I
THE USE CASE FOR OUR EXAMPLE

clock tick 0 1 2 3 4
enable 1 0 0 1 1
dataIn 1 1 0 0 0

B. Creating Dynamic Dependency Graphs

First, we generate the DDGs. A code transformation is used
to compute relevant-dependency. The basic idea of the code
transformation is that whenever an evaluation of a branch could
assign a variable ensure that all branches assign the variable,
possibly in form of a self-assignment. After the code transfor-
mation is applied the design is instrumented, such that a DDG
is generated while simulating the instrumented design.

Example 1. We use the conditional flipflop design given in
Figure 1. The use case we will consider for our example is
given in Table I.

Figure 2 shows the DDG for our example use case and de-
sign.

C. Computing initial properties

First, we annotate internal vertices if they are equal to an
output vertex. For this we follow the assignments of the
outputs backwards, while gathering all path-conditions under
which those assignments were executed. We stop if we hit a
vertex type other than assignments. Each visited vertex is an-
notated with the output as well as the path-conditions gathered
until that point.

Example 2. Vertices v13 and v17 in Figure 2 will be annotated
with dataOut3 under the path-condition "enable2 == 0"
created by if3. Vertices v12 and v16 will get two different anno-
tations: First dataOut2 under the condition "enable1 ==
0" created by if2, second dataOut3 under the set of condi-
tions "enable2 == 0" created by if3 and "enable1 ==
0" created by if2.

If we compute symbolic expressions of the type eTi we ig-
nore those annotations. In the case of the eT1

io type we chose the
annotation with variable vT2 , with the highest value T2 such
that T2 < T1. Now for each output signal oTp we compute
an initial property as follows: We generate an expression e
of the type eio for the signal, while doing so we add each
path-condition we encounter to a set C. "Encounter a path-
condition" means that we either visit its corresponding con-
ditional statement vertex or it is a part of an annotation we
are using. Note, while we generate the expression for a path-
condition we may encounter further path-conditions.
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Fig. 2. DDG for the use case of Table I

We split C into a list of sets of path-conditions ordered by
time C∗ = (CT1 , ..., CTn), T1, ..., Tn ∈ N ∪ {0} such that:

(∀i ∈ {1, .., n}∀cT
′
i ∈ CTi , T ′i = Ti)∧

(∀i ∈ {1, .., n− 1}Ti < Ti+1)

The initial properties are of the form:

 ∧
c1∈CT1

c1

##(T2 − T1)

 ∧
c2∈CT2

c2

 , ...,

##(Tn − Tn−1)

 ∧
cn∈CTn

cn

|− > ##(Tp − Tn)o == e

In cases where CTi [n] ≡ CTi+1 [n − 1] ≡ ... ≡ CTi+n ,
i.e., for n clock cycles the conditions are identical modulo
a moving time frame, we are using the SystemVerilog [*n]
operator to shorten the property. We say n is the repetition
count of the corresponding sets of path-conditions. We call
{CTi , ..., CTi+n} a repetition set. Further, we use the func-
tion $past to access variable values at previous clock cycles:
Given a symbolic expression eTk and let vTl be a variable oc-
curring in eTk , further let Tl < Tk then we write that occur-
rence as $past(v,Tk − Tl).

Our example would result in following properties:

enable |->##1 dataOut == $past(dataIn,1)
!enable |->##1 dataOut == $past(dataOut,1)

D. Combining similar properties

Next, we try to combine properties with respect to their rep-
etitions. We decide whether we can combine two properties
p1, p2 as follows: Let p′1, p′2 be copies of the original proper-
ties. Then for each repetition set {CTi , ..., CTi+n} in one of
the properties p′1, p′2 we remove CTi+1, ..., CTi+n from that
property and apply {CT1 , ..., CTi}[n]. If then p′1[↓] ≡ p′2[↓],
p1, p2 can be combined. The assumption is that, if several
path-constraints have such similarities, those will also hold for
different numbers of repetitions.

To also include periodic behavior of the design, we
represent the number of repetitions as a quadruplet
f = (base,width,minSteps,maxSteps) ∈ Z4 in a (canoni-
cal) form such that each repetition count can be computed as:
base + n ∗ width with n ∈ Z, 0 ≤ minSteps ≤ n ≤ maxSteps,
and 0 ≤ base < width. The reason behind this more complex
representation of the number of repetitions, in contrast to a
simple range of minimal and maximal amount of repetitions
is that often for a hardware design there are functions which
take a fixed amount of clock cycles to execute or read their
inputs. Let Ro = (r1, r2, ..., rm) be the list of observed
repetitions in ascending order without duplicates and let
∆ = (δ1, .., δm−1), δi = ri+1 − ri be the differences between
the elements of Ro. Then width is set to the greatest common
divisor of all elements in ∆.

To estimate the validity of this abstraction, we compute
a support value of the property. We compute the support
value for a single repetition formula as: Support value =

|Ro|
(maxSteps−minSteps)+1 . The support value for a property is the
product over all support values of the contained repetition for-
mulas. For example consider the following properties:

req[*2] |->##1 ack == 1, req[*4] |->##1 ack == 1

These properties will be combined into the following prop-
erty:

req [*2:4] |-> ack == 1

With: f = (0, 1, 2, 4) and Support value = |(2,4)|
(4−2)+1 =

0.66.

E. Splitting properties

We check whether we can increase the average support value
by splitting properties using different values for width. Let
p be a property with support less than 1, thus p must in-
clude at least one repetition f with a support value less than
1, i.e., for f not all possible repetition values were observed.
Let W be the set including all values for width found in the
property combination step. We define a subset Wr of W as
Wr = {wr|wr ∈ W ∧ wr > 1 ∧ ∀w ∈ W\{1, wr}, (wr

mod w) 6= 0}. Let widthf be the width of f and basef its
base. Further, let Wd ⊆ Wr be the subset of Wr that exactly
includes those elements of Wr for which widthf is a divisor
(∀wd ∈Wr, wd mod widthf ≡ 0⇔ wd ∈Wd).

For each wd ∈Wd we split the property in wd/widthf parts,
where the width of each new quadruple is wd and all the new
properties Pn jointly cover exactly all cases covered by the
original property. Thus, the base of the new quadruple are of
the form: basef + widthf ∗ n, n < wd/widthf , n ∈ N ∪ {0}
and if considering all elements of Pn all possible values of n
are hit. Then in each Pn the properties with a support value of
0 are removed. Among all Pn and {p} we keep the set with the
highest average support and discard the rest.

Example 3. Let us assume we have a set of properties which
only differ in the number of repetitions for a single path-
condition. Let those numbers be 1, 3, 4, 6, 7, and 9. The com-
bination step will result in repetition quadruple f = (0, 1, 1, 9)



e[*base]##0(##1((e[*width])[*1:maxSteps])or 1)

if(minSteps 6= maxSteps)if(width 6= 0)

if(minSteps≡ 0)

if(base 6= 0)

{
1 if(minSteps ≡ 0)

minSteps otherwise

Fig. 3. The representation of an expression e and a repetition quadruple
f = (base,width,minSteps,maxSteps) in SystemVerilog.

and the support value will be 0.66. Further, assume in other
properties we had observed a width of 3. Then the property
would be split into three properties with the repetition quadru-
ples: f0 = (0, 3, 1, 3), f1 = (1, 3, 0, 2), and f2 = (2, 3, 0, 2).
The property for f2 will be discarded as its support is 0.0. Both
remaining properties will have a support of 1.0. Thus, the av-
erage support is increased. Further, as the case for base = 2
was never observed it is likely that the property does not hold
for base = 2.

F. Abstracting repetitions

We abstract from the concrete number of repetitions
in the path-constraints. We abstract the repetition by
relaxing the requirements for the minimal and maximal
number of steps. Given repetition quadruple f =
(base,width,minSteps,maxSteps) with minSteps 6= maxSteps,
the abstractions are:

• minSteps is decreased to 1
• minSteps is decreased to 0
• maxSteps is increased to infinite ($)

Obviously, the resulting abstracted properties could be incor-
rect. Therefore, in the last step a formal check of the properties
is applied.

G. Checking the properties

In the last step we check whether the abstracted properties
hold. For this we use a model-checking tool. In case that dif-
ferent abstractions for the repetitions are correct, only the most
general property is retained.

H. Representing repetitions

Writing the repetitions in SystemVerilog syntax results in
properties often hard to parse for human developers. Figure 3
shows the translation of a symbolic expression e and a repe-
tition quadruple f = (base,width,minSteps,maxSteps) into a
SystemVerilog property. Three cases make the property espe-
cially hard to read, first having a base larger than 0 causes e
to be duplicated. Second, the "##0((##1...)or 1)" con-
struct is created if stepWidth is 0 and finally a stepwidth greater
1 causes nested repetition operators. Therefore in such cases
we add comments of the form:

\\e[*base+n*stepWidth],n>=minStep,n<=maxStep

to make the properties easy to understand for a human.

TABLE II
RUNTIME FOR THE DIFFERENT STEPS OF OUR APPROACH

Design Inst. Co.+Sim. Gen. Check.(all) Check.(single)
Bridge 13ms 2.7s 50ms 27.2s 1.9s
CPU 42ms 3.2s 3.7s 236m 30s 10m14s

TABLE III
NUMBER OF PROPERTIES FOR THE BUS-BRIDGE

Initial Generated [1:y] [0:y] [x:$] [1:$] [0:$]
Total 300 51 4 25 25 4 25
Correct - 45 0 14 16 0 10
Incorrect - 6 4 11 9 4 15
Final - 25 0 4 6 0 10

V. EXPERIMENTS

In this section we present the results of applying our ap-
proach to a small bus-bridge design and a simple CPU de-
sign implementing a subset of the x86 32bit instruction set
architecture1. All experiments run in a virtual machine hav-
ing access to 4 cores of an i7-4712MQ and 12GB of RAM.
As operation system a 64-Bit Debian 8 was used. Simula-
tion and model checking were done using commercial tools.
Table II gives the run-time for the different parts of the ap-
proach. The first column gives the name of the design, the
second the time for the code transformation and instrumen-
tation, the third the time required for compiling and simu-
lating the instrumented design. The forth column gives the
time to generate the initial properties and abstracted proper-
ties. All times given in those columns were measured using
std::chrono::system_clock from the C++-standard
library. The last columns give the time required for model
checking all properties and the longest time to check a single
property. The times in those columns are reported as provided
by the model checker. As we can see model checking the prop-
erties requires by far the most time.

A. Bus-bridge

The design contains a buffer with parametrized size and
data-width. For our case study, we are using a data-width of
eight and a buffer size of eight. A user may request to read
(ReqR) or write (ReqW) to the bridge. Those operations can
be used concurrently. A single request of each type can be
pending. If a request is fulfilled, a corresponding acknowledg-
ment (AckR/AckW) signal is asserted. The set of use cases
contains two use cases one takes 30 clock cycles and the other
69 clock cycles.

Table III shows the number of generated properties for the
different steps of our approach. The column Initial gives the
number of initially created properties (Section IV.C). The col-
umn Generated gives the amount of properties generated with-
out the use of abstraction, i.e., the properties after the splitting
step described in Section IV.E. Note that for this case study all
support values are 1.0, thus splitting was not applied. As we
can see there are six incorrect properties, these properties have
been generated before the first reset signal in the use cases has

1http://www.digitaltechnik.org/examples/Y86_seq.zip



TABLE IV
NUMBER OF PROPERTIES FOR THE CPU DESIGN

Initial Generated [1:y] [0:y] [x:$] [1:$] [0:$]
Total 2088 171 4 16 38 4 16
Correct - 58 0 4 22 0 3
Incorrect - 113 4 12 16 4 13
Final - 36 0 0 19 0 3

occurred. As the design is not initialized at this point, those in-
correct properties are expected. The last five columns contain
the results for the different abstractions as described in Sec-
tion IV.F. Some of the abstractions were not applicable to all
properties, for example when minSteps was already 1.

The bottom row shows the number of properties included in
the final set of properties. As described in Section IV.G we
only keep the most abstracted correct version of a property.

The interesting properties generated by our approach can
broadly be partitioned into two groups: basic behavior of the
design, e.g., if a request cannot be fulfilled directly, the re-
quest is stored; valid repetition abstractions of the form [0:$]
which describe inputs which can be arbitrarily repeated with-
out changing the internal control-state of the design. This in-
cludes idle behavior, but also properties describing constant
throughput are generated. Not directly described in the proper-
ties but easy to extract is the minimal latency of the design, as
we have to search for the lowest parameter of the $past-task
where the output equals a previous input.

B. CPU design

The CPU is a 32-bit, five stage design with eight general
purpose registers, a dedicated program counter, and a status
flag to store whether the last result was zero. The status flag
is used by the conditional jump instruction. As primary inputs
the design has a clock input, a reset input and a data input from
memory. Primary outputs are a read enable output, a write
enable output, an address output and a data output for control-
ling the system memory. Further, for debugging purposes, the
design has an output providing the opcode of the currently exe-
cuted instruction. We applied two changes to the CPU design:
First, we transformed it into a synchronous design. Second,
we added corresponding code to the design such that the simu-
lation ends if the halt instruction is executed. The first change
was required as our current implementation does not support
outputting asynchronous properties. The second change was
introduced as the original design requires manually stopping
the simulation which does conflict with our goal of an auto-
matic approach.

As use case for this design, we execute the example program
shipped with the design. The execution of this program takes
417 clocks cycles, including the clock cycles for resetting the
design at the beginning, and 84 instructions are executed, also
counting the final halt instruction.

Table IV shows an overview of the properties generated
for the CPU design. The properties generated for the outputs
bus_RE, bus_WE, and current_opcode, completely de-
scribed the behavior of those outputs once the design is reset.
The final set contains between five and six properties for each

of those outputs and no property took more than 1 second to
be checked.

Further, using the generated properties the structure of the
read and write instructions can be extracted, i.e., the opcode of
those instructions and the bits indicating read/write from mem-
ory; in contrast to read/write from a register. In case of the
data output to the memory the generated properties can iden-
tify those cycles where the output does not change with respect
to the previous cycle, which covers 80% of the output’s behav-
ior. However, the properties describing how the value changes,
are either incorrect or encode the use case, both cases provide
no useful information. For the address outputs our approach
yields a similar result. Our approach identifies those clock cy-
cles where the output is constantly 0, which holds 60% of the
time, but fails to create meaningful properties for the other cy-
cles. All the useful properties for the data output and the ad-
dress output were created by the splitting part of our approach.
In no other case splitting has been used, i.e., whenever it was
used it improved the final result. In total 24 useful properties
were created, from which seven require splitting.

C. Comparison with GoldMine

In this section we analyze the differences between our tool
and the GoldMine tool [7]2. As the Bus-Bridge contains
Verilog-tasks not supported by GoldMine, the comparison fo-
cuses on the CPU design. GoldMine includes a generator for
random use cases. For the comparison we use both, the orig-
inal example program as well as the use case generated by
GoldMine. We provided GoldMine with information about the
clock and the reset signal. Our approach was provided with in-
formation about the clock signal as well. Further, we used the
option that GoldMine should target outputs of any bit-width.

The use case randomly generated by GoldMine executes
10,000 clock cycles. Using that use case our approach gen-
erates the same 24 useful properties as created with the orig-
inal use case of 417 clock cycles, as well as a set of very
specific properties. The heuristic part of GoldMine generates
nine properties from which eight are found to be correct by
the model-checker. Four of the correct properties describe the
behavior of the write enable output in the stages, where the
output is constant. The other four describe the behavior of the
read enable output in the stages, where the output is constant.
Each of the read enable properties can be directly related to one
property created by our approach. For example our approach
creates:

((rst)
##0((##1((!rst)[*5])[*1:$]) or 1)//(!rst)[*n*5],n>=0
)|->##1 bus_RE ==’b1;

and GoldMine creates:

(( full[3] == 1 ) |=> ##1 ( bus_RE == 1 ))

Note that in this design full is a one-hot encoded counter
for the current stage of the execution. Where GoldMine de-
scribes the output with respect to the internal state, but not how

2GoldMine, used by Jan Malburg, was developed by Department of Elec-
trical and Computer Engineering at the University of Illinois at Urbana-
Champaign.



that state is reached. Our approach, using the default inputs and
outputs, describes how the state is reached but not the internal
state. Both cases have their advantages and disadvantages.

We also check how the approaches are affected by different
use case sizes. When reducing the length of the use case to
2,700 clock cycles GoldMine no longer creates the properties
for the write enable output. The properties for the read-enable
output are no longer created by GoldMine once the use case
length is reduced below 395 clock cycles. Our approach can
create all 24 useful properties even for use cases of 11 clock cy-
cles. This shows that our approach requires far less simulation
data to create useful properties. We also check whether the use
case might be to small for GoldMine, however increasing the
length of the use case to 100,000 clock cycles does not help.
Using the example program as use case, causes GoldMine to
create the same properties as in case of the use cases with 2,800
or more clock cycles. As the example program, however, only
takes 417 clock cycles this is an indication that GoldMine is
stronger affected by bad use cases than our approach.

For some clock cycle values, for example 1,300, Gold-
Mine also created 16 properties for the current_opcode
output. It seems that some internal threshold of GoldMine
is hit as the heuristic part creates far more properties for
current_opcode in those cases, but all except those 16
properties are refuted by the model-checker. Those 16 proper-
ties consist of two properties per bit of the output, one property
for the high case and one for the low case:

(full[4]==1)##1(bus_in[0]==0)|=>(current_opcode[0]==0)
(full[4]==1)##1(bus_in[0]==1)|=>(current_opcode[0]==1)
(full[4]==1)##1(bus_in[1]==0)|=>(current_opcode[1]==0)
\\...

All those 16 properties are subsumed by a single property
generated by our approach:

((rst)
##1((!rst)[*5])[*1:$]
)|->##2 current_opcode==({$past(bus_in,1)}[7:0]);

This nicely shows the advantage of word-level properties, as
well as allowing more operators in the property.

VI. CONCLUSION

We presented an approach for automatically generating
properties for an HDL-design using DDGs. First, we gener-
ate DDGs from a set of use cases for the design. In the next
step a set of initial properties is extracted from those DDGs.
Through several refinement and abstraction steps a set of gen-
eral properties is created. In the last step a model-checker is
used to verifies the properties.

We evaluated our approach on two designs, the evaluation
showed that our approach creates useful properties. Addition-
ally, we compared our approach to the heuristic based dynamic
property generation tool GoldMine. Table V gives a short
overview of the differences between our approach and Gold-
Mine. The presented approach and GoldMine are using com-
plementary techniques. Our approach uses DDGs to extract
relations between signals in the design. This yields word-level
properties using a large set of operators. In fact we allow all

TABLE V
COMPARISON BETWEEN GOLDMINE AND OUR APPROACH

GoldMine Our Approach
Required sim. clock cycles many few
Interesting internal signals heuristic given by user
Asynchronous behavior yes no
Multi-bit properties no yes
Expressions in properties == (0|1) All except "?:"
Equivalence between variables no yes
Temporal unbounded properties no yes

Verilog operators except the ternary operator, which we trans-
late in a condition and an assignment. Furthermore, our ap-
proach requires only a few use cases, as a single observation
of a relation is enough to establish the corresponding property.
GoldMine on the other hand uses heuristics to establish rela-
tions between signals of the design. This allows GoldMine to
easily find interesting internal signal which can be utilized in
the properties.

Overall GoldMine has an advantage in case of many or un-
known internal control signals, where our approach has an ad-
vantage in case of few simulation data or complex relation be-
tween signals.
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