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Abstract. This paper investigates the verification gap ofDynamic Quan-
tum Circuits (DQC) by analyzing state-of-the-art equivalence checking
approaches. Today’s Noisy Intermediate-Scale Quantum (NISQ) devices
are limited in the number of qubits. DQCs drastically reduce the num-
ber of qubits required by guiding the outcome based on the intermediate
results of the computations. Investigation of feasibility of existing verifi-
cation tools with respect to DQC verification is needed. In order to ver-
ify the equivalence of DQCs, verification tools often transform dynamic
primitives in order to reveal the underlying functionality of the circuits.
This leads to restoration of their unitary functionality and allows existing
equivalence checkers to reason about DQCs. Our objective is to provide
empirical data that can be used to improve these tools by examining
their capabilities and effectiveness. Equivalence checking methods that
use ZX-Calculus, Quantum Multi Valued Decision Diagrams (QMDD)
and simulators are considered in this regard. In order to gauge the ef-
fectiveness of the present tools, we use the Bernstein–Vazirani, Deutsch-
Jozsa and Quantum Phase Estimation algorithms and their dynamic
variants. Experiments reveal that the existing equivalence checking tools
are limited in their effectiveness, while simulation based approaches pro-
vide correct verifications at the expense of high runtime overhead. Our
results show that the different verification methods never achieves accu-
racy of more than 50%.

Keywords: Dynamic Quantum Circuit · Equivalence Checking · Veri-
fication · QMDD · ZX-Calculus · Quantum Simulation

1 Introduction

Quantum computing is a rapidly advancing field with the potential to revolu-
tionize how we solve complex problems. Quantum computers take advantage of
quantum mechanical principles, such as superposition and entanglement to solve
certain problems. Currently, we are in the Noisy Intermediate Scale Quantum
(NISQ) era, where the fabricated quantum computing devices are noisy and have
limited number of qubits. While current quantum computers, such as the IBM
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Condor, can scale up to 1211 qubits, they are not advanced enough for fault-
tolerant computing. The long-term goal in quantum computation is to achieve
Fault-Tolerant Quantum Computing, thus providing robustness and opening the
door to more applications. Recently with the introduction of non-unitary oper-
ations such as mid-circuit measurement, active resets and classically controlled
quantum operations, a new class of circuits known as Dynamic Quantum Cir-
cuits (DQC) have emerged [7]. The mid-circuit measurements in a computation
enable the measurement of an outcome during the execution of an intermedi-
ate stage, where subsequent gate operations depend on this measurement. This
allows non-unitary operations to be combined with unitary operations. One fun-
damental difference between Static Quantum Circuits (SQC) and DQC is that,
future states of DQC depend on the outcome of measurements that occur in the
circuit. Also, the measurement always occurs at the end of the circuit for SQC
i.e. states of a SQC, have no dependencies [7]. This brings us one step closer
to overcoming the limitations of NISQ era by reducing the number of qubits
required for executing any algorithm.

DQCs allow the realization of any quantum algorithm with fewer qubits.
Recent works have targeted the design of dynamic versions of Toffoli gate [14]
thereby paving the way for dynamic realization of Deutsch–Jozsa (DJ) algo-
rithm [8]. Another work [13] targets the dynamic realization of Multiple Control
Toffoli (MCT) gate that further allows for dynamic realization of many more
quantum algorithms. Now the task is to verify whether the functionality of the
dynamically realized algorithm is correct, as compared to its static counterpart.

Existing verification tools have their merits and demerits with respect to
dynamic circuit verification [4,10]. To verify the equivalence of DQCs, the verifi-
cation tools transform the dynamic primitives to represent the underlying func-
tionality of the circuits. This leads to restoration of their unitary functionality
and permits existing equivalence checkers to reason about DQCs. Even when
we transform a DQC to a SQC, there still exist some issues because of which
available tools for SQC verification fail. The challenge is that the qubit order is
lost during the unitary reconstruction of the DQC to the SQC, and hence exiting
methods cannot be directly applied. In this paper we primarily focus on analyz-
ing existing equivalence checking methods based on ZX-Calculus, and Quantum
Multi-Valued Decision Diagrams (QMDD). We also use the Qiskit Aer simula-
tor [16] for verifying our results. We use the Bernstein–Vazirani (BV), Deutsch-
Jozsa (DJ) and Quantum Phase Estimation (QPE) algorithms and their dy-
namic variants [7, 14] for the experiments. The goal of this work is to provide
empirical data for evaluating the effectiveness of equivalence checkers for DQCs,
as well as finding the best candidate from a set of DQCs for a quantum algo-
rithm. Experimental results show that existing verification tools have certain
limitations while verifying DQCs. In contrast, simulation based approaches pro-
vide accurate results; however, they are not scalable and become very expensive
in terms of memory and run-time when the circuit size increases. Our experi-
ments reveal that the accuracy level of the considered verification methods does
not exceed 50% and depends on their implementation.
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2 Background

2.1 Quantum Gates and Quantum Circuits

The state of a quantum system is manipulated by quantum operations, known
as quantum gates. Every such operation on a quantum system is reversible and
must yield a valid quantum state; thus, the operation is represented by a 2n×2n

unitary matrix U , where n is the number of qubits on which the gate operates.
The only constraint for a quantum operation is that the matrix U needs to be
unitary.

q0 : |0⟩ X H

q1 : |0⟩ • H

q2 : |0⟩ •

Fig. 1: A Quantum Circuit

Fig. 1 shows a 3-qubit quantum circuit consisting of NOT (X), CNOT (CX)
and Hadamard (H) gates. Generally, circuits are evaluated on physical quantum
computers. This mode of computation is considered static, as the result of the
outcome is available only after the execution of all the gates, and it does not
have the capability to perform computations based on intermediate outcomes.

2.2 Dynamic Quantum Circuit

The traditional quantum circuit model forms the basis for implementing quan-
tum circuits on physical quantum devices. Recently, IBM has introduced the
capability to manipulate quantum circuits in real-time and perform mid-circuit
measurements [7]. These advancements have laid the groundwork for the re-
alization of DQCs. DQCs have the potential to realize any n qubit quantum
circuit using minimum 2 qubits only, as opposed to traditional or static circuits
requiring at least n-qubits.

Many recent works have shown the advantage of using DQCs for realizing
various algorithms like QPE, BV and DJ. In [14] two methods were introduced
for converting a Toffoli gate into its dynamic analogue. This work in particular
shows the dynamic implementations of 3-qubit DJ circuits using two different
dynamic Toffoli designs, namely dynamic 1 and dynamic 2.

Fig. 2(a) shows the BV algorithm to determine a 3-qubit hidden string 111
from a given black-box function that implements the function F(x) = xyz. This
uses three data qubits (q0, q1 and q2) that are initialized to |0⟩ state, and an
answer qubit (q3) initialized to |−⟩

(
= 1√

2
(|0⟩ − |1⟩)

)
state. The main idea of

dynamic transformation is to transform the static circuit consisting of various
data and answer qubits into a single data qubit and equal number of answer



4 Liam Hurwitz, Kamalika Datta, Abhoy Kole, and Rolf Drechsler

q0 : |0⟩ H • H

q1 : |0⟩ H • H

q2 : |0⟩ H • H

q3 : |0⟩ X H

C0,2 /3
��

(a) BV Algorithm

q0 : |0⟩ H • H q1 : |0⟩ H • H q2 : |0⟩ H • H

q3 : |0⟩ X H

c0,2 /3
0

��
1

��
2

��

(b) Dynamic Realization of BV Algorithm

Fig. 2: Static and Dynamic Representation of BV Algorithm

qubits. In the case of the BV algorithm, we use one data qubit and one answer
qubit. It may be noted that while performing the transformation, we need to
consider independent and dependent 1- and 2-qubit operations. This information
allows us to determine how the dynamic transformation will follow.

Fig. 2(b) shows the dynamic realization of BV algorithm. It can be observed
that we require three iterations, involving one data qubit and one answer qubit.
All the operations present between a reset and a measurement on the data qubit
are performed within an iteration. The three iterations entail evaluation of all the
gate operations between qubits (q0, q3), (q1, q3) and (q2, q3) respectively, along
with a reset operation on the data qubit after the first and second iteration.

2.3 Verification of Quantum Circuits

Design and verification of quantum circuits is a challenging task due to the inher-
ent complexity of quantum systems. Simulation can be an effective tool for small
quantum circuits and their verification. It allows for the comparison of the mea-
surement outcomes of circuits. However, quantum simulators are not effective for
complex or large-scale quantum systems. Current scalable approaches to address
this challenge use Quantum Multiple-Valued Decision Diagrams (QMDDs), Ten-
sor Decision Diagrams (TDDs) and ZX-Calculus. All of these approaches have
been shown to be effective in verifying the equivalence of static quantum circuits,
yet have different strengths and weaknesses.

Tensor Decision Diagrams (TDD) [10] offer a compact representation
of Boolean functions and are inspired by tensor networks. They are used widely
for formal verification, artificial intelligence and cryptography. In recent years,
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TDDs have attracted attention in the field of quantum computing, due to their
ability to efficiently represent and manipulate quantum circuits. In [10] Hong et
al. have provided efficient methods for verifying the equivalence of static and dy-
namic quantum circuits. They formally define DQCs and have characterized their
functionality in terms of ensembles of linear operators. Equivalence is checked
by verifying that the two DQCs have the same functionality. Here, the authors
present a unified representation for each component of the DQC as a tensor. This
allows DQCs to be interpreted as a tensor decision network and represented as
a TDD. The equivalence checking operation then checks if the two DQCs share
the same TDD representation.

Quantum Multivalued Decision Diagrams (QMDD) are a type of de-
cision diagrams capable of representing multiple values simultaneously, making
them well-suited for depicting quantum states. The fundamental concept be-
hind QMDDs involves portraying a quantum state as a tree structure, where
each node signifies a superposition of quantum states, and the edges denote
transitions between different superpositions. Leveraging QMDDs allows for the
efficient representation and manipulation of quantum states, a crucial aspect in
verifying the equivalence of quantum circuits.

Several studies use QMDDs for verifying the equivalence of quantum circuits.
For instance, in [20], the authors proposed a method for verifying the equiva-
lence of two quantum circuits by constructing their corresponding QMDDs and
comparing them. The authors demonstrated that their approach is efficient and
scalable [21]. It is shown that decision diagrams can efficiently represent large
quantum states by leveraging the principles of quantum mechanics [3].

ZX-Calculus has drawn the attention of researchers from different fields
such as quantum circuit optimization, error correcting codes, circuit simulation,
extraction and equivalence checking, as well as measurement based comput-
ing, tensor networks, variational circuits and quantum natural language pro-
cessing [18]. A literature survey [6] was published by Bob Coecke. It has several
advantages over traditional methods for equivalence checking. First, it provides
a graphical representation of quantum circuits that is easy to understand and
analyze [6]. Second, algorithms for equivalence checking exist [9,12]. The disad-
vantage of ZX-Calculus is that it is not efficient for quantum circuits containing
Toffoli gates, as the rewrite rules take longer to terminate due to gate decom-
position. The ZH-Calculus is a promising alternative for quantum circuits with
multiple controlled Toffoli gates [1]. Equivalence checking using the ZX-Calculus
has not yet been proven to be complete for quantum circuits. If the rewrite rules
cannot prove equivalence, no conclusion can be drawn. In an earlier work Seiter
et al. [17] have exploited the QMDD data structure for property checking in
quantum circuits. As a future work we can also extend the concept for dynamic
quantum circuit.
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3 Verification of Dynamic Quantum Circuits (DQC)

Checking the equivalence of two quantum circuits relies on the reversibility of
quantum operations [15]. Every quantum operation is unitary and hence re-
versible. The product of any quantum operation and its inverse (adjoint) will
always yield identity. G is an abstract representation of a quantum circuit such
as QMDD or ZX-Calculus, while U represents the matrix operator of the circuit.
If U is equivalent to U ′, this implies G is equivalent to G′ and vice versa. Given
two quantum circuits G and G′, where g and g′ are the individual gates of each
circuit, their equivalence is defined as:

Definition 1. Given two quantum circuits

G = go . . . gm−1 and G′ = g′0 . . . g
′
n−1

and the respective system matrices for the two circuits

U = Um−1 . . . U0 and U ′ = U ′
n−1 . . . U

′
0,

the problem of equivalence checking is to verify, whether

U = eiσU ′ or UU ′† = eiσI,

given σ ∈ (−π, π] denotes a physically unobservable global phase.

In general, checking the equivalence of quantum circuits becomes increasingly
difficult because the size of the matrices grows exponentially with the number
of qubits. Equivalence checking is Quantum Merlin Arthur (QMA)-Complete.
Problems that are QMA-Complete can be solved efficiently using quantum com-
puting algorithms.

Def. 1 is not complete as it does not always consider circuits equivalent when
the number of qubits differ, or the circuit has non-unitary operations or even
when the system matrices differ. The cause for the non-equivalence between the
system matrices could be numerical inaccuracies or permutations in the input or
outputs of the circuits [4]. In order to ensure that compiled or optimized quan-
tum circuits do not alter the functionality or the intended behavior, equivalence
checking needs to be able to deal with the variations that exist in the system
matrices [3]. Current equivalence checking tools [11, 20] try to avoid using the
matrix based operator representation (system matrix), since the representation
of an n qubit quantum circuit requires a matrix of the size M2n×2n .

3.1 QMDD based Verification

The QMDD equivalence checking algorithm verifies the equality of two quantum
circuits G and G′ according to Def. 1. It first constructs a decision diagram rep-
resentation of each circuit’s functionality: first by applying each gate g from the
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circuit G onto the initial identity, and next by applying the inverse functionality
of G′−1 as individual gates g′−1.

G′−1 ·G = (g′−1
m′−1 . . . g

′−1
0 ) · (g0 . . . gm−1) = G′ → I← G (1)

If the resulting diagram is the identity decision diagram, the circuits are
equivalent; otherwise, they are not [20]. Fig. 3 exemplifies the process of verifying
the equality of two quantum circuits, G and G′ with QMDD. Fig. 3(a), labeled
‘Initial Identity I’, shows the QMDD representing the initial identity operator.
Next, Fig. 3(b) displays the QMDD of the given circuit G, In Fig. 3(c), referred
to as ‘Intermediate’, we observe an intermediate state during the construction
of the QMDD for the inverted circuit G′. Specifically, all the gates of the first
qubit have already been applied to the previous diagram. Fig. 3(d) exhibits the
resulting QMDD when applying G′ → I ← G, proving they yield the identity.
MQT DDVis [19] is a tool for visualizing simulation and verification for QMDD.
While QMDDs typically enable compact representation of quantum systems,

(a) Initial Identity I (b) QMDD of G (c) Intermediate (d) G′ → I← G

Fig. 3: Example of QMDD verification using MQT DDVis for Fig. 1.

their size can still grow exponentially with the number of qubits in the worst-case
scenario, where no redundancy in the state description can be exploited, resulting
in minimal node sharing and exponential node growth [3]. They should be used
for computing the full state vector, since the QMDD remains compact [2]. In
conclusion, QMDDs have emerged as a powerful tool for verifying the equivalence
of quantum circuits. Numerous studies have explored their application for this
purpose, proposing innovative techniques for constructing, manipulating and
visualizing QMDDs [20].
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3.2 ZX-Calculus based Verification

ZX-Calculus is a rigorous graphical language for reasoning about quantum cir-
cuits and algorithms. It extends the categorical quantum mechanics school of
reasoning [5], using the paradigms of monoidal category theory. ZX-Calculus
provides a solution to the problem of equivalence checking. By representing quan-
tum circuits as diagrams referred to as ZX-Diagrams, it is possible to manipulate
these diagrams using a set of graphical rewrite rules [18]. These rules allow us to
verify, if two quantum circuits, which were transformed into ZX-Diagrams, are
equivalent [20].

The transformations utilized by the ZX-Calculus equivalence miter [11], proves
that G′ · G† = I, where G and G′ are quantum circuits and G† is the adjoint
(transposed complex conjugated) of G. The equivalence checking miter lever-
ages Def. 1, which states that if two quantum circuits are equivalent, the adjoint
of one circuit applied to the second circuit can be rewritten as the identity. If
the reduced ZX-Diagram consists only of bare wires, both circuits are equiva-
lent [18]. Fig. 4 shows how the equivalence checking miter proves the equality of
the quantum circuit shown in Fig. 1 with itself.

(a) Step 0: Obtain ZX-Diagram D (b) Step 1: Adjoint D† of D

(c) Step 2: Concatenation of Dm = D ·D†
(d) Step 3: Bare
Wires

Fig. 4: Equivalence Check using ZX-Calculus [4, 11] of Fig 1

The equivalence miter checking method involves several steps, that are de-
picted in Fig. 4(b), 4(c), and 4(d). A key benefit of utilizing ZX-Calculus rewrite
rules lies in their non-deterministic nature, which enables the application of each
rule until exhaustive application of the rule, followed by a subsequent rewrite
rule without requiring a reapplication of the prior rewrite rule [12]. This non-
deterministic rewrite rule application in ZX-Calculus allows for a flexible and
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efficient approach for reducing ZX-Diagrams. First, the adjoint ZX-Diagram D†

of Fig. 1 is obtained, as shown in Fig. 4(b). The adjoint operation switches the
inputs with the outputs and vice versa, implicitly reversing the order of the op-
erations for each wire. Additionally, every phase is negated; for instance, the X
gate has a phase of π, which becomes −π after negation. Because phases have
the range 0 ≤ φ < 2π and are periodic, the phase remains π. It can be observed
that −π = π mod 2π, since it represents the same angle in the periodic domain.
The concatenation Dm = D ·D† is formed by connecting the output of the first
diagram with the inputs of the second diagram, as displayed in Fig. 4(c). The
resulting diagram Dm is reduced as much as possible using ZX-Graph rules,
resulting in the simplified diagram shown in Fig. 4(d). Finally, it is checked
whether the reduced diagram consists of only bare wires. This can be done ef-
ficiently by verifying whether every input directly connects to an output. If so,
the two original circuits are equivalent up to global phases, as demonstrated
in [4, 11].

The advantage of the ZX-Calculus for equivalence checking is that computing
the equivalence becomes computationally cheap, after the D · D′† = Dm has
been reduced, since checking if a ZX-Diagram contains only ‘bare’ wires requires
checking if every input node is directly connected to output node. If two circuits
are not equal, Def. 1 will yield the difference between both circuits instead of
the identity. The difference can be quantified with various methods, such as the
trace-distance, fidelity or the Hilbert-Schmidt inner product. This provides a
measure of how well the first circuit matches the behavior of the second circuit.
Quantifying this difference in a memory efficient way is an active research topic.

3.3 Simulation

Our informal definition for equivalence of quantum circuits states that two quan-
tum circuits are equal, if they have the same measurement distribution. To sim-
ulate a quantum circuit, the quantum registers should be initialized to the |0⟩
state. After each operation is applied, measurements are conducted. This process
is then repeated multiple times. The simulator returns the number of occurrences
of a specific measurement result. The following points are considered for simu-
lation based method:

1. Two circuits are equal if their measurement distributions are identical.
2. Two circuits can be considered similar if the difference in their measure-

ment distributions falls within a certain percentage, attributable to their
probabilistic nature.

3. If there is a significant discrepancy between the measurement distributions,
we conclude that the circuits are unequal.

We utilized the Qiskit Aer simulator [16] to acquire the measurements for
each quantum circuit. This requires transpiling the quantum circuits for the Aer
simulator (a successor to the previously deprecated Qasm simulator). If a SQC
and a DQC produce identical measurements, they are regarded as equivalent.
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However, when they differ, the degree of similarity is determined using Eq. 2,
where s represents the number of shots, n denotes the measurement distribution
of the desired outcome for the SQC, and m signifies the corresponding measure-
ment count for the DQC.

Similarity =

(
1− |n−m|

s

)
× 100 (2)

3.4 Unitary Reconstruction for DQCs

Another approach to verify DQCs is known as unitary reconstruction that was
proposed in [4]. This method involves transforming the dynamic primitives to
reveal their underlying unitary functionality by overcoming mid-circuit resets,
and applying the deferred measurement principle to delay all measurements to
the end of the circuit.

The first step transforms a n-qubit circuit containing r active reset operations
into a (n + r)-qubit quantum circuit and eliminates qubit reuse. In the second
step, all phase rotations controlled by measurement outcomes are replaced by
phase gates controlled directly by the respective qubit, that was measured previ-
ously. Next all measurements are moved to the end of the circuit, thus removing
any mid-circuit measurements [4], applying the principle of deferred measure-
ment [15]. The verification of the original and reconstructed SQCs is not straight
forward, as their qubit order differs. Fig. 5 shows the unitary reconstruction of
the dynamic BV-111 from Fig. 2(b).

q0 : |0⟩ H • H

q1 : |0⟩ H • H

q2 : |0⟩ H • H

q3 : |0⟩ X H

c : /3
0

��
1

��
2

��

Fig. 5: Unitary Reconstruction of Fig. 2(b)

Unitary reconstruction enables existing equivalence checking tools to verify
the equivalence of DQCs, as only unitary quantum operations are present.

4 Experimental Evaluation

To evaluate the effectiveness of existing equivalence checkers for verifying DQC,
we perform the following series of experiments:
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1. Compare the similarity between static and DQCs using Qiskit Aer quantum
simulator.

2. Performance evaluation of existing verification tools for DQCs.

For performing the experiments, following algorithms are used as bench-
marks:

– Deutsch-Josza (DJ) algorithm: A quantum algorithm designed to deter-
mining whether a boolean function is constant or balanced with just one
query when given access to a quantum oracle. This circuit also consists of
Hadamard, CNOT, and measurement gates.

– Bernstein-Vazirani (BV) algorithm: An extension of the DJ algorithm ca-
pable of finding the hidden string within a black box function using expo-
nentially fewer queries compared to classical methods. The circuit involves
Hadamard gates, controlled-NOT gates, and measurement operations.

– Quantum Phase Estimation (QPE): A fundamental subroutine in many
quantum algorithms, including Shor’s factoring algorithm. It estimates the
eigenvalues of a unitary operator with high precision.

One goal of this experiment is to publish a reproducible benchmark for in-
creasing the accessibility and effectiveness of quantum circuit equivalence check-
ers. The benchmarking tool requires that all .qasm files follow the naming con-
vention of MQT Bench. Each equivalence checker verifies the equivalence be-
tween variations of a quantum circuit and their hardware-independent versions,
and exports the results in a CSV or XLS format. The source code for this
Benchmark and Unitary Reconstruction can be found at https://codeberg.

org/QuantumHB/equivalence. The benchmark folder contains a README file
with a step-by-step guide to reproduce the results of this experiment, as well as
further benchmarks that can be used to assess the efficiency and effectiveness of
SQCs and DQCs.

4.1 Similarity Comparison

In this experiment, we simulate a set of SQC benchmarks, namely the Bernstein-
Vazirani (BV) algorithm, Deutsch-Josza (DJ) algorithm, and Quantum Phase
Estimation (QPE) algorithms along with their dynamic counterparts from [14].
Simulation is performed to verify the equality of DQCs. The simulation results
and details are presented in Table 1. We use Qiskit’s Aer simulator for this
purpose. But it may not always be efficient or practical due to the resource
requirements in simulating large quantum systems.

Table 1 shows the simulation results for SQC and DQC. The first column
represent the name of the quantum circuit, the second column specifies which
type of the quantum circuit was instantiated. Third to sixth column provide
details about number of inputs N , depth D, number of single-qubit gates G1,
and number of two-qubit gates G2 required for the static quantum circuit. The
seventh till eleventh column show the version V er, i.e. which dynamic variant

https://codeberg.org/QuantumHB/equivalence
https://codeberg.org/QuantumHB/equivalence
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Table 1: Similarity Comparison of Execution Outcome of SQC and DQC

Circuit Type
SQC DQC

Similarity
N D G1 G2 Ver N D G1 G2

BV

001 4 5 8 1 - 2 13 8 1 100
010 4 5 8 1 - 2 13 8 1 100
011 4 6 8 2 - 2 14 8 2 100
100 4 5 8 1 - 2 13 8 1 100
101 4 6 8 2 - 2 14 8 2 100
110 4 6 8 2 - 2 14 8 2 100
111 4 7 8 3 - 2 15 8 3 100

DJ

And 3 15 12 6
1 2 23 17 6 75
2 2 26 21 6 99

Carry 4 35 26 18
1 2 60 41 18 100
2 2 68 49 18 100

Const 0 3 3 6 1 - 2 7 6 2 100
Const 1 3 3 7 0 - 2 7 7 1 100

Imply 1 3 17 13 7
1 2 26 18 7 74
2 2 29 22 7 97

Imply 2 3 17 13 7
1 2 25 18 7 74
2 2 28 22 7 97

Inhib 1 3 16 12 7
1 2 24 17 7 76
2 2 27 21 7 99

Inhib 1 3 16 12 7
1 2 25 17 7 73
2 2 28 21 7 99

Invert 1 3 6 7 1 - 2 10 7 2 100
Invert 2 3 6 7 1 - 2 8 7 2 100

Nand 3 16 13 6
1 2 24 18 6 72
2 2 27 22 6 97

Nor 3 18 13 8
1 2 27 18 8 74
2 2 30 22 8 97

Or 3 17 12 8
1 2 26 17 8 75
2 2 29 21 8 99

Pass 1 3 5 6 1 - 2 9 6 2 100
Pass 2 3 5 6 1 - 2 8 6 2 100
Xnor 3 7 7 2 - 2 11 7 2 100
Xor 3 6 6 2 - 2 10 6 2 100

QPE

00 3 8 5 0 - 2 11 6 0 100
01 3 8 5 0 - 2 11 6 0 100
10 3 8 5 0 - 2 11 6 0 100
11 3 8 5 0 - 2 11 6 0 100

from [14] was evaluated, number of inputs N , depth D, number of single-qubit
gates G1, and number of two-qubit gates G2 required for the DQC. The last col-
umn contains the similarity between the SQCs and DQCs, which is calculated
by running the Qiskit Aer simulator 1024 times. If both circuits both generate
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the same measurements distributions, they have a similarity of 100% and are
considered equivalent and are marked green. Otherwise, their similarity is cal-
culated with Equation 2. Yellow indicates that they behave similarly, and red
signifies greater variance between the measurements counts.

4.2 Evaluation of Equivalence Checkers

In this evaluation, we have considered MQT and PyZX equivalence checkers.
These tools are publicly available. Several TDD based checkers are available as
well; however, all the TDD implementations are plagued by runtime errors, mak-
ing it impossible to include them in the evaluation study. In order to compare
the accuracy of the PyZX and MQT ZX-Calculus implementations for DQCs, a
preprocessor was added to PyZX benchmark, which applies the unitary recon-
struction if necessary.

Fig. 6: Accuracy of PyZX, MQT QCEC and the Qiskit Aer Simulator

In Fig. 6, we present the result of various equivalence checkers after evaluat-
ing on our considered benchmarks. Only benchmarks, that were 100% equivalent
using simulation are included in this part of the experiment. The Y-axis repre-
sents different methods for equivalence checking, and the X-axis represents the
accuracy in percent. PyZX (version 0.8.0) coupled with the unitary reconstruc-
tion preprocessor achieved an accuracy of 42% for BV instances, 40% for DJ
instances, and failed for all QPE instances, because the custom unitary recon-
struction algorithm, which was added for this experiment, does not support all
gates that are necessary for QPE.

Next, we evaluated different equivalence checking methods supported by ver-
sion 2.4.3 of the Quantum Circuit Equivalence Checker (QCEC), that is part of
the Munich Quantum Toolkit (MQT) [3]. MQT ZX, the ZX-Calculus method,
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did not perform any correct evaluations, indicated by zero percent across all
benchmark BV, DJ, and QPE instances.

The Construction Equivalence Checker (QMDD) [3] did not perform correct
verifications for BV and QPE instances but managed to achieve an accuracy
of 20% for the DJ instances (Invert2 and XNOR). It reported equivalence up
to a global phase. The Alternate Equivalence Checker Method (QMDD Alt) [3],
correctly classified 2 out of 4 QPE circuits and managed to correctly verify the
equality of the Const-1 and Const-2 version of the DJ algorithm achieving an
accuracy of 50% and 20%. Both QMDD methods combined achieved an accuracy
of 30% for all circuits.

Table 2 provides a more in depth comparison of various state-of-the-art equiv-
alence checkers. The table offers analysis consisting of individual equivalence
check for each type of equivalence checker and for individual circuit version,
that are 100% similar using simulation. An X indicates a false negative when
the checker returned not equivalent, timeout or undecidable for an equivalent
circuit. The ✓ denotes a correct verification and ⋆ represents a software crash.
The p signifies that equivalence could be proven up to a global phase.

Table 2: Verification Results for BV, DJ and QPE Circuits

Circuit
MQT

PyZX
Type Qubits Version QMDD Alt ZX

BV

001 4 - x x x x
001 4 - x x x ✓
010 4 - x x x x
011 4 - x x x x
100 4 - x x x ✓
101 4 - x x x x
001 4 - x x x ✓

DJ

Carry 4
1 x x x x
2 x x x x

Const 0 3 1 x ✓ x ✓
Const 1 3 1 x ✓ x ✓
Invert 1 3 1 x x x x
Invert 2 3 1 p x x x
Pass 1 3 1 x x x x
Pass 2 3 1 x x x x
Xnor 3 1 p x x ✓
Xor 3 1 x x x ✓

QPE

00 3 - x ✓ x ⋆
01 3 - x x x ⋆
01 3 - x ✓ x ⋆
01 3 - x x x ⋆
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4.3 Critical Analysis

We can safely say that no tool achieved an accuracy higher than 50% for any of
the three quantum algorithms. This emphasizes the imperative for further de-
velopment and improvement of equivalence checking methodologies tailored for
DQCs. There is a need for refining tools for verifying equivalence of DQCs. Ad-
ditionally, there is a call for defining missing functionality in current equivalence
checkers, such as a similarity metric. Overall, the study provides valuable data for
critical evaluation of existing equivalence checkers and motivation for proposing
new approaches for checking the equivalence of DQCs. Furthermore, it is as-
sumed that the accuracy of MQT-QCEC is low for DQCs because MQT-QCEC
does not correctly handle the qubit permutations that occur during the unitary
reconstruction of DQCs. The experiment has revealed that no equivalence check-

Fig. 7: Efficiency and Effectiveness for Dynamic Quantum Circuits

ing method except simulation is effective for dynamic quantum circuits, as their
accuracy reaches, at best, a limited level. Fig. 7 is a depiction of the verification
gap for DQCs. It shows that the current state-of-the-art equivalence checkers are
not effective and efficient for verifying the equivalence of DQCs. State-of-the-art
equivalence checkers need to enhance their accuracy to be effective for DQCs.

5 Conclusion

In this paper we investigate and analyze the verification gap of the existing
state-of-the-art equivalence checking approaches for DQCs. In the current NISQ
era, DQCs are considered a viable alternative because it reduces the number of
qubits required to realize any algorithm. We particularly study and analyze the
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existing tools to verify the DQCs. We can safely say that none of the existing
tools can fully verify the DQCs. The highest accuracy achieved by these tools
for various benchmarks is 50%. This clearly demonstrates the need for designing
improved verification tool for DQCs. Only simulation based method using Qiskit
Aer provide 100% accuracy for a set of benchmarks. This answers the question
that we raise in the title of the paper. As a future work we can also exploit
various decision diagrams for property checking in quantum circuits.
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